
1 1 © 2011 The MathWorks, Inc.

Accelerating Bit Error Rate Simulation
in MATLAB using Graphics Processors

James Lebak
Brian Fanous
Nick Moore

High-Performance Embedded Computing Workshop (HPEC 2011)
22 September 2011

2

Outline

 Application Area
 MATLAB Tools
 DVB-S.2 Subset benchmark
 DVB-S Subset benchmark
 Conclusions

3

Bit Error Rate Simulation

 Begin with a model of a
communications system

 Vary the signal-to-noise ratio
 Calculate bit error rate through

Monte Carlo simulation
 Obtain a curve like that at the

right
 Expensive (millions of trials,

days of simulation)

4

Example System Model
Digital Video Broadcast Standard, Second Generation (DVB-S.2)

BCH
Encoder

Demodulator
and

Deinterleaver

LDPC
Decoder

LDPC
Encoder

BCH
Decoder

Channel
Model

Modulator
and

Interleaver
Data In

Data Out

Transmitter Model

Receiver Model

LDPC = Low-Density Parity Check

Simulation Goal: Verify transmitter and receiver achieve a given bit
error rate in the presence of noise introduced by the channel model

5

Outline

 Application Area
 MATLAB Tools
 DVB-S.2 Subset benchmark
 DVB-S Subset benchmark
 Conclusions

6

System Objects

Represent dynamic systems
 Algorithms with input values and states that change over time

Optimized for iterative execution
 One-time checking of parameter values, input arguments
 Data streaming between objects

Many algorithms implemented in C++ for speed

Support for automatic C code generation

System objects allow design of dynamic systems in MATLAB

7

System Object Receiver Model

%***Receiver Object Creation ***
hDemod = comm.PSKDemodulator(demodulatorArgs{:});
hDeintrlv = comm.BlockDeinterleaver(dvb.InterleaveOrder);
hDec = comm.LDPCDecoder(decoderArgs{:});

8

System Object Receiver Model

%***Receiver Object Creation ***
hDemod = comm.PSKDemodulator(demodulatorArgs{:});
hDeintrlv = comm.BlockDeinterleaver(dvb.InterleaveOrder);
hDec = comm.LDPCDecoder(decoderArgs{:});
 {'ModulationOrder', 2^dvb.BitsPerSymbol, ...

 'BitOutput', true, ...
 'PhaseOffset', dvb.PhaseOffset, ...
 'SymbolMapping', 'Custom', ...
 'CustomSymbolMapping', dvb.SymbolMapping, ...
 'DecisionMethod', 'Approximate log-likelihood ratio', ...
 'Variance', dvb.NoiseVar}

9

System Object Receiver Model

%***Receiver Object Creation ***
hDemod = comm.PSKDemodulator(demodulatorArgs{:});
hDeintrlv = comm.BlockDeinterleaver(dvb.InterleaveOrder);
hDec = comm.LDPCDecoder(decoderArgs{:});

 %***Receiver Model Execution***%
 demodOut = step(hDemod, chanOut);
 dexlvrOut = step(hDeintrlv, demodOut);
 ldpcdecOut = step(hDec, dexlvrOut);

10

Graphics Processing Unit (GPU) Acceleration
in MATLAB

Requirements
– Parallel Computing Toolbox
– NVIDIA GPU with Compute Capability 1.3 or greater

Level of control

Minimal

Some

Extensive

Use GPU arrays with MATLAB
built-in functions

Execute custom functions on
elements of GPU arrays

Create kernels from existing
CUDA code and PTX files

Parallel options Required effort

None

Straightforward

Involved

11

LDPC Decoder

c0 c1 c2 c3 c4 c5 c6 c7 c8

f0 f1 f2 f3 f4

c9

fj

ci

rji

qij

LDPC Decoder Algorithm
for ii=1:maxIterations,
 Update all r messages (in parallel)
 Update all q messages (in parallel)
end
form hard/soft decision (in parallel)

LDPC Decoder was
implemented using custom
CUDA kernels in MATLAB
release R2011a

Received word

Check nodes

Iteratively determine
message bits that best
satisfy system constraints

(64800 nodes)

(32400 nodes)

~226,000 edges

12

GPU-Accelerated Receiver Model

%***Receiver Object Creation ***
hDemod = comm.PSKDemodulator(demodulatorArgs{:});
hDeintrlv = comm.BlockDeinterleaver(dvb.InterleaveOrder);
hDec = comm.gpu.LDPCDecoder(decoderArgs{:});

 %***Receiver Model Execution***%
 demodOut = step(hDemod, chanOut);
 dexlvrOut = step(hDeintrlv, demodOut);
 ldpcdecOut = step(hDec, dexlvrOut);

• Minimal code changes to use GPU System Object
• GPU System object is 20x faster than original System object
• Overall system simulation is 5x faster

13

Outline

 Application Area
 MATLAB Tools
 DVB-S.2 Subset benchmark
 DVB-S Subset benchmark
 Conclusions

14

DVB-S.2 Subset Benchmark
Digital Video Broadcast Standard, Second Generation (DVB-S.2)

BCH
Encoder

Demodulator
and

Deinterleaver

LDPC
Decoder

LDPC
Encoder

BCH
Decoder

Channel
Model

Modulator
and

Interleaver
Data In

Data Out

Transmitter Model

Receiver Model

Subset benchmark (can execute entirely on GPU)
New objects implemented using MATLAB for faster development

15

Using GPU System objects
 GPU System objects are drop-in replacements for standard

System objects
– Normal MATLAB arrays in normal MATLAB arrays out

– Requires two data transfers

16

Using GPU System objects
 GPU System objects are drop-in replacements for standard

System objects
– Normal MATLAB arrays in normal MATLAB arrays out

– Requires two data transfers

%***Receiver Object Creation ***
hDemod = comm.gpu.PSKDemodulator(demodulatorArgs{:});
hDeintrlv = comm.gpu.BlockDeinterleaver(dvb.InterleaveOrder);
hDec = comm.gpu.LDPCDecoder(decoderArgs{:});

 %***Receiver Model Execution***%
 demodOut = step(hDemod, chanOut);
 dexlvrOut = step(hDeintrlv, demodOut);
 ldpcdecOut = step(hDec, dexlvrOut);

17

Using GPU System objects
 GPU System objects are drop-in replacements for standard

System objects
– Normal MATLAB arrays in normal MATLAB arrays out

– Requires two data transfers

 GPU System objects also accept GPUArrays as inputs
– In this case the output is also a GPU Array

– Avoids data transfer overhead

%***Receiver Object Creation ***
hDemod = comm.gpu.PSKDemodulator(demodulatorArgs{:});
hDeintrlv = comm.gpu.BlockDeinterleaver(dvb.InterleaveOrder);
hDec = comm.gpu.LDPCDecoder(decoderArgs{:});

 %***Receiver Model Execution***%
 demodOut = step(hDemod, gpuArray(chanOut));
 dexlvrOut = step(hDeintrlv, demodOut);
 ldpcdecOut = gather(step(hDec, dexlvrOut));

18

DVB-S.2 Subset Benchmarks Using GPUArray

0

5

10

15

20

CPU Input GPUArray input

Speedup Over CPU

GPU-Accelerated LDPC

All GPU-Accelerated

 Baseline: speed of subset
with all objects on the CPU

 Using GPUArray objects as
inputs accelerates both
versions of the benchmark

 Using the GPU-accelerated
LDPC provides a large
performance boost

 Adding GPU-accelerated
versions of other objects
slows down the simulation

Benchmark Machine Specs
CPU: 2.5 GHz Intel Core 2 Quad
GPU: NVIDIA Tesla C1060
Windows 7
MATLAB R2011b

19

Performance vs. Input Size for GPU System
Objects

 Computational density is
important for obtaining
good GPU performance

 Many GPU System objects
are slower for small data
sizes

 In R2011b, crossover point
is generally around 105

 Frame size is 64800
elements

System Frame Size

20

DVB-S.2 Subset Multi-Frame Benchmarks

0
2
4
6
8

10
12
14
16
18

CPU Input GPUArray
input

GPUArray, 8
frames per

step

Speedup Over CPU

GPU-Accelerated LDPC

All GPU-Accelerated

 Process 8 frames of data on
the GPU simultaneously to
get better performance

 LDPC performance begins to
saturate, but other objects
become faster

21

Outline

 Application Area
 MATLAB Tools
 DVB-S.2 Subset benchmark
 DVB-S Subset benchmark
 Conclusions

22

Digital Video Broadcast – Satellite (DVB-S)
benchmark

Demodulator Viterbi
Decoder

Convolutional
Encoder

Channel
Model

Modulator Data In

Data Out

Transmitter Model

Receiver Model

 DVB-S is a similar system
– uses different encoder/decoder pair than DVB-S.2

 The entire chain executes on the GPU
– including message generation and validation

 Viterbi Decoder is implemented as a custom CUDA kernel
– all others implemented using MATLAB GPU support

23

DVB-S Subset Benchmarks

0

0.005

0.01

0.015

0.02

0.025

CPU Input

Mean execution time
 per frame (s)

CPU
GPU Viterbi
GPU All, single-frame
GPU All, 500 frames
Generated CPU code

 DVB-S frame size is 1632
elements

– single-frame performance on
the GPU is slower than the CPU

– multi-frame performance is
much faster

24

Conclusions

 The GPU can be a powerful tool for accelerating Bit Error Rate
simulation in MATLAB

 Parallel Computing Toolbox allows a trade-off between work
and performance

– Implement the kernels with highest computational requirements as
custom CUDA kernels

– Implement kernels with lower computational requirements using MATLAB

 For best performance using the GPU, process multiple data
frames simultaneously

25

Acknowledgments

The following people at MathWorks contributed to this
work or to the presentation.
Andy Grace

Witek Jachimczyk

Amit Kansal

Darel Linebarger

Mike Longfritz

Roy Lurie

Mike McLernon

Don Orofino

Paul Pacheco

Narfi Stefansson

Bharath Venkataraman

	Accelerating Bit Error Rate Simulation in MATLAB using Graphics Processors
	Outline
	Bit Error Rate Simulation
	Example System Model�Digital Video Broadcast Standard, Second Generation (DVB-S.2)
	Outline
	System Objects
	System Object Receiver Model
	System Object Receiver Model
	System Object Receiver Model
	Graphics Processing Unit (GPU) Acceleration in MATLAB
	LDPC Decoder
	GPU-Accelerated Receiver Model
	Outline
	DVB-S.2 Subset Benchmark�Digital Video Broadcast Standard, Second Generation (DVB-S.2)
	Using GPU System objects
	Using GPU System objects
	Using GPU System objects
	DVB-S.2 Subset Benchmarks Using GPUArray
	Performance vs. Input Size for GPU System Objects
	DVB-S.2 Subset Multi-Frame Benchmarks
	Outline
	Digital Video Broadcast – Satellite (DVB-S) benchmark
	DVB-S Subset Benchmarks
	Conclusions
	Acknowledgments

