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Motivation

Why Quantum Gravity?

General relativity (GR) very successful on observable length scales

But:

◮ General relativity and quantum mechanics are incompatible
e. g. violation of the uncertainty principle

◮ Einstein’s equations: Gµν − 1
2 λ̄gµν

︸ ︷︷ ︸
= 8πḠTµν

↓
unquantized quantized in QFT

◮ GR ⇒ spacetime singularities ⇒GR makes no more predictions

◮ Information loss in black hole radiation (unitarity problem)

◮ All other interactions successfully described by QFT
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Problems in Quantizing Gravity

Attempt: quantize classical Einstein-Hilbert action perturbatively

SEH =
1

16πḠ

∫
d4x

√
g (−R + 2λ̄)

◮ Mass dimension of Newton’s constant Ḡ: -2
Usual power counting suggests: gravity non-renormalizable

◮ At one-loop level divergent counterterms vanish on shell

◮ First divergence arises at two loops, the Goroff-Sagnotti term

Result: gravity is perturbatively non-renormalizable!
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Motivation

Approaches to Quantum Gravity

◮ String theory

◮ Loop quantum gravity

◮ Causal/euclidean dynamical triangulations

◮ Supergravity

◮ Hořava gravity
...

◮ Asymptotic Safety
→ few a priori assumptions:

supersymmetry, extra dimensions, spin foam,. . . not needed!
→ relies on QFT concepts
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Gravity as an Effective Field Theory

◮ Gravity can be considered an effective field theory

◮ General relativity is the corresponding low energy theory:
“Gravity = Einstein-Hilbert + higher order terms (R2, . . .)︸ ︷︷ ︸”

strongly suppressed at observable energies

◮ Higher order terms expected to get relevant at Planck scale

mPl =
√
~c/Ḡ ≈ 1.2 · 1019 GeV/c2

Effective description depends on scale

→ parameterized by running coupling constants
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Vacuum polarization leads to screening effects
⇒ We see a smaller charge at large distances (low energies)
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Implementation of the Running

Idea: introduce action functional established with scale dependence

→ The effective average action Γk

Example: scalar field theory

Γk [φ] =

∫
d4x

[
1
2 Zk ∂µφ∂µφ − 1

2 m2
k φ2 − 1

4!Λk φ4 + . . .
]

↓ ↓ ↓
running couplings → explicit scale dependence

Infinitely many effective theories, one for each energy scale k
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Construction of Γk

Recall functional methods of QFT (scalar field, euclidean PI)

◮ Generating functional Z for Green’s functions

Z [J ] = N
∫

Dχ exp

(
−S [χ] +

∫
ddx J (x)χ(x)

)

◮ Generating functional W for connected Green’s functions

W [J ] = ln Z [J ]

◮ Define φ[J ] ≡ 〈χ〉J = δW [J ]
δJ

and solve for J = J [φ]

◮ Legendre transform of W ⇒ effective action Γ
Γ is the generating functional for 1PI Green’s functions

Γ[φ] =

∫
ddx J (x)φ(x) − W [J ]
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Construction of Γk

How can we incorporate a scale dependence?

◮ So far: the integration in Z [J ] = N
∫

Dχ exp(. . .) is over all

modes χ including all momenta

◮ Now: add new cutoff action ∆kS [χ]
such that integration is over
high momentum modes (p2 > k2) only

◮ High energy effects will be integrated out,
rest is effective theory at scale k 0

k2

p2

Modes

integrated

completely

suppressed

out
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Construction of Γk

⇒ k-dependent generating functional Zk

Zk [J ] = N
∫

Dχ exp

(
−S [χ] − ∆kS [χ] +

∫
ddx J (x)χ(x)

)

with ∆kS [χ] =
1

2

∫
ddp

(2π)d
Rk(p2)|χ̂(p)|2

k
p

k2

Rk

Rk(p2) ≈
{

k2 for p2 < k2

0 for p2 > k2
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Construction of Γk

Repeat construction of W and Γ, now furnished with k dependence

Wk [J ] = ln Zk [J ]

Scale dependent field expectation value: φk [J ] = 〈χ〉J
k = δWk [J ]

δJ

Γ̃k [φ] =

∫
ddx Jk(x)φ(x) − Wk [J ]

⇒ Effective average action Γk:

�

�

�

�
Γk [φ] = Γ̃k [φ] − 1

2

∫
ddp

(2π)d
Rk(p2)|φ̂(p)|2
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Properties of Γk

◮ Constructed from PI ⇒ expansion can contain all field

monomials compatible with the symmetry (Z2-symmetry for
scalar fields, diffeomorphism invariance for gravity), e. g.

Γk [φ] =
∫

d4x
[

1
2Zk∂µφ∂µφ − 1

2m2
k φ2 − 1

4!Λkφ4 + ukφ6 + ...
]

◮ Consider k → 0: Rk→0(p2) = 0 ∀p2 ⇒ no cutoff
�

�

�

�
lim
k→0

Γk = Γ usual effective action

◮ Limit k → ∞: cutoff suppresses all modes, except χ = φ
�

�

�

�
lim

k→∞
Γk = S microscopic (bare) action
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Meaning of the Scale Dependence
Meaning of decreasing k: successive integrating out of degrees of
freedom

k2

p2

k′
2

p2 p2

k′′
2

Γk → Γk′ → Γk′′ → . . .

Comparable to discrete blockspin transformations

RG step RG step

a 2a 4a
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Exact Functional RG Equation

Relation between different effective theories described by Γk at
different scales k? → renormalization group (RG)

◮ Take a scale derivative of Γk ⇒ Wetterich equation

�

�

�

�
k∂kΓk [φ] =

1

2
Tr

[(
Γ

(2)
k + Rk

)−1
k∂kRk

]

with the Hessian
(
Γ

(2)
k [φ]

)
(x, y) = δ2Γk [φ]

δφ(x)δφ(y)

◮ Properties of the FRGE:

• functional integro-differential equation • non-linear
• exact (→ non-perturbative) • UV finite • IR finite
• independent of PI formulation (holds for all Γk)
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Evolution of Γk in Theory Space

Γk [φ] =
∞∑

α=1

ḡα(k)Pα[φ] ḡα(k) : dimensionful
running couplings

Pα : basis functionals

~β given by FRGE

k∂k ḡα(k) = β̄α

⇓

running of ḡα(k)

∫
φ2

∫
∂µφ ∂µφ

∫
φ4

∫
φ6 ...

~βF [ · ]

Γ∞ = S
Γk

Γ0 = Γ

Theory Space
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◮ Asymptotic Safety “=” well-defined high energy limit k → ∞
◮ Fixed Point: couplings stop running: k∂kgα = βα = 0



19/38

The Asymptotic Safety Approach to Quantum Gravity

Introduction to the Renormalization Group and Asymptotic Safety

What is Asymptotic Safety?

Define dimensionless couplings: gα = k−dα ḡα with dα = [ḡα]
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Introduction to the Renormalization Group and Asymptotic Safety

What is Asymptotic Safety?

Define dimensionless couplings: gα = k−dα ḡα with dα = [ḡα]

◮ Asymptotic Safety “=” well-defined high energy limit k → ∞
◮ Fixed Point: couplings stop running: k∂kgα = βα = 0

◮ UV attractive

Idea (for 1 coupling) →

β(g∗) = 0

g*

g

ΒHgL
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Introduction to the Renormalization Group and Asymptotic Safety

What is Asymptotic Safety?

�

�

�

�

Asymptotic Safety:
fixed point with finite number
of UV-attractive directions

UV critical

surface

Theory space
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Critical Exponents

Tool to find out whether a given direction is UV-attractive

◮ Linearize RG flow near the fixed point {g∗
α}

◮ k∂kgα(k) = βα ≈
∑

γ

Bαγ

(
gγ(k) − g∗

γ

)

with the Jacobian matrix Bαγ of the β-functions

◮ The negative eigenvalues of B are referred to as critical
exponents θ

◮ If Re(θ) > 0 the corresponding direction is UV-attractive
If Re(θ) < 0 the corresponding direction is UV-repulsive
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Introduction to the Renormalization Group and Asymptotic Safety

Truncations

How can we solve the FRGE? (∞ many differential equations)

◮ First idea: expand FRGE in terms of some small coupling
⇒ known perturbative β-functions  gravity

◮ Second attempt: project flow onto subspace

Γk [φ] =
N∑

α=1

gα(k)Pα[φ]

◮ Truncation {Pα[ ·], α = 1, . . . , N} such that essential physics

is contained → check validity

◮ Exploits non-perturbative character of the FRGE

◮ Gives finite number of differential equations

n
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Ansatz for Γk

◮ Classical Einstein-Hilbert action, but with running couplings,
plus gauge fixing action term

�

�

�

�
Γk [g] =

1

16πGk

∫
ddx

√
g

{ − R(g) + 2λ̄k

}
+ Γgf

k

Procedure

◮ Insert Γk into the FRGE

◮ Extract differential equations for Gk and λ̄k
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The Einstein-Hilbert Truncation

Deriving the Flow Equations

◮ ⇒ evolution equations for Gk and λ̄k

◮ Dimensionless Newton’s constant and cosmological constant

gk = kd−2Gk , λk = k−2λ̄k

◮ ⇒ evolution equations for gk and λk (analytical!)

k∂kgk = (d − 2 + ηN )gk

k∂kλk = (ηN − 2)λk + 2πgk(4π)−d/2

[
2d(d + 1)Φ1

d

2

(−2λk)

− d(d + 1)ηN Φ̃1
d

2

(−2λk) − 8dΦ1
d

2

(0)
]

with threshold functions Φ, Φ̃ and anomalous dimension ηN
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The Einstein-Hilbert Truncation

Einstein-Hilbert Truncation: Main Findings

◮ Existence of NGFP in d = 4 for all cutoff functions

◮ Positive real part of critical exponents
⇒ UV-attractive

◮ Positive Newton’s constant g∗

◮ Product g∗λ∗ and critical exponents (almost) universal

◮ Extended work: fixed point not an artifact of the truncation

◮ In d = 2 + ǫ the perturbative result is reproduced

⇒ supports Asymptotic Safety scenario
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• new gravitational field variables
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Einstein-Hilbert Trunctation: Extensions

Check validity of truncation ansatz

◮ Cutoff dependence, gauge dependence

◮ More general truncations
• R2, R2 + C 2, f (R), . . . • running ghost sector
• running gauge fixing term • inclusion of matter fields
• bimetric truncations • inclusion of boundary terms
• new gravitational field variables

Results

◮ Non-trivial fixed point always exists

◮ UV critical surface finite dimensional (?)
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Minimal vs. Non-Minimal Coupling Terms

Consider analogy to magnetism

H = − 1

2m
(∇ − ieA)2 − e

2m
σ · B

��	 BBN

◮ Minimal coupling term
(→ covariant derivative, -D2)

◮ Causes orbital motion

◮ Induces field in opposite
direction

◮ Diamagnetism

◮ Non-minimal coupling term
(→ potential term)

◮ Causes spin alignment

◮ Amplifies external field

◮ Paramagnetism

Minimal and non-minimal couplings are competing effects
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The Reason for the Fixed Point

Minimal vs. Non-Minimal Coupling Terms

Similar arguments for gravity (here: Einstein-Hilbert truncation)

◮ Introduce background field ḡ (arbitrary, not flat)

gµν = ḡµν + hµν

◮ On background: covariant derivative D̄, scalar curvature R̄

◮ Reexpress Γk , Γ
(2)
k in terms of background and fluctuation

(
Γ

(2)
k

)
hh

∼
[
−D̄2 − 2λ̄k+CR̄

]

◮ Minimal and non-minimal coupling of h to the background

◮ Two different effects → Competing? Relative contribution?
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The Reason for the Fixed Point

Separating Minimal and non-Minimal Terms

Recall result from
Einstein-Hilbert truncation

◮ In particular: existence of
non-trivial UV fixed point

◮ UV-attractive
-0.2 -0.1 0.1 0.2 0.3 0.4

Λ

-0.5

0.5

1.0

g

Repeat calculation, but take into account minimal and
non-minimal contributions separately

◮ Existence of fixed point, UV-attractive directions

◮ Flow diagrams
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Non-minimal only 0.7073 0.1916 0.1355 1.255 2.712

Minimal only − − − − −
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Existence of NGFP due to non-minimal terms only

◮ Holds for all cutoffs

◮ Method applicable to other theories
(⇒ reason for asymptotic freedom in QCD)
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Conclusions

◮ Asymptotic Safety program candidate for the description of
quantum gravity

◮ Running of couplings determined by FRGE

◮ Relies on particular truncation ansatz → check validity

◮ NGFP exists in all truncations considered so far

◮ In Einstein-Hilbert truncation: due to non-minimal coupling

◮ Strong indications that gravity is asymptotically safe
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