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Ordinary Differential Equations

F[y,jw) 4 .. jnw)]

LdOrdinary: only one independent variable

dDifferential: unknown functions enter into the
equation through its derivatives

Order: highest derivative in F

Degree: exponent of the hlghes‘r derivative
d2
Example: (d . y(t)j —y()=0
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What is Solution of ODE?

y=y()
LA problem involving ODE is not completely specified by
its equation

JODE has to be supplemented with boundary conditions:

‘Initial value problem: Y is given at some starting value 7,
and it is desired to find V at some final points [, or at some
discrete list of points (for example, at tabulated intervals).

‘Two point bondary value problem: Boundary conditions are
specified at more than one [ ; typically some of the conditions
will be specified at 7 . and some af t
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What is Numerical Solution to
the Initial Value Problem?

dz(t) = f(2,y(@)); y(t,) =y,

A numerical solution to this problem generates sequence of values for
the independent variable

and a corresponding sequence of values of the dependent variable

so that each approximates solution at
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Euler Metod

LAl finite difference methods start from the same conceptual idea:
Add small increments to your function corresponding to derivatives
(right-hand side of the equations) multiplied by the stepsize.

dEuler method is an implementation of this idea in the simplest and
most direct form.

,. yEuler
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Euler Algorithm for First-Order ODE

Ay = f(1,y)At

initialize ¢,y = y(f,)
do whilei < n
Vi = Vi + f (8, y)At
[, =1t + At
end do
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Step Size Effects in Radioactive Decay

. dN N

Analytics: —% =——F
dt

Numerics (Euler):

dN,, :
N, () =N, O+ Ar+O((ArY)

N

s

(\®]
)
v Y . Y " T v T .

N.
]Vi+1 zZ\Ii — N
.
INumerical solution will depend

on the step size

At
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Stability of Euler Algorithm

dStep size if often limited by the stability criterion:
dy _
—=—-ay = y(O)zl,y=e
dt

After n Euler steps of size At:

at

y..=Yy —ay At =y =(1-aAt)"

| Approximate solution will decay monotonically only if At is small enough: |

1
At < At =—
A
OFor a single decaying exponential-like solution (i.e. if there is only one
first order equation) the existence of a stability criterion is not a
problem because A I has to be small for the reasons of
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D % aTion and Roundc 0
A ——
LE
Integrate over interval: L= [ 7 —1 0 —> Full Error: C hp + —
dLocal: h |
) C \r+
d u f ( y ) Number of steps for roundoff error to be comparable with the discretization error: N = L E
_ u
n’"n
dt F = LEn = yn+l o un+l (tn+1)
u, )=y, |
QGlobal:

GE, =y, —y(,)

dMethod is of order n iff:
LE,=O0(h"") < |LE,|< Ch"™!
h=t_  —t =At
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Global Discretization Error Example

QSuppose we want to find the solution over the interval [0,7] —Divide

the interval into 7 equal steps so that At =T'/n
0This is a measure of the
global truncation error,
i.e., the error over a fixed

n in 1.
Tj range i

yT)=e", y = (l—a— oIt is proportional to the
n first power of the step
2 3 size and hence the Euler
(al)” _(al) +... method is a first order
2! 3! method (

n(n—1) (aT)* _n(n-1)(n-2) (aT)’ N

n’ 2! n’

yT)—-y, +...+0(

y(I')=1—aT +

y, =1—aT +
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Reducing Higher Order ODE to
System of First Order ODE

Solve higher order ODEs by splitting them into sets of
first order equa’rionS'
d2
dt’

+ p(t)—t+ q(t)y = g(1)

=
dt

There 1s no unique Way to do this:

<>+( ”(”—qmjy

d
Z=—y+p(t)y:>< di

_z
dt

dt dy
| dt

=z—p()y
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Example: Realistic Motion of Baseball

d’7 . v .

m—-=mg—B,v" —+SyX®
dt Vv
=X, + v, At

B
: =y ——2Vvv At
vV + Wr m

e e . N — Yy
initialize ¢, y(z,) Vi =y, +Vv/At
do whilei <n v, =v. — gAt

i+1
yi+1:yi+f(ti7yj)At Zi-l—l — Zi_l_viZAt
L =1+ AL B S,v, @

L=V At
end do m
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More Realistic Modeling of Air Flow

e
e
B
]

/‘ Direction of spin
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ODE of Linear Harmonic Oscillator

2
d ;9 | gsin6’=0
dt [

for small = sinfd = @

2
df:gH:O, Q:\/g
dt [ [
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Euler Method for
Linear Harmonic Oscillator

L Switch to dimensionless quantities:

d29 . | L.e'ngﬂ;:ln-l ) '
d : + 9 — O — 9 — 90 SlIl(.Q.t + ¢) sl Time step At=0.04s
[ .

2
EtOtal — l ﬁ T 02
2\ dt 2

: L : 0 2
dEuler discretization algorithm: Time ((s)
w. =0 —6 At

0.0

4

0. =0 +w At

o =1, F Al Eu =E, (1+Ar%)

\
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Euler Fails on 8(¢)

Euler
Euler-Cromer

Length=1m
Time step At=0.04s

Time t(s)
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Euler Fails on @(t)

Length=1m
Time step At=0.04s

Euler
Euler-Cromer
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Euler Fails on Phase Space Trajectory

Length=1m Euler
Time step At=0.04s —_—
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Can We Resurrect Euler by
Using Smaller Step Size?

Length=1m

Euler
Euler-Cromer

Time step At=0.04s
Time step At=0.01s

Time t(s)
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Cromer Fixed Euler Method for LHO

(. =m —0 At

w -0 . =0 =0 +w At

n+l1 n+l

t .=t +At

kn+1_n

L Apparently trivial trick, but:

E. =E +1(@2—@2)At2+0(m3)

n+l 2
?’ =@, sin(t—t,), @=8§,cos(t —tO)J
<a)2 ~6=6)" cos 2(7—t0 )>

over d perio
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From Euler to Higher Order Algorithms

X

Figure 16.1.1.  Euler’s method. In this simplest (and least accurate) method for mtegrating an ODE,

the derivative at the starting pomt of each interval 15 extrapolated fo find the next fimection value. The
method has first-order accuracy.

V=Y -|-f(t y ) Mean value theorem
n—+ n n’>Jsn

exact

[, =t +h y(t+AD = y(t)+dy/dt| At
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Midpoint Method: Second Order Runge-Kutta

Figure 16.1.2.  Midpomt method. Second-order accuracy 13 obtamed by using the ihal dervative at
each 3 step to find 3 pomt halfway across the mnterval, then using the u_1|i1,-:|m derivative actoss the full
width of the mterval. In the figure, filled dots represent final fimction values, while open dots represent
fimction values that are discarded once their denvatives have been calculated and used.

y =y +hs, +O0(h’)

t =1t +h

n+l1
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Classical Runge-Kutta

s, =f(,,y,)
h

h
S2:f(tn+§’yn+zsl)
h h
s, =f(t, +—,y, +—s
3 f(n 2 yn 2 2)

| o _ s, =f@ +h,y +hs,)
Figure 16.1.3.  Fourth-order Pamge-Entta method. In each step the derivative is evaluated four times: =~ 4 n ? y n 3 )
once at the mmfial point, twice at mal nudpomts, and once at a tnal endpomnt. From these denvatrves the V

final fimction value (shown as a filled dof) 15 caloulated. (See text for detals.)

V=Y +%(s1 +2s5, +2s, +5,)+O0(h)

[ =1t +h
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Classical Runge-Kutta F90 Subroutine

SUBROUTINE rkd(y,dydx.n,x.h,yout,derivs)
INTEGER n,NHAX
REAL h,x,dydxi{n) ,y(n),youtin)
EETERNAL derivs
FARANETER (NMAX=5Q) Sat o the maximum number of functions.
Given values for the variables y(1:n) and their derivatives dydx(1:n) known at x, use
the fourth-order Runge-Kutta method to advance the solution aver an interval b and return
the incremented variables as yout (1:n), which need not be a distinct array from y. The
user supplies the subroutine derivs(x,y,dydx), which returns derivatives dydx at x.
INTEGER i
REAL hé hh,xh, d:,-'m':I-TI'dA.I:I pdyt (HHAX) ¥t (HMAX )
hh=h#*0.5
héi=h /6.
xh=x+hh
do 11 i=1,n First swp.
yt(id=y(i)+hh*dyde (i)
enddo
call deriwvs(xh,yt,.dyt) Sacond step.
doiz i=1.n
yt{i)=y(i)+hh+dyt (i)
aenddo 12
call deriwvs(xh,yt.dym) Third swp.
do1z i=1.n
yt{il=y(i)+h*dym(i)
dym (i) =dyt (i) +dym(i)

anddo 13

call deriwvs (x+h,yt,dyt) Fourth swep.

do 1« i=1.n Accumulate incremants with propar waights.
yout(i)=y(i)+hé*{dyde (i) +dyt (i) +2. «dym{i))

anddo 14

rsturn

END
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General Single-Step Methods

QEach of the k stages of the algorithm computes slope §; by
evaluating f (7, y) for aparticular value of # and a value of Y
obtained by taking linear combma’rlons of the previous slopes:

= f(t,+ah,y, +h2ﬁ,]s] i=1,....k

J_
L The proposed step is also a linear combma‘rlon of the slopes:

Yn+1 = Vu +hz 7/‘9

dError is estimated from yet another Imear combination of the sloEes:
L The parameters are determined by matching terms in t

Taylor series expansion of the slopes — the order of the
method is the exponent of the smallest power of h that
cannot be matched.

OIn MATLAB ODE numerical routines are named as
odennxx, where nn indicates the order and xx is some special
feature of the method.
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Example: MATLAB Function

Bogacki and Shampine BS23 Algorithm

m @ I

h h
s, =f( +=,y +—=s,)
, =/, ) y 5"
s3 ynp1 > 3 3
* : s,=f@ +—h,y +—hs,)
yn / . yn / \3 f(n 4 y 4 2J

\

y =Yy +§(2S1 +3s, +4s;)

tn—l—l - tn +h’ S4 — f(tn+1’ yn+1) y
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Beyond Runge-Kutta Methods

JRunge-Kutta methods propagates a solution over an interval by
combining the information from several Euler-style steps (each
involving one evaluation of the right-hand side f's), and then using
the information obtained to match Taylor series expansion up to
some higher order.

dRichardson extrapolation method used the powerful idea of
extrapolating computed result to the value that would have been
obtained if the stepsize had been very much smaller than it actually
was. In particular, extrapolation to zero stepsize is the desired goal
- implemented by Burlich-Stoer algorithm.

Predictor-corrector methods store the solution along the way,
and use those results to extrapolate the solution one step advanced:;
they correct the extrapolation using derivative information at the
hew point.
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Stiffness arises in systems of ODE where there are two or more
very different scales of the independent variable:

du dv

— =998u +1998v, — =-999u —-1999v

dt dt
u(0)y=1, v(0)=0

QFollow the variation in the solution on
the shortest length scale to maintain

stability of the integration even though
accuracy requirements allow for a much
larger step size — use implicit methods:

explicit
y==—cy,c>0 =y, =y +Ay =(1-cAr)y,
At >2/c |y, | —ooasn—eo
, implicit i y
y Cy yn+l yn Alyn+l yn+l 1+CAt
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1y = 2)7— 7 3 = 26—[ _8—1000[
g = —t —1000¢
V=—y+Z v=—e +te
J

Figure 16.6.1. Example of an instability encountered in integrating a stiff equation (schematic). Here
it is supposed that the equation has two solutions, shown as solid and dashed lines. Although the initial
conditions are such as to give the solid solution, the stability of the integration (shown as the unstable
dotted sequence of segments) is determined by the more rapidly varying dashed solution, even after that
solution has effectively died away to zero. Implicit integration methods are the cure.



Solutions to Stiffness Beyond
Implicit Euler

To improve higher-order (than Euler, which is first-order) methods use:

Generalizations of Runge-Kutta methods —
Rosenbrock methods and Kaps-Rentrop methods.

Burlich-Stoer algorithm generalized to
Bader-Deuflhard semi-implicit extrapolation
method.

Predictor-corrector methods generalized to
Gear backward differentiation method.
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