
Numerical Methods for
Ordinary Differential Equations

Branislav K. Nikolić
Department of Physics and Astronomy, University of Delaware, U.S.A.

PHYS 460/660: Computational Methods of Physics
http://www.physics.udel.edu/~bnikolic/teaching/phys660/phys660.html

PHYS 460/660: Numerical Methods for ODE

Ordinary Differential Equations

2

2
, (), (), ..., () 0

n

n

d d d
F y y t y t y t

dt dt dt

 
= 

 
�Ordinary: only one independent variable

�Differential: unknown functions enter into the
equation through its derivatives

�Order: highest derivative in F

�Degree: exponent of the highest derivative
3

2

2
Example: () () 0

d
y t y t

dt

 
− = 

 

PHYS 460/660: Numerical Methods for ODE

What is Solution of ODE?

�A problem involving ODE is not completely specified by
its equation

�ODE has to be supplemented with boundary conditions:

()y y t=

•Initial value problem: is given at some starting value ,
and it is desired to find at some final points or at some
discrete list of points (for example, at tabulated intervals).

•Two point bondary value problem: Boundary conditions are
specified at more than one ; typically some of the conditions
will be specified at and some at .

y
it

y ft

t
it

ft

PHYS 460/660: Numerical Methods for ODE

What is Numerical Solution to
the Initial Value Problem?

() 0 0

()
, () ; ()

dy t
f t y t y t y

dt
= =

�A numerical solution to this problem generates sequence of values for
the independent variable

and a corresponding sequence of values of the dependent variable

so that each approximates solution at :

1 2, , , nt t t…

1 2, , , ny y y…

ny nt

() , 0,1,n ny t y n≈ = …

PHYS 460/660: Numerical Methods for ODE

Euler Metod

tru ey

t∆

y

t

E u lery

�All finite difference methods start from the same conceptual idea:
Add small increments to your function corresponding to derivatives
(right-hand side of the equations) multiplied by the stepsize.

�Euler method is an implementation of this idea in the simplest and
most direct form.

Single-Step
Forward

Propagation

PHYS 460/660: Numerical Methods for ODE

Euler Algorithm for First-Order ODE

(,)
dy

f t y
dt

= (,)y f t y t∆ = ∆

1 1 1

1

1

initialize , ()

do while

(,)

end do

i i i

i i

t y y t

i n

y y f t y t

t t t

+

+

≡

≤

= + ∆

= + ∆

PHYS 460/660: Numerical Methods for ODE

Step Size Effects in Radioactive Decay

Analytics: (0)
t

U U
U U

dN N
N N t e

dt
τ

τ

−

= − ⇒ = =

()2

1

Numerics (Euler):

() (0) ()U
U U

i
i i

dN
N t N t O t

dt

N
N N t

τ
+

∆ = + ∆ + ∆

≈ − ∆

Numerical solution will depend Numerical solution will depend
on the step sizeon the step size

t∆

PHYS 460/660: Numerical Methods for ODE

Stability of Euler Algorithm

t∆

1

(0) 1,

After n Euler steps of size :

(1)

at

n

n n n n

dy
ay y y e

dt

t

y y ay t y a t

−

+

= − ⇒ = =

∆

= − ∆ ⇒ = − ∆

Approximate solution will decay monotonically only if is small enough:

�For a single decaying exponential-like solution (i.e. if there is only one
first order equation) the existence of a stability criterion is not a
problem because has to be small for the reasons of accuracy.t∆

�Step size if often limited by the stability criterion:

max

1
t t

a
∆ ≤ ∆ ≡

PHYS 460/660: Numerical Methods for ODE

Accuracy:
Discretization and Roundoff Errors

�Local:

�Global:

1 1 1

(,)
()

()

n n

n n n n

n n n

du
f u t

LE y u tdt

u t y
+ + +


= 

⇒ = −
= 

()n n nGE y y t= −

0

1

0

1

0

1

0

1

0

() () () ()

() ()

() ()

N

n

n

N

N
t

n n
t

n

t

n n n
t

N
t

n n n
t

n

N

n n

n

f f t y t f d h f t

LE h f t f d

GE h f t f d

GE LE

τ τ

τ τ

τ τ

+

−

=

−

=

−

=

= ⇒ = ≈

= −

= −

=

∑∫

∫

∑ ∫

∑

�Method is of order n iff:
1 1()n n

n nLE O h LE Ch
+ += ⇔ ≤

1n nh t t t+= − ≡ ∆

1

1

Number of steps for roundoff error to be comparable with the discretization error:

pC
N L

Lε

+ 
≈  

 

Integrate over interval: Full Error: 0 p

f

L
L t t Ch

h

ε
= − ⇒ +

PHYS 460/660: Numerical Methods for ODE

Global Discretization Error Example

2 3

2 3

2 3

2 2

2

() , 1

() ()
() 1

2! 3!

(1) () (1)(2) ()
1

2! 3!

1 () 3 () 1
()

2! 3! 2

n

aT

n

n

aT

n

T
y T e y a

n

aT aT
y T aT

n n aT n n n aT
y aT

n n

aT aT a t
y T y O aTe

n n n

−

−

 
= = − 

 

= − + − +

− − −
= − + − +

∆ 
− = − + +  

 

…

…

… ∼

��Suppose we want to find the solution over the interval Suppose we want to find the solution over the interval →→Divide Divide
the interval into the interval into nn equal steps so that equal steps so that

[]0,T
t T n∆ =

�This is a measure of the
global truncation errorglobal truncation error,
i.e., the error over a fixed
range in t.
�It is proportional to the
first power of the step
size and hence the Euler the Euler
method is a first order method is a first order
methodmethod (do not confuse
this with the fact that we
are applying it in this case
to a first order equation).

PHYS 460/660: Numerical Methods for ODE

Reducing Higher Order ODE to
System of First Order ODE

�Solve higher order ODEs by splitting them into sets of
first order equations:

2

2
() () ()

() () ()

There is no unique way to do this:

()
() ()

()

()

d y dy
p t q t y g t

dt dt

dz
g t p t z q t y

dy dt
z

dydt
z

dt

dz dp t
g t q t y

dy dt dt
z p t y

dt dy
z p t y

dt

+ + =


= − −

= ⇒ 
 =


  
= + −   = + ⇒ 

 = −


PHYS 460/660: Numerical Methods for ODE

Example: Realistic Motion of Baseball

1 1

1

1

initialize , ()

do while

(,)

end do

i i i i

i i

t y t

i n

y y f t y t

t t t

+

+

≤

= + ∆

= + ∆

�

� � �

v rω−
2

2

2 02

d r v
m mg B v S v

dt v
ω= − + ×

� �
�� �

v rω+

d r a gF

v
�

ω
�

1

2
1

1

1

1

0
1

x

i i i

x x x

i i i

y

i i i

y y

i i

z

i i i

z z x
i i

x x v t

B
v v vv t

m

y y v t

v v g t

z z v t

S v
v v t

m

ω

+

+

+

+

+

+

= + ∆

= − ∆

= + ∆

= − ∆

= + ∆

= − ∆

⇔

PHYS 460/660: Numerical Methods for ODE

More Realistic Modeling of Air Flow

PHYS 460/660: Numerical Methods for ODE

ODE of Linear Harmonic Oscillator

2

2

2

2

sin 0

for small θ sin

0,

d g

dt l

d g g

dt l l

θ
θ

θ θ

θ
θ

+ =

⇒ ≈

+ = Ω =

2

2 21 1
must be conserved!

2 2
total

d
E ml mgl

dt

θ
θ

 
= + 

 

PHYS 460/660: Numerical Methods for ODE

Euler Method for
Linear Harmonic Oscillator

�Switch to dimensionless quantities:
2

02

2

2

0 sin()

1 1

2 2
total

d
t

dt

d
E

dt

θ
θ θ θ φ

θ
θ

+ = ⇒ = Ω +

 
= + 

 

()

()

2 21
1 1

1
2

1

1

2

1

n n n
total n n

n n n

total nn n

t
E

t

E E tt t t

ω ω θ
ω θ

θ θ ω
+

+ +

+

+

= − ∆ 
= + 

= + ∆ ⇒ 
  = + ∆= + ∆  

�Euler discretization algorithm:

PHYS 460/660: Numerical Methods for ODE

Euler Fails on ()tθ

PHYS 460/660: Numerical Methods for ODE

Euler Fails on ()tω

PHYS 460/660: Numerical Methods for ODE

Euler Fails on Phase Space Trajectory

PHYS 460/660: Numerical Methods for ODE

Can We Resurrect Euler by
Using Smaller Step Size?

PHYS 460/660: Numerical Methods for ODE

Cromer Fixed Euler Method for LHO

1

1 1 1

1

n n n

n n n n n

n n

t

t

t t t

ω ω θ

ω ω θ θ ω

+

+ + +

+

= − ∆


→ ⇒ = + ∆
 = + ∆

�Apparently trivial trick, but:

() ()

2 2 2
0 0

2 2 2 3

1

0 0 0 0

cos2() 0

1

2

sin(), cos()

over a period

n n n n

t t

E E t O t

t t t t

ω θ θ

ω θ

θ θ ω θ

+

− = − =

= + − ∆ + ∆

= − = −
���������������

PHYS 460/660: Numerical Methods for ODE

From Euler to Higher Order Algorithms

1

1

(,)n n n n

n n

y y f t y

t t h

+

+

= +

= + () ()
m

exact

t
y t t y t dy dt t+ ∆ = + ∆

vs.

Mean value theorem

PHYS 460/660: Numerical Methods for ODE

Midpoint Method: Second Order Runge-Kutta

1

2 1

(,)

(,)
2 2

n n

n n

s f t y

h h
s f t y s

=

= + +
�����������

3

1 2

1

()n n

n n

y y hs O h

t t h

+

+

= + +

= +

PHYS 460/660: Numerical Methods for ODE

Classical Runge-Kutta

5

1 1 2 3 4

1

(2 2) ()
6

n n

n n

h
y y s s s s O h

t t h

+

+

= + + + + +

= +

Fourth-order method

1

2 1

3 2

4 3

(,)

(,)
2 2

(,)
2 2

(,)

n n

n n

n n

n n

s f t y

h h
s f t y s

h h
s f t y s

s f t h y hs

=

= + +

= + +

= + +
�����������

PHYS 460/660: Numerical Methods for ODE

Classical Runge-Kutta F90 Subroutine

PHYS 460/660: Numerical Methods for ODE

General Single-Step Methods

1

,

1

(,), 1, ,
i

i n i n i j j

j

s f t h y h s i kα β
−

=

= + + =∑ …

�Each of the k stages of the algorithm computes slope by
evaluating for a particular value of and a value of
obtained by taking linear combinations of the previous slopes:

is
(,)f t y t y

�The proposed step is also a linear combination of the slopes:

1

1

k

n n i i

i

y y h sγ+
=

= + ∑
�Error is estimated from yet another linear combination of the slopes:

1

1

k

n i i

i

e h sδ+
=

= ∑

�The parameters are determined by matching terms in the
Taylor series expansion of the slopes → the order of the
method is the exponent of the smallest power of h that
cannot be matched.

�In MATLAB ODE numerical routines are named as
odennxx, where nn indicates the order and xx is some special
feature of the method.

PHYS 460/660: Numerical Methods for ODE

Example: MATLAB ode23 Function
(Bogacki and Shampine BS23 Algorithm)

1

2 1

3 2

(,)

(,)
2 2

3 3
(,)

4 4

n n

n n

n n

s f t y

h h
s f t y s

s f t h y hs

=

= + +

= + +
�����������

1 1 2 3

1 4 1 1

(2 3 4)
9

; (,)

n n

n n n n

h
y y s s s

t t h s f t y

+

+ + +


= + + + 


= + = 

1 1 2 3 4(5 6 8 9)
72

n

h
e s s s s+ = − + + −

PHYS 460/660: Numerical Methods for ODE

Beyond Runge-Kutta Methods

�Runge-Kutta methods propagates a solution over an interval by
combining the information from several Euler-style steps (each
involving one evaluation of the right-hand side f’s), and then using
the information obtained to match Taylor series expansion up to
some higher order.

�Richardson extrapolation method used the powerful idea of
extrapolating computed result to the value that would have been
obtained if the stepsize had been very much smaller than it actually
was. In particular, extrapolation to zero stepsize is the desired goal
– implemented by Burlich-Stoer algorithm.

�Predictor-corrector methods store the solution along the way,
and use those results to extrapolate the solution one step advanced;
they correct the extrapolation using derivative information at the
new point.

PHYS 460/660: Numerical Methods for ODE

Stiff Systems of Differential Equations

�Stiffness arises in systems of ODE where there are two or more
very different scales of the independent variable:

2998 1998 , 999 1999

(0) 1, (0) 0

du dv
u y zu v u v

dt dt
v y z

u v


= −= + = − − 

⇒ 
= − += = 

1000

1000

2 t t

t t

u e e

v e e

− −

− −

 = −
⇒ 

= − +

�Follow the variation in the solution on
the shortest length scale to maintain
stability of the integration even though
accuracy requirements allow for a much
larger step size → use implicit methods:

explicit

1

implicit

1 1 1

, 0 (1)

2 as

1

n n n n

n

n
n n n n

y cy c y y ty c t y

t c y n

y
y cy y y ty y

c t

+

+ + +

′ ′= − > ⇒ = +∆ = − ∆

∆ > ⇔ →∞ →∞

′ ′= − ⇒ = +∆ ⇒ =
+ ∆

PHYS 460/660: Numerical Methods for ODE

Solutions to Stiffness Beyond
Implicit Euler

�Generalizations of Runge-Kutta methods →
Rosenbrock methods and Kaps-Rentrop methods.

�Burlich-Stoer algorithm generalized to
Bader-Deuflhard semi-implicit extrapolation
method.

�Predictor-corrector methods generalized to
Gear backward differentiation method.

To improve higher-order (than Euler, which is first-order) methods use:

