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Ordinary Differential Equations
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�Ordinary: only one independent variable

�Differential: unknown functions enter into the 
equation through its derivatives 

�Order: highest derivative in F

�Degree: exponent of the highest derivative
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What is Solution of ODE?

�A problem involving ODE is not completely specified by 
its equation

�ODE has to be supplemented with boundary conditions:

( )y y t=

•Initial value problem: is given at some starting value      , 
and it is desired to find      at some  final points        or at some 
discrete list of points (for example, at tabulated intervals).

•Two point bondary value problem: Boundary conditions are 
specified at more than one     ; typically some of the conditions 
will be specified at     and some at     .
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What is Numerical Solution to 
the Initial Value Problem?
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�A numerical solution to this problem generates sequence of values for 
the independent variable

and a corresponding sequence of values of the dependent variable

so that each         approximates solution at      :  
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Euler Metod
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�All finite difference methods start from  the same conceptual idea: 
Add small increments to your function corresponding to derivatives 
(right-hand side of the equations) multiplied by the stepsize.

�Euler method is an implementation of this idea in the simplest and 
most direct form.

Single-Step 
Forward 

Propagation
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Euler Algorithm for First-Order ODE
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Step Size Effects in Radioactive Decay
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Numerical solution will depend Numerical solution will depend 
on the step sizeon the step size

t∆
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Stability of Euler Algorithm
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Approximate solution will decay monotonically only if          is small enough:

�For a single decaying exponential-like solution (i.e. if there is only one 
first order equation) the existence of a stability criterion is not a 
problem because            has to be small for the reasons of accuracy.t∆

�Step size if often limited by the stability criterion:
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Accuracy:
Discretization and Roundoff Errors 

�Local:

�Global:
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�Method is of order n iff:
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Global Discretization Error Example 
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��Suppose we want to find the solution over the interval          Suppose we want to find the solution over the interval          →→Divide Divide 
the interval into the interval into nn equal steps so that   equal steps so that   

[ ]0,T
t T n∆ =

�This is a measure of the
global truncation errorglobal truncation error,
i.e., the error over a fixed 
range in t. 
�It is proportional to the 
first power of the step 
size and hence the Euler the Euler 
method is a first order method is a first order 
methodmethod (do not confuse 
this with the fact that we 
are applying it in this case 
to a first order equation). 
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Reducing Higher Order ODE to  
System of First Order ODE

�Solve higher order ODEs by splitting them into sets of 
first order equations:
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Example: Realistic Motion of Baseball
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More Realistic Modeling of Air Flow
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ODE of Linear Harmonic Oscillator
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Euler Method for 
Linear Harmonic Oscillator

�Switch to dimensionless quantities: 
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�Euler discretization algorithm:
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Euler Fails on ( )tθ
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Euler Fails on ( )tω
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Euler Fails on Phase Space Trajectory
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Can We Resurrect Euler by 
Using Smaller Step Size?
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Cromer Fixed Euler Method for LHO
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�Apparently trivial trick, but: 
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From Euler to Higher Order Algorithms
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Midpoint Method: Second Order Runge-Kutta
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Classical Runge-Kutta
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Fourth-order method
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Classical Runge-Kutta F90 Subroutine
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General Single-Step Methods
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�Each of the k stages of the algorithm computes slope      by 
evaluating                 for  a particular value of        and a value of     
obtained by taking linear combinations of the previous slopes: 
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�The proposed step is also a linear combination of the slopes:
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�Error is estimated from yet another linear combination of the slopes:
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�The parameters are determined by matching terms in the 
Taylor series expansion of the slopes → the order of the 
method is the exponent of the smallest power of h that 
cannot be matched. 

�In MATLAB ODE numerical routines are named as 
odennxx, where nn indicates the order and xx is some special 
feature of the method.
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Example: MATLAB ode23 Function
(Bogacki and Shampine BS23 Algorithm)
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Beyond Runge-Kutta Methods

�Runge-Kutta methods propagates a solution over an interval by 
combining the information from several Euler-style steps (each 
involving one evaluation of the right-hand side f’s), and then using 
the information obtained to match Taylor series expansion up to 
some higher order.

�Richardson extrapolation method used the powerful idea of 
extrapolating computed result to the value that would have been 
obtained if the stepsize had been very much smaller than it actually 
was. In particular, extrapolation to zero stepsize is the desired goal 
– implemented by Burlich-Stoer algorithm.

�Predictor-corrector methods store the solution along the way, 
and use those results to extrapolate the solution one step advanced; 
they correct the extrapolation using derivative information at the 
new point.
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Stiff Systems of Differential Equations

�Stiffness arises in systems of ODE where there are two or more 
very different scales of the independent variable:
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�Follow the variation in the solution on 
the shortest length scale to maintain 
stability of the integration even though 
accuracy requirements allow for a much 
larger step size → use implicit methods:
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Solutions to Stiffness Beyond 
Implicit Euler

�Generalizations of Runge-Kutta methods →
Rosenbrock methods and Kaps-Rentrop methods.

�Burlich-Stoer algorithm generalized to 
Bader-Deuflhard semi-implicit extrapolation 
method.

�Predictor-corrector methods generalized to
Gear backward differentiation method.

To improve higher-order (than Euler, which is first-order) methods use:


