Shape Modeling with Point-Sampled Geometry

Mark Pauly Richard Keiser Leif Kobbelt Markus Gross
ETH Zürich ETH Zürich RWTH Aachen ETH Zürich

Motivation

• Surface representations
 – Explicit surfaces (B-reps)
 • Polygonal meshes - Efficient rendering
 • Subdivision surfaces - Sharp features
 • NURBS - Intuitive editing
 – Implicit surfaces
 • Level sets - Boolean operations
 • Radial basis functions - Changes of topology
 • Algebraic surfaces - Extreme deformations
Motivation

- Surface representations
 - Explicit surfaces (B-reps)
 - Polygonal meshes
 - Subdivision surfaces
 - NURBS
 - Implicit surfaces
 - Level sets
 - Radial basis functions
 - Algebraic surfaces

- Hybrid Representation
 - Explicit cloud of point samples
 - Implicit dynamic surface model

Pauly, Keiser, Kobbelt, Gross: Shape Modeling with Point-Sampled Geometry
SIGGRAPH 2003
Outline

- Implicit surface model
 - Moving least squares approximation
- Interactive shape modeling
 - Boolean operations
 - Free-form deformation
- Demo
- Results & Conclusions

Surface Model

- Goal: Define continuous surface from a set of discrete point samples

```
discrete set of point samples
P = \{ p, c, m, ... \}
```

```
continuous surface S
interpolating or approximating P
```
Surface Model

- Moving least squares (MLS) approximation (Levin, Alexa et al.)
 - Surface defined as stationary set of projection operator $\Psi_P \Rightarrow $ implicit surface model
 $$ S_P = \{ x \in \mathbb{R}^3 | \Psi_P(x) = x \} $$
 - Weighted least squares optimization
 - Gaussian kernel function
 - local, smooth
 - mesh-less, adaptive

Boolean Operations

![Boolean Operations Diagram]
Boolean Operations

- **Classification**
 - Inside-outside test using signed distance function induced by MLS projection

- **Sampling**
 - Compute exact intersection of two MLS surfaces to sample the intersection curve

- **Rendering**
 - Accurate depiction of sharp corners and creases using point-based rendering
Boolean Operations

- **Classification:**
 - given a smooth, closed surface S and point p. Is p inside or outside of the volume V bounded by S?
 1. find closest point q on S

 2. classify p as
 - inside V, if $(p-q) \cdot n < 0$
 - outside V, if $(p-q) \cdot n > 0$
Boolean Operations

• Classification:
 – represent smooth surface S by point cloud P

1. find closest point q in P
2. classify p as
 – inside V, if $(p-q) \cdot n < 0$
 – outside V, if $(p-q) \cdot n > 0$
Boolean Operations

- **Classification:**
 - piecewise constant surface approximation leads to false classification close to the surface
Boolean Operations

• Classification:
 – piecewise constant surface approximation leads to false classification close to the surface
Boolean Operations

- Classification:
 - piecewise constant surface approximation leads to false classification close to the surface

- Classification:
 - use MLS projection of p for correct classification
Boolean Operations

- Sampling the intersection curve

1. identify pairs of closest points
Boolean Operations

- Sampling the intersection curve
 1. identify pairs of closest points
 2. find closest point on intersection of tangent spaces
Boolean Operations

- Sampling the intersection curve
 1. identify pairs of closest points
 2. find closest point on intersection of tangent spaces
 3. re-project point on both surfaces

Boolean Operations

- Sampling the intersection curve
 1. identify pairs of closest points
 2. find closest point on intersection of tangent spaces
 3. re-project point on both surfaces
 4. iterate
Free-form Deformation

- Smooth deformation field $F: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ that warps 3D space
- Can be applied directly to point samples

Free-form Deformation

- Intuitive editing using painting metaphor
 - Define rigid surface part and handle using interactive painting tool
 - Displace handle using translation and/or rotation
 - Create smooth blend towards rigid part

Pauly, Keiser, Kobbelt, Gross: Shape Modeling with Point-Sampled Geometry
SIGGRAPH 2003
Dynamic Sampling

- Robust free-form deformation requires dynamic adaptation of the sampling density

10,000 points
271,743 points

Dynamic Sampling

- Dynamic insertion of point samples:
 - measure local surface stretch
 - split samples that exceed stretch threshold
 - regularize distribution by relaxation
 - interpolate scalar attributes
Results

- Combination of free-form deformation with collision detection, boolean operations, particle-based blending, embossing and texturing

Results

- Interactive modeling with scanned data: noise removal, free-form deformation, cut-and-paste editing, interactive texture mapping
Results

• The Octopus: Free-form deformation with dynamic sampling

Conclusions

• Point cloud: *Explicit* representation
 – Minimal consistency constraints allow efficient dynamic re-sampling
 – Modeling of sharp features
 – Fast rendering

• MLS approximation: *Implicit* surface model
 – Fast inside/outside tests for boolean classification and collision detection
Future Work

- Physics-based modeling
- Haptic interfaces
- Robust handling of singularities for boolean operations
- More complex surfaces, e.g. hairy or furry models

Acknowledgements

- Tim Weyrich, Matthias Zwicker
- European Graduate Program on Combinatorics, Geometry, and Computation

- Check out: www.pointshop3d.com