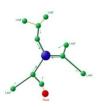


HAIS 2010: 5th International Conference on Hybrid Artificial Intelligence Systems


Authors Juan F. De Paz, Sara Rodríguez, Ana Gil, Juan M. Corchado and Pastora Vega

Contents

- Introduction
- Clustering techniques
- ESODTNN (Enhanced Self Organized Dynamic Tree Neural Network)
- Results
- Conclusions

Introduction

- Methods
 - Minimizing objective functions, Hierarchical, probabilistic-based models, Artificial Neural Network
- Establish the number of clusters beforehand or set the number once the algorithm has been completed
- The networks typically require a previous adaptation phase for the neurons.
- Enhanced Self Organized Dynamic Tree neural network (ESODTNN)
 - Eliminates the expansion phase
 - Uses algorithms to detect low density zones and graph theory procedures in order to establish a connection between elements.
 - Allows to revise the clustering process using hierarchical methods

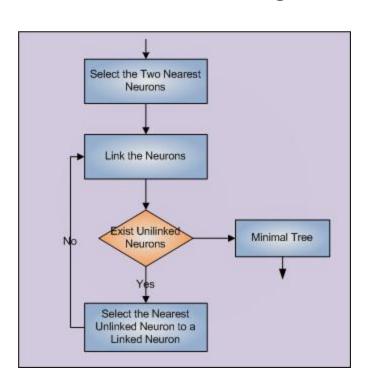
Clustering techniques

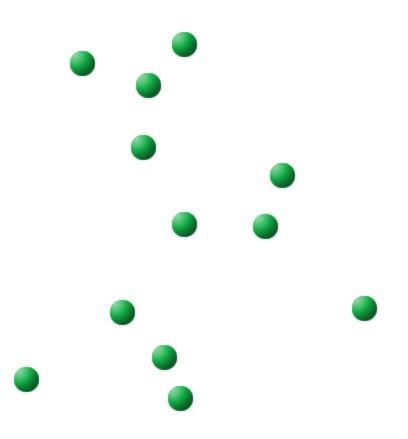
- Hierarchical methods such as dendrograms do not require a number of clusters up front since they use a graphical representation to determine the number.
- Partition based methods:
 - Number of clusters up front.
 - The k-means algorithm presents problems with atypical points.
 - The PAM method resolves this problem by assigning an existing element as the centroid

Clustering techniques

- Neural network based on mesh. Options
 - Self-organized Kohonen maps (SOM)
 - Neural Gas (NG)
 - Growing Cell Structure (GCS). The degree of proximity are set beforehand.
 - Enhanced self-organizing incremental neural network (ESOINN) doesn't establish the degree of proximity
- It is necessary to adjust the neurons to the surface for the data that needs to be grouped

- Interconnection Algorithm
- Update Algorithm
 - Neighbour Function
 - SOM
- Division algorithm
 - Average distance
 - Density

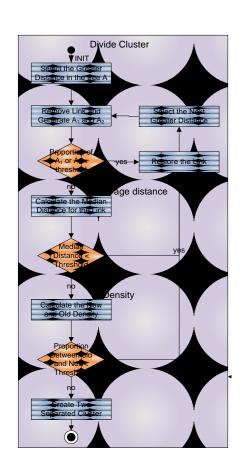

the ESODTNN does not distinguish between the original data and the neurons—during the initial training phase. It eliminates the expansion phase for a NG to adjust to the surface.



Interconnection Algorithm

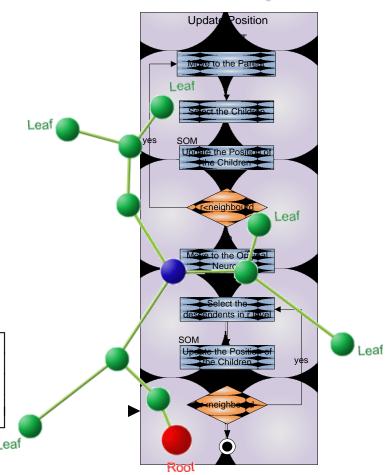
- Density
 - Distance from tree $f^A(C,D) = \sum_{i,j} d_{ij}$ where $c_{ij} = 1$, $c_{ij} \in C$, $d_{ij} \in D$
 - Distance between neurons in the tree $f^T(D) = \sum_{i,j} d_{ij}, d_{ij} \in D$
 - Calculate the final density $f^{D}(C,D) = f^{T}(D)/f^{A}(C,D)$
 - D is the distance matrix
 - C is the interconnection matrix

- Average distance
 - Select the origin neuron
 - Select the neuron that connects with the neuron in a certain range
 - The average distance is calculated based on the connections



- Division algorithm
 - Select the greatest distance I
 - Remove the connection
 - If the proportion of elements for each subtree is greater than the threshold, continue
 - Calculate the average distance from the node for the tree
 - Determine if the distance from tree node and its parent is less than the average distance
 - Calculate the density of the previous tree and new trees
 - Re-establish the connection with its parent node if

$$\delta(t)/\delta(t+1) < 1/(\delta(0)/\delta(1) \cdot \rho)$$

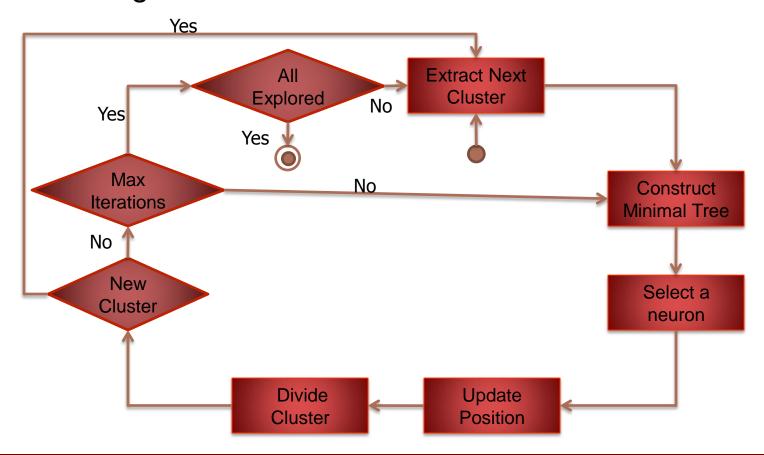


- Update Algorithm
 - Select the subtree to modify
 - The neighbouring is associated with the hierarchical in the tree
 - The magnitude of the update depends on the hierarchical and the distance

$$x_j(t+1) = x_j(t) + \eta(t) \cdot g(i,t) \cdot (x_s(t) - x_j(t))$$

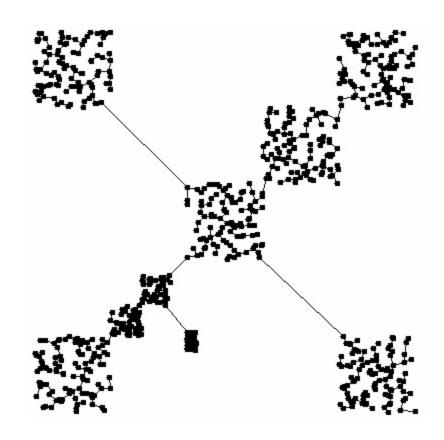
$$g(i,t) = Exp \left[-\frac{i}{N} \frac{\sqrt{(x_{j1} - x_{s1})^{2} + \dots + (x_{jn} - n_{sn})^{2}}}{\max_{i,j} \{d_{ij}\}} - \lambda \frac{i \cdot t}{\beta N} \right]$$

$$\eta(t) = Exp \left| -4 \sqrt{\frac{t}{\beta N}} \right|$$

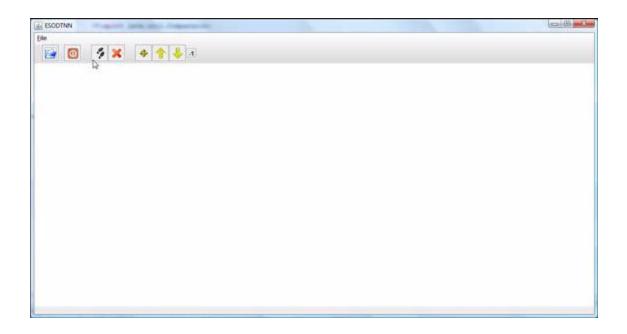


12

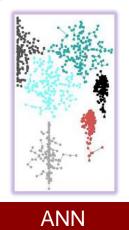
ESODTNN (Enhanced Self Organized Dynamic Tree Neural Network)

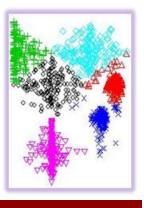

Cluster Algorithm

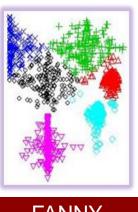
Introduction Clustering techniques ESODTNN Results & Conclusions



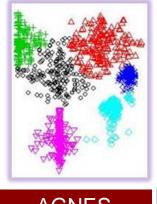
Introduction Clustering techniques ESODTNN Results & Conclusions

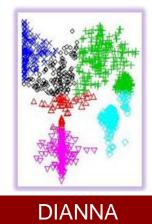



Introduction Clustering techniques ESODTNN Results & Conclusions



Results





PAM

Dendrogram

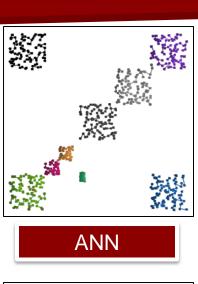
FANNY

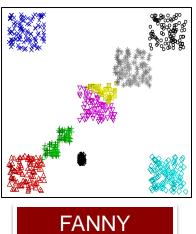
AGNES

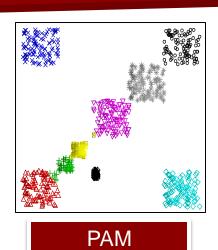
CLARA

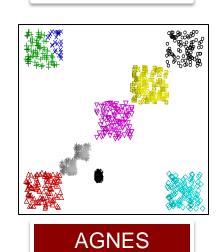
Introduction

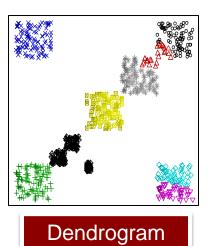
Clustering techniques

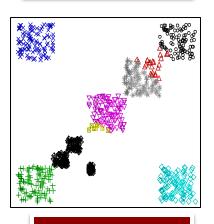

ESODTNN


Results & Conclusions






Results



DIANNA

Results

- UC Irvine Machine Learning Repository. Wine
 - ESODTNN: 91,01%
 - PAM: 90,45%
 - Dendrogram: 93,26%
 - Agnes: 33.71%
 - Diana: 71.35%

17

Conclusions

- The neural network is more adept at detecting the different forms.
- It eliminates the expansion phase
- We have detected several deficiencies in the case of elements that are distributed along very close parallel lines.
- Occasionally, the ESODTNN is incapable of calculating the correct cut-off point for dividing clusters and the results must be interpreted according to the distances from the cut-off points and the changes in density.

HAIS 2010: 5th International Conference on Hybrid Artificial Intelligence Systems

Authors Juan F. De Paz, Sara Rodríguez, Ana Gil, Juan M. Corchado and Pastora Vega