

Enhanced Location Estimation via Pattern Matching and Motion Modeling

Harald Kunczier, kunczier@ftw.at ISART 2004, Boulder

Outline

- Motivation
- Signal Power Level localization method
- Motion model
- Trial and Results
- Conclusions

Measurement Sites (GPS)

Area Type	Inaccuracy	Availability
"Ring"	<~23meter	~85%
"Downtown"	<~50meter	~57%

Area "Ring":

FE-PROGRESSIO

application 21

Power Level bases Loc. Methods

Localize handset by "unique" RF pattern!

Extract feature vector:

Single position i:

$$\mathbf{f}^i = \left[\begin{array}{ccc} a_0^i & a_1^i & \dots & a_6^i \end{array} \right]$$

a ... Cell ID

Index 0: ... Serving cell

Index 1 to 6: ... Neighboring cells

Compare with reference data:

Method continued

Assign model λ to every position:

$$\lambda^i \iff \mathsf{pos}\ i$$

Model λⁱ: represents all reference data dⁱ at position i

- → use non parametric models
- → Used prior information (of neighboring positions)
- → Use incomplete alphabet of nodes to decrease cardinality

N0: Serving Cell

N1-N6: Neighboring cells

Likelihood of Position i

Localization:

Find the model λ^i and thus i) which emits most likely the measured fingerprint \mathbf{f}^i

Accuracy in Urban Areas

2800 test cases, uniformly distributed within target area

Utilization of Several Fingerprints

Step 1:

time t = k

First position estimate

Step 2:

time t = k+1

Propagated position estimate

Step 3:

time t = k+1

Second position estimate

time t = k+1

Combined first and second position estimate

Motion Model (based on [1])

- Constant velocity for the time under consideration
- Obstacles are viewed as perturbations upon the constant velocity
- Users try to reestablish their constant velocity

Use state space model:

$$\dot{x}(t) = v(t) + u(t)$$

$$\dot{v}(t) = -\alpha v(t) + w(t)$$

x(t) ... covered distance

v(t) ... user's velocity variation

u(t) ... user's desired velocity

w(t) ... white Gaussian noise

 α ... reciprocal velocity time constant

[1] D. Helbing, "A mathematical model for the behavior of pedestrians, "Behavioral Science, vol. 36, pp. 298–310, 1991.

Density Assumptions

Assumed probability density of velocity variation $\,v\,$

 V_{max} ... max. speed increase

 P_0 ... probability of no perturbation

 P_{max} ... probability of max. speed increase

Assumed probability density of velocity $\,u\,$

 μ_m ... mean velocity of moving user

 $\sigma_{\mu_m}^2$... variance of moving user

 $\sigma_{\mu_0}^2$... variance of motionless user

Propagation of Position Estimate

$$\mathcal{L}(i) \propto p(i)$$

 $\mathcal{L}(i) \propto p(i)$... if no prior belief about $p(\mathbf{f})$ and p(i)

$$i'(k+1) = i(k) + x(k+1)$$
 — motion model's contribution position estimate at time k

Combination of Position Estimates

new combined estimate
$$i^*(k+1) = (I-K)i'(k+1) + Ki(k+1)$$

$$K \dots \text{ Blending Factor}$$

$$I \dots \text{ Identity Matrix}$$

- K is found by minimizing the variance of the estimator
- K can be computed in closed form

Test Area

Accuracy (3 Fingerprints)

2800 test cases, uniformly distributed within target area

Conclusions

Pro: → 100% availability (GPS less than 60% in downtown of Vienna)

→ Accuracy upper bounded by cell size.

→ Suitable for urban areas.

Con: → Reference data (still) necessary

→ Weak for indoor environments (but can be combined with other methods)

Thank you!

