Grid and Cloud Computing

María S. Pérez
Facultad de Informática
Universidad Politécnica de Madrid
mperez @fi.upm.es

Outline

- Challenges not yet solved in computing
- Grid computing
- Cloud computing
- References

Challenges not yet solved in computing

Grand Challenge Applications

Aerospace:

Earth sciences:

Life sciences:

Biology:

E-commerce:

Possible Scenarios

- A biochemist exploits 10,000 computers to screen 100,000 compounds in an hour
- 1,000 physicists worldwide pool resources for petaop analyses of petabytes of data
- Civil engineers collaborate to design, execute, & analyze shake table experiments
- Climate scientists visualize, annotate, & analyze terabyte simulation datasets
- An emergency response team couples real time data, weather model, population data
 - Source: Slides "The Challenges of Grid Computing"
 Ian Foster

Means of Solving the Problem

Cluster Computing

Intranet Computing

Grid Computing

Cloud Computing

Grid Computing

Grid Computing

- Grid Computing is based on the philosophy of information and electricity sharing, allowing us to access to another kind of heterogeneous and geographically separated resources
- Grid provides the sharing of:
 - Computational resources
 - Storage elements
 - Specific applications
 - Equipment
 - Other
- Thus, Grid is based on:
 - Internet protocols
 - Ideas of parallel and distributed computing

A Three Point Checklist

- "A Grid is a system that...
 - 1) ...coordinates resources that are not subject to a centralized control...
 - 2) ...using standard, open, general-purpose protocols and interfaces...
 - 3) ...to deliver nontrivial qualities of services."

Ian Foster

What is the Grid? A Three Point Checklist (2002)

The "Grid" Scenario

- Flexible, secure, coordinated resource sharing among individuals and institutions
- Enable communities (virtual organizations) to share geographically distributed resources in order to achieve a common goal
 - In applications which cannot be solved by resources of an only institution
 - Or the results can be achieved faster and/or cheaper

Idiosyncrasy of the scenario

- Dynamic virtual organizations
 - A set of individual and/or institutions which share rules
 - Large or small
 - Static or dynamic
- Kind of resources
 - Heterogeneous resources
 - Computers, storage, sensors, networks, etc.
- Coordinated problem solving
 - Distribution
 - Collaboration
 - □ Trust, policies, negotiation, payment
- Challenges
 - Security
 - Authentication
 - Authorization
 - Resource access
 - Resource discovery
 - Scheduling
 - Data management...

Grid Architecture

Application

High level Middleware EDG, Crossgrid

Low level Middleware

Globus, Unicore, Legion

Operating systems

Unix, Linux, Windows

Hardware

Source: Grid Café: What is the Grid? http://gridcafe.web.cern.ch

Basic pillars

Need of security

- Distributed resources
- No centralized control
- Different resource providers
- Each resource provider uses different security policies

Security in Grid

- Generic Security Services (GSS)
 - Authentication, delegation, integrity and confidentiality
 - Public Key Infrastructure (PKI) with X.509 certificates
 - Kerberos
 - Secure Socket Layer (SSL)
- Grid Security Infrastructure (GSI)
 - Delegation
 - Single Sign-On
 Proxy certificates

Certificate request

- A user asks for a certificate to a Certification Authority (CA)
- The CA checks the user identity
- Then, the CA signs the request, creating a certificate, and returning it to the user
 - Certificates can be cancelled
 - Certificate Revocation List (CRL)
- The aim of the certificates is described in the certificate policy (CP)

Information Systems

- Provide information on:
 - The Grid itself
 - The user may query about the status and performance of the Grid
 - Grid applications
- Register and monitor resources
- Standardization is required to interoperate among different grids projects
 - Globus: MDS (Monitoring and Discovery Service)
 - European Data Grid: R-GMA (Relational Grid Monitoring Architecture)
 - UNICORE: Incarnation Database (IDB)

Data Grid

- Set of storage resources and data retrieval components which allows applications to access data by means of special software mechanisms
- Data grid problems:
 - Data location
 - Replication
 - I/O performance

Data Transfer

- GridFTP: Protocol to data transfer in a secure way in a grid environment
 - Extends FTP protocol
 - Use Grid Security Infrastructure (GSI)
 - Several storage systems provide GridFTP interfaces:
 - Castor
 - EDG's SRM
- Reliable File Transfer (RFT): Grid Service which provides interfaces to manage and monitor file transfers by using GridFTP servers

Data replication

- Due to the complexity of a grid environment, the existence of file replicas could be advisable
- Need of identifying and locating replicas
- Replica Location Service (RLS): a Grid Service for registering data replicas and later discovering
 - Mappings between logic and fisical identifiers
 - Database for metadata

Resource management system

- Resource Management includes the efficient use of computing and storage resources
 - Processor time
 - Memory
 - Storage
 - Network
- User-transparent
- Interacts with the rest of Grid components

Job submission

Job queue managers

Condor-G: Condor High-Throughput Computing Project

http://www.cs.wisc.edu

Portable Batch System (PBS)

Sun Grid Engine (SGE)

Grid Computing approaches

Grid Projects

- Globus: http://www.globus.org
- EGEE: http://www.eu-egee.org/
- TeraGrid: http://www.teragrid.org
- CrossGrid: http://www.crossgrid.org
- EU-DataGrid: http://www.eu-datagrid.org
- IrisGrid: http://www.rediris.es/irisgrid
- myGrid: http://www.mygrid.org.uk/
- ...

Cloud Computing

Cloud Computing

- Future scenario:
 - No computing on local computers
 - Third-party compute and storage facilities
- Cloud Computing:
 - "A large-scale distributed computing paradigm that is driven by economies of scale, in which a pool of abstracted, virtualized, dynamically-scalable, managed computing power, storage, platforms, and services are delivered on demand to external customers over the Internet"*
- Is it just a "fashion" name for grid computing?

Cloud computing history

- Related paradigms
 - Grid and utility computing
 - Software as a Service (SaaS)
- Earlier antecedents
 - 1961, John McCarthy
 - Computation delivered as public utility
 - 1969, J.C.R. Licklider, ARPANET: Idea of an intergalactic computer network:
 - Access programs and data at any site, from anywhere

Source: "A history of cloud computing", Arif Mohamed, March 2009

Cloud computing history

- 1999, Salesforce.com
 - Delivering enterprise applications via a website
- 2002, Amazon web services
 - Suite of cloud-based services including storage and computation
 - 2006, Amazon provided EC2 (Elastic Computing Cloud)

Source: "A history of cloud computing", Arif Mohamed, March 2009

Cloud computing layers

Cloud Deployment Models

- Private cloud
 - Managed by an organization
- Community cloud
 - Shared by several organizations
 - Intended to one community
- Public cloud
 - General public
 - Owned by an organization selling cloud services
- Hybrid cloud
 - Composed by two or more clouds

Cloud Taxonomy

Cloud computing characteristics

- Elasticity: Resource allocation can be increased or decreased according to the demand
- Scalability: the cloud scales according to the demand
- Self-service provisioning: Cloud customers accesing cloud services
- Standardized interfaces:
 Standard APIs
- Billing service: A pay-as-you-go model

"If we stop looking at the clouds, does a screen saver come on?"

Cloud computing characteristics

Large scale

Economies of scale

Service oriented

architecture

Stateless

Low coupled

Modular

Semantically interoperable

Virtualization

It enables elasticity

Cost savings

Autonomic computing

Self-configuring

Self-healing

Self-optimizing

Self-protecting

Virtualization

- Virtual machine: "An efficient isolated duplicate of a real machine"
 - Gerald J. Popek and Robert P. Goldberg (1974). "Formal Requirements for Virtualizable Third Generation Architectures". Communications of the ACM 17 (7): 412 –421
 - Properties:
 - Equivalence: identical behavior
 - Resource control: complete control of the virtualized resources
 - Efficiency: A dominant fraction of machine instructions must be executed without VM intervention
- Origins: CP-40 (IBM 1967)
 - Current processing capacity relieves the inefficiency of VM
 - Some processors support virtualization
- Some important definitions:
 - Host machine: hardware that runs the virtual machine software
 - Host operating system: operating system that runs the virtual machine software
 - Hypervisor: software layer that provides the virtualization
 - Guest system: operating system

Virtualization

- Kinds of VM
 - Process VM: It supports a single process. It provides a platform-independent environment abstracting underlying hardware and/or operating systems
 - System VM: It supports the running of a OS.
 - Hypervisor enables the sharing of resources among several VMs
 - 2 kinds:
 - I (Native VM): Hypervisor running on HW
 - II (Non native VM): Hypervisor running on host

Native VM (Hypervisor architecture)

Non Native VM (Hosted architecture)

Process VM

Virtualization approaches

Full virtualization

- Unmodified guest operating system
- Nondisruptive migration to virtualized environments
- Example: Vmware, a combination of direct execution and binary translation techniques to achieve full virtualization of an x86 system

Paravirtualization

- Modified guest operating system
- Advantages:
 - No need for binary translation
 - Potential performance advantages for specific workloads requiring modified operating system kernels
- Problem: It is impossible to modify "closed" source operating systems (e.g., Microsoft Windows)
- Example: Xen (open ource)

Hardware virtualization support

- Virtualization extensions to the x86 architecture by Intel (Intel VT) and AMD (AMD)
 - New processor instructions to assist virtualization software
 - First-generation hardware: CPU virtualization only
 - Later generations are expected to include memory and I/O virtualization as well
- Multicore processors also promote the adoption of virtualization
- This approach reduces the need to paravirtualize guest operating systems

Virtualization advantages

- Cost savings
- Operational efficiency
- Flexibility
- Coexistence of several OS
- OS debugging
- Run legacy systems
- Backup machines

Virtualization

• Examples:

- VMWare
- Xen
- Sun xVM
- Microsoft Virtual PC
- Microsoft Virtual Server
- VM from IBM

Autonomic Computing

- Decreasing the complexity of the environment in order to enhance its performance
- Based on biological systems, more specifically on the nervous system. Multiple unconscious tasks:
 - Check blood pressure
 - Adjust body temperature

Autonomic levels

Figure 2 Evolving to autonomic operations

From IBM Global Services and Autonomic Computing, IBM White Paper, October 2002; see http://www-3.ibm.com/autonomic/pdfs/wp-igs-autonomic.pdf.

Autonomic features

- Self-Configuring: Automatic adaptation to dynamic environments
- Self-Healing: Discovering, diagnosing and reacting to failures according to specific policies
- Self-Optimizing: Monitoring resources and making decisions according to monitored data
- Self-Protecting: Detecting and identifying attacks against the system and acting in these situations

Advantages of cloud compu

- Lower computer and software costs
- Enhanced software updates
- Unlimited storage capacity

Disadvantages of cloud computing

- Requires a high-speed internet connection
- Security and confiability of data
- Not solved yet the execution of HPC apps in cloud computing
- Interoperability between cloud based systems

- Business model:
 - Grid computing: project-oriented, in which it is possible to spend an amount of service units, generally CPU hours
 - Example: TeraGrid, proposals for the increasement of computational power
 - Cloud computing: customers pay providers on a consumption basis (such as electricity)
 - Example: EC2 from Amazon (instance-hour consumed),
 S3 from Amazon (GB-Month of storage)

Architecture:

- Resource management:
 - Grid computing:
 - Batch-based computing model: Use of LRM (local resource managers), such as Condor, PGS or Sun Grid Engine.
 - Data model: location transparency, use of a distributed metadata catalog. Data storage usually depends on a shared file system (PVFS, Lustre).
 - Virtualization is not so important, although there are some initiatives
 - Widely use of Ganglia as monitoring system
 - Cloud computing:
 - Computing model: Resources in the cloud shared by all users.
 More number of users.
 - Data model: Google's MapReduce system running on top of the Google File system (Replicated chunks of data)
 - Virtualization is key in Cloud Computing
 - Difficult to obtain a high level of detail in monitoring. In the future, clouds will be self-maintained.

- Programming model:
 - Grid computing:
 - MPICH-G2
 - GridRPC
 - Workflow systems
 - WSRF
 - Cloud computing:
 - MapReduce model:
 - "Map": Applying a specific operation to a set of items, obtaining a new set of items
 - "Reduce": Aggregation on a set of items
 - Hadoop: Open source implementation of the MapReduce model
 - Scripting (Java Script, PHP, Python)

- Security model:
 - Grid computing:
 - GSI
 - Cloud computing:
 - Simpler model and less secure
 - Use of SSL and Web forms
 - A challenge not solved in clouds

- They share many goals
- They are different in many aspects
- But, they are complementary
 - "...[Cloud computing] is indeed evolved out of Grid Computing and relies on Grid Computing as its backbone and infrastructure support."*

- "The Anatomy of the Grid: Enabling Scalable Virtual Organizations". I. Foster, C. Kesselman, S. Tuecke, International J. Supercomputer Applications, 15(3), 2001.
- "The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration". I. Foster, C. Kesselman, J. Nick, S. Tuecke, Open Grid Service Infrastructure WG, Global Grid Forum, June 22, 2002
- The Globus Project, http://www.globus.org

- Modeling Stateful Resources with Web Services, <u>http://www.globus.org/wsrf</u>
- The WS-Resource Framework, http://www.globus.org/wsrf
- [*] "Cloud Computing and Grid Computing 360-Degree Compared," I. Foster, Y. Zhao, I. Raicu, S. Lu, Grid Computing Environments Workshop, 2008. GCE '08, vol., no., pp.1-10, 12-16 Nov. 2008
- "A history of cloud computing", Arif Mohamed, March 2009

- "Understanding Full Virtualization, Paravirtualization, and Hardware Assist" Technical Paper of Vmware
 - http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
- Nimbus project:
 - http://www.nimbusproject.org
- OpenNebula.org:
 - http://ww.opennebula.org

Grid and Cloud Computing

María S. Pérez
Facultad de Informática
Universidad Politécnica de Madrid
mperez @fi.upm.es