Net Lift Modeling

Kim Larsen, VP Analytical Insights, MarketShare

Introduction

- The true impact of a marketing campaign or promotion is measured by its <u>incremental impact</u>
- However, targeting criteria are often not designed to maximize the incremental impact
- Net lift models are designed to maximize the incremental impact by targeting the undecided "swing clients"

A case study

- Objective: Web-based campaign to sell a specific product
- Targeting: Contact clients visiting the product's web page

Client visits web page

Offer product to client

Track product purchase for 90 days

The campaign result

- Test design
 - Test group: Received an offer
 - Control group: Did not receive an offer
 - The overall client 90-day purchase rate was 1.5%

Cell	Purchase Rate	
Test	5.01%	
Control	5.00%	

Net purchase rate = 5.01% - 5.00% = 0.01%

Why did we not see any campaign lift?

Not interested

Will never purchase the product. No point in marketing to them

Self-selectors

Likely to purchase the product on their own. Marketing could even have an adverse effect. The campaign targeted too many of these clients

Swing clients

Interested in the product, but need to be motivated to buy it. <u>Target more</u> of these clients

The solution: A net lift model

	Purchase Rate		
Net Score	Test (gross)	Control	Net
Top 20%	6.10%	3.9%	2.20%
Lowest 80%	4.75%	5.28%	-0.48%

Net lift models versus propensity models

Net Purchase Rate

Test group purchase rate

Control group purchase rate

(Gross purchase rate)

(Self-selection purchase rate)

Propensity Model

- Most common approach
- Targets the clients with the highest probability of making a purchase following a marketing contact
- Maximizes the gross purchase rate

Net Lift Model

- Targets the undecided clients that can be motivated by marketing
- Maximizes the <u>incremental purchase rate</u>

Challenges when building net lift models

- We cannot observe cell "A" directly from the data
- The objective function is a difference of two rates double variance problem

Nonlinearity is common in net lift modeling

Client engagement (e.g., balances, product ownership)

Overview of key net lift modeling techniques

Regression-based techniques	Difference score models
	Probability decomposition models
	Bifurcated logistic regression
Non-regression techniques	KNN classifiers
	Naïve Bayes
	Classification trees

The most popular regression-based technique -The Difference Score Model

Find a target group, T, such that:

$$\max \left\{ \sum_{i \in T} \left(E(Y_i \mid \text{Offer}) - E(Y_i \mid \text{No offer}) \right) \right\}$$

Estimated through a logistic regression model:

P(Purchase | Offer)

Estimated through a logistic regression model: *P*(Purchase | No offer)

Score = P(Purchase | Offer) – P(Purchase | No offer)

A mathematically appealing non-regression approach to net lift modeling –*The KNN Classifier*

- Fits the target directly and handles all types of nonlinearity
- KNN models are not transparent. Additional "post-model" analysis is needed to describe the models
- Implementation is computationally intensive

A cousin of the KNN Classifier – the Net Naïve Bayes classifier

Smooth functions that reflect the *Net WOE* – i.e., the log-odds ratio of a purchase for test versus control

Estimated with single dimension KNN smoothers

Applying five different methods to the case study

Net model method	Net purchase rate (top 2 deciles)
Probability Decomposition Model (using adaptive ¹ logistic regression)	4.8%
Difference Score Model (using adaptive ¹ logistic regression)	4.6%
Generalized Net Naïve Bayes	4.4%
Net Naïve Bayes	3.5%
KNN Classifier (K=100)	2.3%
Linear net difference score	1.8%

¹ Using the Gains# software (www.infodecipher.com)