Some Algebraic Structures

Here are some algebraic structures we will study this year:

- Rings
- Fields
- Groups
- Vector Spaces (in more details)
- Modules

Rings

Perhaps the most familiar algebraic structure is rings.
Rings have two operations: sum and product. [Product here is not scalar product, but product between two elements!] Of course, we ask these operations to satisfy some common properties: associativity, distributive, commutativity [sometimes], etc.

Examples are:

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$;
- $R[X]$ [polynomials with variable X and coefficients in R] where R is one of the examples above [or a commutative ring]
- $M_{n}(R)[n \times n$ matrices with entries in R] where R is a one of the examples above [or a commutative ring]
On the other hand, \mathbb{N} is not a ring, as it lacks "negatives" of elements.

Commutative Rings

Note that in the last example [matrices] the multiplication is not commutative! We require the addition to always be commutative, but not multiplication. When multiplication is commutative, we call the ring a commutative ring.

$\mathbb{Z} / n \mathbb{Z}$

Another important example is $\mathbb{Z} / n \mathbb{Z}$: integers modulo n. [This is an example from Math 351.] Remember that in $\mathbb{Z} / n \mathbb{Z}$, you perform operations [sum and product] just as in \mathbb{Z}, but identify:

$$
\begin{gathered}
\cdots=-2 n=-n=0=n=2 n=\cdots \\
\cdots=-2 n+1=-n+1=1=n+1=2 n+1=\cdots \\
\cdots=-2 n+2=-n+2=2=n+2=2 n+2=\cdots \\
\vdots \\
\cdots=-n-1=-1=n-1=2 n-1=3 n-1=\cdots
\end{gathered}
$$

[Ex: $\ln \mathbb{Z} / 4 \mathbb{Z}, 3+3=6=2$ and $3 \cdot 3=9=1$.]
Note that $\mathbb{Z} / n \mathbb{Z}$ has n elements.

Fields

Another familiar algebraic structure is fields.

Basically fields are commutative rings ["with 1"] for which every non-zero element has an inverse: if $a \neq 0$, then there is b [also in the field] such that $a b=1$. [So, we can "divide" by non-zero elements.]

Examples are $\mathbb{Q}, \mathbb{R}, \mathbb{C}$. [Note that $\mathbb{Z}, R[X], M_{n}(R)$ are not fields.]

Another example is $F(X)$, which is the set of all rational functions [i.e., quotient of polynomials, with non-zero denominator] with coefficients in some field F.

Finally $\mathbb{Z} / p \mathbb{Z}$ is a field if [and only if] p is prime.

Vector Spaces

Vector Spaces are the structures studied on Math 251: a set with two operations, sum and scalar multiplication. [You multiply an element of the vector space by a scalar, not by another element of the vector space.]

In Math 251 scalars were real numbers, but more generally scalars can be elements of any field [as above], such as $\mathbb{C}, \mathbb{Q}, \mathbb{Z} / 7 \mathbb{Z}$, etc.

In Math 251 you've seen diagonalization of matrices. You've seen that it is not always possible! One of the main topics will be to find out the "next best thing(s)": rational and Jordan canonical forms.

Modules

Modules are like vector spaces, except the "scalars" are not in a field, but in a ring. This makes things much more complicated, especially if the ring is non-commutative.

We will deal only very briefly with modules and only over [a special case of] commutative rings. We will only deal with them because they give a "natural" way to prove of the canonical forms [for vector spaces] results.

Algebras

Algebras are modules [or vector spaces] which area also rings. Thus, we have sum and both multiplication and scalar multiplication.

The main examples are:

- $R[X]$ [polynomials with coefficients in R and variable X];
- $M_{n}(R)[n \times n$ matrices with entries in $R]$;
where R is a commutative ring [and the scalars are the elements of R].

We will likely not deal with algebras [at least explicitly] in this course.

