Chapter 23: Catalysis

Catalyst and Catalysis: Introduction

- Catalyst is a compound that by its addition to a reaction increases
 the rate of the reaction without itself being consumed or
 changed at the end of the reaction (cycle).
- The reaction is then called being catalyzed.
- The phenomenon of catalyst in accelerating reaction is called catalysis.

Catalyst and Catalysis: Introduction

 Catalyst increases the reaction rate by providing a pathway with lower free energy of activation (reaction kinetics)

Catalysis in Organic Reactions

- In organic reactions, several ways to accelerate reactions by catalysts:
 - Increase electrophilicity
 - Increase nucleophilicity
 - Increase leaving ability as a nucleofuge (decrease electrophilicity)
 - Increase the stability of a transition state
- Four types of catalysis:
 - acid catalysis
 - base catalysis
 - nucleophilic catalysis
 - metal-ion catalysis

Acid Catalysis: Ester Hydrolysis

Acid Catalysis

- Specific-acid catalysis and general acid catalysis
 - Specific-acid catalysis: proton is fully transferred before the slow step of the reaction (typically strong acidic conditions, two-stages)
 - General acid catalysis: proton transfer to the reactant during the slow step of the reaction (typically under weak acidic conditions, one stage)

Acid Catalysis

General-acid catalysis vs. specific-acid catalysis

proton has been transferred to the reactant
$$\begin{array}{c} O \\ \downarrow \\ C \\ OCH_3 \end{array} + \begin{array}{c} H^+ \end{array} \longleftrightarrow \begin{array}{c} OH \\ C \\ OCH_3 \end{array} + \begin{array}{c} H_2O: \\ H \\ OCH_3 \end{array} + \begin{array}{c} Slow \\ C \\ OCH_3 \end{array} + \begin{array}{c} OH \\ C \\ OCH_3 \end{array} + \begin{array}{c} OH \\ OCH_3 \\ OCH_3 \end{array} + \begin{array}{c} OCH_3 \\ OCH_3 \\ OCH_3 \\ OCH_3 \end{array} + \begin{array}{c} OCH_3 \\ OCH$$

Base Catalysis

General-base catalysis vs. specific-base catalysis

specific-base-catalyzed dehydration

$$\begin{array}{c|c} O - H \\ \hline \\ CICH_2CCH_2CI & \stackrel{\textbf{H} \ddot{\bigcirc}\overline{\vdots}}{\longleftarrow} \\ OH \\ \textbf{a hydrate} \end{array}$$

general-base-catalyzed dehydration

Nucleophilic Catalysis

- The catalyst is nucleophile and forms a covalent bond with reactants/intermediates
- Also called covalent catalysis

$$CH_3CH_2$$
 Cl + $HO^ H_2$ CH_3CH_2 OH + Cl^-

Metal-Ion Catalysis

Lewis acid catalysis (metal ions are Lewis acids)

M^{2+}	pK _a	M^{2+}	pK _a
Ca ²⁺	12.7	Co ²⁺	8.9
Mg^{2+}	11.8	Zn^{2+}	8.7
Cd ²⁺	11.6	Fe ²⁺	7.2
Mn ²⁺	10.6	Cu ²⁺	6.8
Ni ²⁺	9.4	Be ²⁺	5.7

Metal-Ion Catalysis

Examples:

Metal-Ion Catalysis

PROBLEM 8

The hydrolysis of glycinamide is catalyzed by Co²⁺. Propose a mechanism for this reaction.

Intramolecular Reactions

relative Rate =
$$\frac{\text{first order rate constant}}{\text{second order rate constant}} = \frac{\text{time}^{-1}}{\text{time}^{-1} \text{ M}^{-1}} = \text{M}$$

effective molarity

 Effective molarity (EM) is the concentration of the reactant that would be required in an intermolecular reaction for it to achieve the same rate as intramolecular reaction

Intramolecular Reactions

$$R = Me$$
, $EM = 2.3 \times 10^4 M$
 $R = iPr$, $EM = 1.3 \times 10^6 M$

$$EM = 2.2 \times 10^5 M$$

$$EM = 1 \times 10^7 M$$

Intramolecular Catalysis

- A catalyst is embedded or covalently bonded to substrates
- Also called anchimeric effect/assistance
- Due to intramolecularity, the catalysis should be more efficient.

Faster in the Trans isomer

70000 times

Intramolecular Catalysis: Example

Intramolecular Catalysis: Example

$$\begin{array}{c} CH_{3}C - O \longrightarrow \\ + H_{2}O \end{array} \xrightarrow{relative\ rate\ =\ 1} CH_{3}CO^{-} + HO \longrightarrow \\ CH_{3}CO^{-} + HO \longrightarrow \\ -OOC \end{array}$$

Catalysis in Biological Reactions

- Most biological catalysts are enzymes (belongs to globular proteins)
- Substrates and active sites (where the reaction occurs)

- Substrates bound to the active site
 - Specificity (molecular recognition)
 - Lock-and-key model
 - Induced-fit model

Hexokinase Red: before binding Blue: after binding

substrate

Enzyme Catalysis

- How do enzymes do catalysis?
 - Reacting groups are brought together in a proper orientation
 - Some of the amino acid side chains as well as bounded metal ions as catalyst
 - Stabilizing the transition states and intermediates via van der Waals interactions, electrostatic interactions, and H-bonding.
- Naming of enzymes
 - End typically with 'ase', indicating breaking the bond
 - Peptidase: breaking the peptide bond
 - Esterase: breaking the ester bond
 - Synthase
 - Synthesizing instead of breaking it down.

Carboxypeptidase A

- Metalloenzyme
 (enzymes containing tightly bound metal ions)
- Hydrolyze C-terminal except lysine and arginine.

Serine Proteases

 Trypsin, chymotrypsin and elastase are members of endopeptidases known as serine proteases

Proposed mechanism for chymotrypsincatalyzed hydrolysis

Lysozyme

 Catalyze the hydrolysis of the bacterial cell wall NAM-NAG bond (NAM: N-Acetylmuramic acid)

Protein pH-Rate Profile

- The pHs at which the enzyme are 50% active corresponds to the pKa of enzyme's catalytic groups (as long as those values are at lease 2 units apart.
- Why pKa of Asp52 is 3.8 but pKa of Glu35 is 6.7 instead of 4.25 in its free form?

Glucose-6-Phosphate Isomerase

Aldolase

CH₂OPO₃²-

$$CH_2OPO_3^{2-}$$
 $C=NH-(CH_2)_4-Lys$
 CH_2OH
 CH_2OH

Overall Reaction

$$\begin{array}{c} CH_2OPO_3^{2-}\\ C=O\\ HO-H\\ H-OH\\ CH_2OPO_3^{2-}\\ CH_2OPO_3^{2-}\\ \\ D\text{-fructose-1,6-diphosphate} \end{array} \begin{array}{c} HC=O\\ H-OH\\ CH_2OPO_3^{2-}\\ \\ D\text{-glyceraldehyde-}\\ 3\text{-phosphate} \end{array} \begin{array}{c} CH_2OPO_3^{2-}\\ CH_2OH\\ CH_2OH\\ \\ CH_2OPO_3^{2-}\\ \\ \\ CH_2OPO_3^{2-$$

CH₂OPO₃²⁻

$$C$$
 $\ddot{N}H$
 CH_2
 CH_2

$$CH_2OPO_3^{2-}$$
 $C=O$
 CH_2OH
 CH_2OH
 CH_2OH
 CH_2OH
 CH_2OH
 CH_2OH