
Singlet and triplet pairing states

It is convenient to separate the four spin components of the
pairing field into a scalar ∆k and a vector dk as follows

∆σσ′(k) = (∆kI + σ.dk)iσy

where σ = (σx , σy , σz) is a vector of Pauli matrices and I is
the 2x2 unit matrix.
Explicitly for singlet pairing(

∆↑↑(k) ∆↑↓(k)
∆↓↑(k) ∆↓↓(k)

)
=

(
0 ∆k

−∆k 0

)
where ∆k = ∆−k



Singlet and triplet pairing states (2)

And for triplet pairing(
∆↑↑(k) ∆↑↓(k)
∆↓↑(k) ∆↓↓(k)

)
=

(
−dx + idy dz

dz dx + idy

)
where dk = −d−k
The fact that these are scalar and vectors under rotation (in
spin-space) follows from the mappring of the SU(2) group of
spin 1/2 particles to the SO(3) rotation group in 3 dimensions.



Crystal point group symmetries

A similar argument can be made for the k dependenes of the
pairing within the crystal’s Brillouin zone. Here the relevant
classification is by irreducible representations of the crystal
point group. The theory of representations is a whole course
in itself, but the basic ideas are relatively straightforward.

The crystal will have a set of rotation
axes (C2, C3, C4 or C6) and mirror
planes (σv ). Together these form a
group.
These operations transform functions
in the Brillouin zone f (k) in different
ways. Functions can be classified into
components which are distinct by
symmetry (eg even/odd).



Crystal point group symmetries (2)

The character table of the group lists the irreducible
representations, and usually also the simplest functions which
transform according to the symmetries. Eg for D4 (tetragonal
crystals)

E C2 2C4 2C ′2 2C2”
A1 1 1 1 1 1 const.
A2 1 1 1 -1 -1 xy(x2 − y 2)
B1 1 1 -1 1 -1 xy
B2 1 1 -1 -1 1 x2 − y 2

E 2 -2 0 0 0 {x , y}
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Crystal point group symmetries (3)

The gap function ∆k of the superconductor will transform as
one of the irreducible representations of the point group, eg

∆k = ∆f (k)

where f (k) is a basis function for the relevant symmetry.
In many (not all) cases gap nodal points are required by
symmetry.
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A Ginzburg Landau approach

Let us now reformulate these symmetry arguments in terms of
the Ginzburg Landau theory of superconductivity.

I This is valid near to Tc

I Assuming non accidental degneracy of order parameters
we can determine the gap function at Tc and also below
it.

I Agin this is general and does not assume any specific
pairing model or a mean field (eg BCS) approximation.



A Ginzburg Landau approach (2)

The original Ginzburg Landau theory assumed a single
complex order parameter, here η. The free energy in the
superconducting state is

fs − fn =
~2

2m
|∇η|2 + α(T )|η|2 +

β

2
|η|4

where η(r) is assumed to vary slowly on microscopic length
scales (ξ0 >> a). Tc is the temperature where α(T ) becomes
negative.
A magnetic vector potential can be included by the usual
replacement

−i~∇ → −i~∇− 2eA

signifying a charge 2e condensate.



A Ginzburg Landau approach (3)

This is true for s-wave superconductivity, and also for any
system with a pairing in a one-dimensional irreducible
representation of the symmetry group. For example dx2−y2

pairing in the cuprates.
For a two, three or higher dimensional irreducible
representation then we have a set of order parameters ηi ,
i = 1, 2 . . . .
We must generalize the Ginzburg Landau theory to this case.
Again group theory helps us find the relevant terms.



A Ginzburg Landau approach (4)

Consider first the quadratic term. If there are multiple order
parameters ηi then it might have the form

fs − fn =
∑
ij

αij(T )η∗i ηj

where αij is a temperature dependent matrix.
But by the central defining principle of irreducible
representations, any matrix can be decomposed by unitary
transformations into a block diagonal form

αij =

 αΓ 0 0
0 αΓ′

0
0 0 . . .


where Γ, Γ′ etc. are irreducible representations of the
symmetry group.



A Ginzburg Landau approach (5)

The different irreducible representations will have distinct
transition temperatures Tc , and again the one with the highest
temperature determines the pairing symmetry.
Within a single irrep. Γ the matrix αΓ is is just a constant
times the identity matrix. Therefore the quadratic term must
have the form

fs − fn = αΓ(T )
∑
i

η∗i ηi

where αΓ(T ) is positive for T > Tc and negative for T < Tc .
If a second irreducible representation also becomes
superconducting, this must (almost) always occur at a second
phase transition Tc2 < Tc . The heavy fermion system UPt3

might be an example of this (Garg).



A Ginzburg Landau approach (6)

The nature of the state immediately below Tc is determined
by the quartic terms in the Ginzburg Landau theory.
The form of these is again determined by goup theory, they are
quartic invariants of the symmetry group.

fs − fn = αΓ(T )
∑
i

η∗i ηi +
1

2

∑
ijkl

βijklη
∗
i η
∗
j ηkηl

For example from the E representation of D4h, we have to
consider the product reresentation, and discover how many
terms in the product are invariants of the full symmetry group:

E × E × E × E = 4A1 + . . .



A Ginzburg Landau approach (7)

In this case one of the invariants is identically zero, and so
there are three quartic terms. The minimum free energy is
dependent on these parameters.

Three types of minima can
occur
∆k ∼ kxkz
∆k ∼ (kx + ky )kz
∆k ∼ (kx + iky )kz
or for odd parity etc.
dk ∼ kx + iky

∆.



A Ginzburg Landau approach (8)

The form of the gradient terms is also determined by group
theory:

fs − fn =
∑
ijkl

~2

2mijkl
∇iη

∗
j∇iηj

+αΓ(T )
∑
i

η∗i ηi +
1

2

∑
ijkl

βijklη
∗
i η
∗
j ηkηl

Now we also have to determine how ∇ decomposes into the
irreducible representations of the group, eg in D4h

(∇x ,∇y ) ∼ E

∇z ∼ A2
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