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Proof complexity (in one slide)

Main question
What is the size of the shortest proof of a given theorem in a fixed
proof system?

Contributions of proof complexity

e Bounds on proof size: Prove sharp upper and lower bounds for
the size of proofs in various systems.

e Techniques: Lower bounds techniques for the size of proofs.

e Simulations: Understand whether proofs from one system can
be efficiently translated to proofs in another system.
Relations to other fields
e Separating complexity classes (NP vs. coNP, NP vs. PSPACE)
e SAT and QBF solving

o first-order logic



Quantified Boolean Formulas (QBF)

e QBFs are propositional formulas with boolean quantifiers
ranging over 0,1.

e Deciding QBF is PSPACE complete.
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Semantics via a two-player game

We consider QBFs in prenex form with CNF matrix.
Example: Vy1ya3xixa. (my1 V x1) A (y2 V —x2)

A QBF represents a two-player game between 3 and V.

J wins a game if the matrix becomes true.

V wins a game if the matrix becomes false.

A QBEF is true iff there exists a winning strategy for 3.

A QBEF is false iff there exists a winning strategy for V.

Example:
VYude.(uVe)A(-uV —e)

3 wins by playing e < —wu.
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Relation to SAT/QBF solving

e SAT — given a Boolean formula, determine if it is satisfiable.

e QBF — given a Quantified Boolean formula (without free
variables), determine if it is true.

e Despite SAT being NP hard, SAT solvers are very successful.

e QBF solving applies to further fields (verification, planning),
but is at a much earlier stage.

e Proof complexity is the main theoretical framework to
understanding performance and limitations of SAT/QBF
solving.

e Runs of the solver on unsatisfiable formulas yield proofs of
unsatisfiability in resolution-type proof systems.
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QBF proof systems

e There are two main paradigms in QBF solving: Expansion
based solving and CDCL solving.

e Various QBF proof systems model these different solvers.

QU-Res

IEcalc

[ ] expansion solving
(O CDCL solving

e Various sequent calculi exist as well.
[Krajitek & Pudldk 90], [Cook & Morioka 05], [Egly 12]



QBF proof systems at a glance

QU-Res

IEcalc

[ ] expansion solving
(O CDCL solving

Q-Resolution (Q-Res)

e QBF analogue of Resolution (?)
e introduced by [Kleine Biining, Karpinski, Flogel 95]

e Tree-Q-Res: tree-like version
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Q-resolution
Q-resolution = resolution rule + V-reduction

Resolution

IV Gy =1V G
GvG

(/ existentially quantified)

Tautologous resolvents are generally unsound and not allowed.

V-reduction

CVk

C (k € C is universal with innermost quant. level in C)
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Q-resolution Example

Yude.(uV —e)A(uVe)

uve
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Further systems at a glance

[ ] expansion solving
(O CDCL solving

Long-distance resolution (LD-Q-Res)

e allows certain resolution steps forbidden in Q-Res
e merges universal literals v and —u in a clause to u*
e introduced by [Zhang & Malik 02] [Balabanov & Jiang 12]
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QBF proof systems at a glance

[ ] expansion solving
(O CDCL solving

Universal resolution (QU-Res)

e allows resolution over universal pivots
e introduced by [Van Gelder 12]
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QBF proof systems at a glance

LQUT-Res

[ ] expansion solving
(O CDCL solving

LQU*"-Res

e combines long-distance and universal resolution
e introduced by [Balabanov, Widl, Jiang 14]
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Expansion based calculi

[ ] expansion solving
(O CDCL solving

VExp+Res

e expands universal variables (for one or both values 0/1)
e introduced by [Janota & Marques-Silva 13]

Olaf Beyersdorff Proof Complexity of Quantified Boolean Formulas 13 /39



VExp+Res

Annotated literals
couple together existential and universal literals: /%, where
e [ is an existential literal.

e (v is a partial assignment to universal literals.

Rules of VExp-+Res

C in matrix (Axiom)
{I1| I'e C,Iis existential }

- 7 is a complete assighment to universal variables
s.t. there is no universal literal u € C with 7(u) = 1.

- [7] takes only the part of 7 that is < /.

xTV G -xTV G
GuUuG
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Example proof in VExp-+Res

EIeIVuHez
|e1VuVe2| |ﬂe1\/—uUVe2|
0/u 1/u 0/u 1/u
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Further expansion-based systems at a glance

[ ] expansion solving
(O CDCL solving

IR-calc

e |nstantiation + Resolution
e ‘delayed’ expansion
e introduced by [B., Chew, Janota 14|
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Further expansion-based systems at a glance

[ ] expansion solving
(O CDCL solving

IRM-calc

e Instantiation 4+ Resolution + Merging
e allows merged universal literals u*
e introduced by [B., Chew, Janota 14]
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Some recent results

Towards a proof-theoretic understanding of QBF resolution
systems:

e Develop a new lower bound technique that transfers circuit
lower bounds to proof size lower bounds

e Apply to prove new exponential lower bounds for a number of
QBF resolution systems

e Prove new separations between QBF proof systems

e Reveals full picture of the QBF simulation structure
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Understanding the simulation structure of QBF systems
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[IR-calcf----(LD-Q-Res)}----{QU-Res)

expansion solving
CDCL solving

Ol

e In this talk we will concentrate on the separation of

VExp+Res and Q-Res.

e Serves as primer for the general lower bound technique.
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Q-Res vs VExp+Res

-------

e VExp-+Res does not simulate Q-Res.
[Janota & Marques-Silva 13]

e For the converse we need formulas hard for the CDCL proof
systems but easy for expansion proof systems.

e Need new hard formulas for Q-Res.
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Exploiting strategies

e We move back to thinking about the two player game.
Remember every false QBF has a winning strategy (for the
universal player).

e |dea: Hard strategies may require large proofs . ..

e ... or the contrapositive: short proofs may lead to easy
strategies.

e Then we just need to find false formulas with ‘hard strategies’
for the universal player.
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Strategy extraction

Theorem (Balabanov & Jiang 12)

From a Q-Res refutation w of ¢, we can extract in poly-time a
winning strategy for the universal player for ¢.

For each universal variable u of ¢ the winning strategy can be
represented as a decision list.

e Short Q-Res proofs give short strategies in decision list format.

e Decision lists can be expressed as bounded depth circuits.
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A hard strategy

PARITY(X1,...,%Xn) = X1 D ... D Xp

Theorem (Furst, Saxe & Sipser 84, Hastad 87)

PARITY¢ ACO. In fact, every non-uniform family of
bounded-depth circuits computing PARITY is of exponential size.

e Now we only need to force the universal strategy to compute
PARITY!
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QPARITY

Let ¢, be a propositional formula computing x; & ... ® x,.
Consider the QBF 3x1,...,x,Yz. (2 V ¢p) A (=2 V =¢p).
The matrix of this QBF states that z is equivalent to the
opposite value of x; D ... D xj.

The unique strategy for the universal player is therefore to
play z equal to x; ® ... D xp.

Defining ¢,

e Let xor(o1, 02, 0) be the set of clauses
{=01 V-0,V —0,01 Vo0V —0,-01V0rVo, 0V -0,V o}.

e Define

QPARITY,, = 3xi,...,x,Vz3tn, ..., ty. x0r(x1,x2, t2) U
n

U xor(ti—1, Xi, t)) U{z V ty, ~z V —tp}
i=3
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The exponential lower bound

QPARITY, = 3xi,...,Xx,Vz3ty, ..., ty. x0r(x1,x2, tp) U
n

U xor(ti—1, xi, t;)) U{z V tn,—z V —tp}
i=3
Theorem (B., Chew & Janota 15)

QPARITY,, require exponential-size Q-Res refutations.
Proof idea

e By [Balabanov & Jiang 12] we extract strategies from any
Q-Res proof as a decision list in polynomial time.

e But PARITY(x,...x,) requires exponential-size decision lists
[Furst, Saxe, Sipser 84][Hastad 87].

e Therefore Q-Res proofs must be of exponential size. Ol
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Separation

Proposition (B., Chew & Janota 15)
QPARITY has polynomial size proofs in ¥ Exp+Res.

Proof idea

e We prove t?/z = 1.“,-1/Z by induction on i and derive a
contradiction on the clauses z V t,, =z V —t,,. O
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From propositional proof systems to QBF

A general Vred rule

e Fix a prenex QBF ®.

e Let F(X,u) be a propositional line in a refutation of ®,
where v is universal with innermost quant. level in F

F(x, u) F(x,u)
F(x,0) F(x,1)

New QBF proof systems

For any ‘natural’ line-based propositional proof system P define
the QBF proof system P +Vred by adding Vred to the rules of P.

Proposition (B., Bonacina & Chew 15)
P +Vred is sound and complete for QBF.
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Important propositional proof systems

not polynomially bounded

Cutting Planes

(bounded-depth Frege)

Resolution

(Tree-Resolution)

Frege systems

e Hilbert-type systems

e use axiom schemes and rules, e.g. modus ponens #
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A natural hierarchy of QBF systems

Examples

e Res+Vred (= QU-Res)
e Frege+Vred
e Cutting Planes+ Vred

A hierarchy of Frege systems
C-Frege+Vred where C is a circuit class restricting the formulas
allowed in the Frege system, e.g.
e AC%-Frege = bounded-depth Frege
e ACO[p]-Frege = bounded-depth Frege with mod p gates for a
prime p
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Strategy extraction for V-Red+P

A C-decision list computes a function u = f(x)

IF Ci(x) THEN u + ¢
ELSE IF Cy(X) THEN u < &

ELSE IF C(X) THEN u < ¢
ELSE u < ¢j41 where C; € C and ¢; € {0,1}

Theorem (B., Bonacina, Chew 15)

C-Frege+Vred has strategy extraction in C-decision lists,

i.e. from a refutation 7 of F(X, 0) you can extract in poly-time a
collection of C-decision lists computing a winning strategy on the
universal variables of F.
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From decision lists to circuits

IF Ci(x) THEN u < ¢
ELSE IF Cy(X) THEN u + &

ELSE Ir C(X) THEN u <« ¢
ELSE u < ¢/41 where C; € C and ¢; € {0,1}

Proposition
Each C-decision list as above can be transformed into a C-circuit of
depth max(depth(C;)) + 2.
Corollary (B., Bonacina, Chew 15)
e depth-d-Frege+V'red has strategy extraction with circuits of
depth d + 2.
o ACC-Frege+Vred has strategy extraction in ACC.
o ACO[p|-Frege+Vred has strategy extraction in AC°[p].
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From functions to QBF

Let f(X) be a boolean function.
Define the QBF

Q-f = IRVZIE. z # F(X)

e t are auxiliary variables describing the computation of a circuit
for f.

z # f(X) is encoded as a CNF.

The only winning strategy for the universal player is to play
z + f(X).
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From circuit lower bounds to proof size lower bounds

Theorem (B., Bonacina, Chew 15)

Let f be any function hard for depth 3 circuits.
Then Q-f is hard for Res + Vred.

Proof.

e Let 1 be a refutation of Q-f in Res+ Vred.

e By strategy extraction, we obtain from [1 a decision list
computing f.

e Transform the decision list into a depth 3 circuit C for f.

e As f is hard to compute in depth 3, 1 must be long.
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Strong lower bound example |

Theorem (Razborov 87, Smolensky 87)

For each odd prime p, Parity requires exponential-size AC°[p]
circuits.

Theorem (B., Bonacina, Chew 15)
Q-Parity requires exponential-size AC®[p]-Frege+Vred proofs.

In contrast
No lower bound is known for AC°[p]-Frege.

Theorem (B., Bonacina, Chew 15)
Q-Parity has poly-size Frege+V'red proofs.
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Strong lower bound example Il
Theorem (Hastad 89)

The functions Sipsery exponentially separate depth d — 1 from
depth d circuits.
Theorem (B., Bonacina, Chew 15)
Q-Sipsery
e requires exponential-size proofs in depth (d — 3)-Frege+Vred.
e has polynomial-size proofs in depth d-Frege+V'red.

Note

e Q-Sipsery is a quantified CNF.

e Separating depth d Frege systems with constant depth
formulas (independent of d) is a major open problem in the
propositional case.
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Feasible Interpolation

e classical technique relating circuit complexity to proof
complexity.

e transforms lower bounds for monotone circuits into lower
bounds for proof size in e.g. resolution [Krajicek 97]
or Cutting Planes [Pudldk 97].

Theorem (B., Chew, Mahajan, Shukla 15)

All QBF resolution calculi have monotone feasible interpolation.
Relation to strategy extraction

e Each feasible interpolation problem can be transformed into a
strategy extraction problem, where the interpolant
corresponds to the winning strategy of the universal player on
the first universal variable.

e Feasible interpolation can be viewed as a special case of
strategy extraction.
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e The lower bound for IR-calc (and implied separations) is
shown by a different, novel technique based on counting.

e The underlying QBFs originate from [Kleine Biining et al. 95].

e We substantially improve previous lower bounds for these
formulas from Q-Res to IR-calc.
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Summary

e We showed many new lower bounds and separations for QBF
resolution systems.

e Developed a new technique via strategy extraction for QBF
proof systems.

e Directly translates circuit lower bounds to proof size lower
bounds for QBF proof systems.

e No such direct transfer known in classical proof complexity.
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Major problems in QBF proof complexity

1. Find hard formulas for QBF systems.
Currently we have:

e Formulas from [Kleine Biining, Karpinski, Flogel 95]

e Formulas from [Janota, Marques-Silva 13]

e Parity Formulas and generalisations [B., Chew, Janota 15]
[B., Bonacina, Chew 15]

e Clique co-clique formulas [B., Chew, Mahajan, Shukla 15]

2. Which (classical) lower-bound techniques work for QBF?
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