The Gauss-Markov Model
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Recall that

Cov(u,v) = E((u— E(u))(v — E(v)))
= E(u) — E(uw)E(v)
Var(u) = Cov(u,u)
= E(u— E(u))?
= E(u*) — (E(u))’.
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If uland v are random vectors, then
mXx nx

Cov(u,v) = [Cov(u;, vj)|mxn and

Var(u) = [Cov(u;, uj)|mxm-
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It follows that

Cov(u,v) = E((u — E(u))(v — E(v)))
= Ew') — E@)E(V)

Var(u) = E((u—E(u))(u - E(u))’)
=E(uu') — E(w)E(W).

(Note that if Z = [z;], then E(Z) = [E(z;)]; i.e., the expected value of a
matrix is defined to be the matrix of the expected values of the
elements in the original matrix.)
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From these basis definitions, it is straightforward to show the following:
Ifa,b,A,B are fixed and u, v are random, then

Cov(a + Au,b + Bv) = ACov(u,v)B'.
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Some common special cases are

Cov(Au,Bv) = ACov(u,v)B’

Cov(Au,Bu) = ACov(u,u)B’
= AVar(u)B'

Var(Au) = Cov(Au,Au)
= ACov(u,u)A’
= AVar(u)A'.
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The Gauss-Markov Model

y=XB+e¢,

where
E(e) =0 and Var(e) = o*I for some unknown o2

“Mean zero, constant variance, uncorrelated errors.”
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More succinct statement of Gauss-Markov Model:

E(y) =XB3, Var(y)= o |
or

E(y) € C(X), Var(y) = oI
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Note that the Gauss-Markov Model (GMM) is a special case of the
GLM that we have been studying.

Hence, all previous results for the GLM apply to the GMM.
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Suppose ¢’3 is an estimable function.

Find Var(¢’3), the variance of the LSE of ¢/g.
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Var(¢'3) = Var(c'(X'X)"X'y)
= Var(a’X(X'X) " X'y)
= Var(a'Pxy)
= a'PxVar(y)Pya
= d'Px(c*I)Pxa
= o%a’'PxPxa
= o%a'Pxa
= ’dX(X'X) " X'a
=0’/ (X'X) "¢
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Example: Two-treatment ANCOVA

yi=p+Tityxi+e; i=12=1,...,m

E(gj)=0 Vi=1,2;j=1,....,m

0 it (i,)) # (5,1)

Cov(ej,eq) = _
o2 if (i.j) = (s,1).

x;; is the known value of a covariate for treatment i and observation j
(i=1,2;j=1,...,m).
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Under what conditions is « estimable?

v is estimable «<— - - -7
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~ is estimable iff x;y, ..., x1, are not all equal, or
X1, - .-, X2, are not all equal, i.e.,

X11
1 0
X = Xlm ¢ C mx1 mxl
X21 0 1
mx1 mxX]
X2m

This makes sense intuitively, but to prove the claim formally...
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21t+zt+azy =0

ze NX) =
21+z3+bzy =0
0
—d
= e N(X).
—-b
1
Now note that L
0
—da
[o 0 0 1} =1+40.
—-b
1
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It follows that o

[0001}71=7

2

is not estimable.
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10
This proves that if - is estimable, then x ¢ C ([0 ID .

10
Conversely, if x ¢ C ([0 1]) , then 3 x;; # x;7 for some i and j # j'.

Copyright ©2012 Dan Nettleton (lowa State University) Statistics 611 19/ 61



Taking the difference of the corresponding rows of X yields
00 0 xj—xy)
Dividing by x;; — x;, yields

000 1]
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Thus,

€C(X’), and [0 00 1] m = ~ is estimable.

™

- o O O
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To find the LSE of ~, recall X =

X'X =
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1 0
When x is notin C ([0 1]) ,rank(X) = rank(X'X) = 3. Thus, a Gl of

X'Xis

0
>3l where A =

3x1
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m 0 x.

Because | 0 m x,. | is not so easy to invert, let’s consider a

X1 Xx. Xx'x

different strategy.
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To find LSE of v and its variance in an alternative way, consider

1 0 x;—x.1
W= .
01 x—x.1
This matrix arises by dropping the first column of X and applying GS
orthogonalization to remaining columns.
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00 0

11 0 x| |1 0 —Xx. B 1 0 x1—x.1

[1 01 xj 01 —x _[0 1 xz—xz.J'
00 1
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1 1 0 Xx.
1 0 x1—x.1 11 0 xg
01 ] B PR
X2 — X». X
270 0 0 1 2
w s = X
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_ /
1 0 x1—x1.1 1 0 x1—x1.1

WWwW =
_0 1 x,—x.1 01 x—x1
[ m 0 Ux; —%.1'1
= 0 m 1’x2 — Xz.l/l

l’xl — )_61.1,1 IIXQ — )_62.1,1 21'2:1 Z;":l(x,-j — )_Ci.)z
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m 0
=10 m
0 0 Z?:lzjmzl(xu xi.)?
L0 0
_ 1
wwy"'=1(0 0
0 0

1
v —
i Z}WL:I (3 —%i. )?
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1 0 x —x.1
_0 1 x,—x1
Y1
= 2.
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&= (WW)" Wy
V1.
S S i — %)

2 -
i=1 Z}":l (o —%i.)?
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Recall that

E(y)=XB=Wa
=WSB =XTa.

¢'3 estimable = ¢'Ta is estimable with LSE ¢'Ta.
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Thus, LSE of 3 is

¢ T &
00 0] _
V1
1 0 —X1 —
{O 00 1] B ¥.
01 —x S i (i)
0 0 1 21'2:1 Z]m:l (x—xi.)?

2 _
s > iy i — Xi.)
=== s

D -1 ij:1 (xyj — Xi.)?
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Note that in this case

= o2 [o 0 1} W'w)~! |o

) 1
5 —.
>t Ej’"zl(x,] —X;.)?

=0
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Theorem 4.1 (Gauss-Markov Theorem):

Suppose the GMM holds. If ¢’3 is estimable, then the LSE ¢/3 is the
best (minimum variance) linear unbiased estimator (BLUE) of ¢/3.
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Proof of Theorem 4.1:

¢'3 is estimable = ¢’ = a’X for some vector a.

The LSE of ¢/B is
B =dXp
—adX(X'X)" X'y

= a’PXy.

Now suppose u + v’y is any other linear unbiased estimator of ¢’3.
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Then

E(u+vy)=cB VBeR
—u+vVXB=cB VBecR

«~—u=0 and vX=c.
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Var(u + v'y) = Var(v'y)

(8
= Var(vV'y — ¢'B+ ¢'3)
—Var(vy—aPXy+cﬁ)
= Var((v' —a'Px)y +¢'$3)
= Var(c'B) + Var((v' — a'Px)y)

+2Cov((v' —a'Py)y,c'B).
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Now

Cov((v' — a'Px)y,c'B) = Cov((v' — a'Px)y,a'Pxy)
(v — a'Px)Var(y)Pxa

=o?(v - a’PX)PXa
=o*(vV —d'Px)X(X'X) X'a
=’ (VX —a’PXX)(X’X) X'a
= ?(VX —dX)(X'X)" X'a
=0 vVX=c =dX.
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.. we have
Var(u +v'y) = Var(c¢'3) + Var((v' — a'Px)y).

It follows that
Var(¢'3) < Var(u + v'y)

with equality iff
Var((v' — a’'Py)y) = 0;
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i.e., iff

o?(v' — a'Px)(v — Pxa) = o*(v — Pxa)'(v — Pxa)
= 02||v —PXaH2
i.e., iff

v = Pxa;

i.e., iff
u+vyisa'Pxy = '3, the LSE of ¢/B.
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Result 4.1:

The BLUE of an estimable ¢’3 is uncorrelated with all linear unbiased
estimators of zero.
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Proof of Result 4.1:

Suppose u + vy is a linear unbiased estimator of zero. Then

E(u+vy)=0 VBeR
= u+vVXB=0 VBeR
—u=0 and vVX=0

~—u=0 and X'v=0.
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Thus,

Cov(c'B, u +v'y) = Cov(c'(X'X) X'y, v'y)
¢ (X'X)”X'Var(y)v
= (X'X)"X'(c°I)v

'(o?
=’ (X'X)"X'v
=’ (X'X)70
=0.
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Suppose ¢\ 3, ..., ¢, 3 are q estimable functions > ¢y, ..., ¢, are LI.

/
€

LetC = | : |. Note that rank( C ) = q.

qxp
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c\B

C3 = | : | is avector of estimable functions.
c;ﬂ

The vector of BLUEs is the vector of LSEs

c’IB
| =B

N

/
cqﬁ
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Because ¢\ 3, ..., ¢, are estimable, 3

a,-aX’a,-:c,- Vi=1,...

a

fweletA=|:|,thenAX =C.

Q o~

Find Var(Cg).
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Var(C3) = Var(AX(3)
= Var(AX(X'X) " X'y)
= Var(APxy)
— 0?APx(APy)
= o?APxA’
= ?PAX(X'X)"X'A/
= o?C(X'X)"C'.
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Find rank(Var(CB)).
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q = rank(C) = rank(AX)
rank(APxX) < rank(APyx)
rank(PyA') = rank(APxPyA")

ank(APxPxA’) = rank(APxA’)
rank(AX(X'X)"X'A")

— ank(C(X'X)~C)

nk(C) = q. .. rank(c*C(X'X)~C') =

| /\
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Note
Var(CB) = o>C(X'X)~C’

is a ¢ x ¢ matrix of rank ¢ and is thus nonsingular.
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We know that each component of Cj3 is the BLUE of each
corresponding component of Cg3; i.e., c;B is the BLUE of
B vi=1,...,q.
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Likewise, we can show that C/3 is the BLUE of C3 in the sense that
Var(s + Ty) — Var(C3)

is nonnegative definite for all unbiased linear estimators s + Ty of CS.
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Nonnegative Definite and Positive Definite Matrices

A symmetric matrixnéll is nonnegative definite (NND) if and only if

xX'Ax >0V xeR"

A symmetric matrix,;l is positive definite (PD) if and only if

x'Ax > 0Vx eR"\ {0}.
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Proof that Var(s + Ty) — Var(C3) is NND:

s + Ty is a linear unbiased estimator of C3

< E(s+Ty)=CB VBeR
<—s+TXB=C38 VBcR
<—s=0 and TX=C.

Thus, we may write any linear unbiased estimators of C3 as Ty where
TX =C.
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Now V w € RY consider

w'[Var(Ty) — Var(C3)]w = w'Var(Ty)w — w'Var(C3)w
= Var(w'Ty) — Var(w'C3)

>0 by Gauss-Markov Theorem because. ..
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(i) w'C3 is an estimable function:

wC =wAX = XA'w=Cw
= C'w € C(X').

(i) w'Ty is a linear unbiased estimator of w'C(3 :
EwWTy) =w'TXB =w'CB8 VB cR.

(i) w'Cp3 is the LSE of w'C3 and is thus the BLUE of w'C3.
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We have shown
w'[Var(Ty) — Var(CB)lw > 0, Vw e R

Thus,
Var(Ty) — Var(CQ3)

is nonnegative definite (NND). O
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Is it true that
Var(Ty) — Var(C(3)

is positive definite if Ty is a linear unbiased estimator of C3 that is not
the BLUE of C3?
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No. Ty could have some components equal to €3 and others not.

Then
Iw # 0> w'[Var(Ty) — Var(C3)jw = 0.

For example, suppose first row of T is ¢} (X’X)~ X’ but the second row
is not ¢5(X'X)~X'.

Then Ty # C73 but
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w'[Var(Ty) — Var(C3)w
= Var(w'Ty) — Var(w'C(3)
=0 for w' =][1,0,...,0].
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