The Gauss-Markov Model

Recall that

$$Cov(u, v) = E((u - E(u))(v - E(v)))$$

$$= E(uv) - E(u)E(v)$$

$$Var(u) = Cov(u, u)$$

$$= E(u - E(u))^{2}$$

$$= E(u^{2}) - (E(u))^{2}.$$

If u and v are random vectors, then

$$\operatorname{Cov}(\boldsymbol{u}, \boldsymbol{v}) = [\operatorname{Cov}(u_i, v_j)]_{m \times n}$$
 and $\operatorname{Var}(\boldsymbol{u}) = [\operatorname{Cov}(u_i, u_j)]_{m \times m}.$

It follows that

$$Cov(\mathbf{u}, \mathbf{v}) = E((\mathbf{u} - E(\mathbf{u}))(\mathbf{v} - E(\mathbf{v}))')$$

$$= E(\mathbf{u}\mathbf{v}') - E(\mathbf{u})E(\mathbf{v}')$$

$$Var(\mathbf{u}) = E((\mathbf{u} - E(\mathbf{u}))(\mathbf{u} - E(\mathbf{u}))')$$

$$= E(\mathbf{u}\mathbf{u}') - E(\mathbf{u})E(\mathbf{u}').$$

(Note that if $\mathbf{Z} = [z_{ij}]$, then $E(\mathbf{Z}) \equiv [E(z_{ij})]$; i.e., the expected value of a matrix is defined to be the matrix of the expected values of the elements in the original matrix.)

From these basis definitions, it is straightforward to show the following:

If a, b, A, B are fixed and u, v are random, then

$$Cov(a + Au, b + Bv) = ACov(u, v)B'.$$

Some common special cases are

$$Cov(Au, Bv) = ACov(u, v)B'$$

$$Cov(Au, Bu) = ACov(u, u)B'$$

$$= AVar(u)B'$$

$$Var(Au) = Cov(Au, Au)$$

$$= ACov(u, u)A'$$

$$= AVar(u)A'.$$

The Gauss-Markov Model

$$y = X\beta + \varepsilon$$
,

where

$$E(\varepsilon) = \mathbf{0}$$
 and $Var(\varepsilon) = \sigma^2 \mathbf{I}$ for some unknown σ^2 .

"Mean zero, constant variance, uncorrelated errors."

More succinct statement of Gauss-Markov Model:

$$E(y)=Xeta, \quad ext{Var}(y)=\sigma^2 I$$
 or $E(y)\in \mathcal{C}(X), \quad ext{Var}(y)=\sigma^2 I.$

Note that the Gauss-Markov Model (GMM) is a special case of the GLM that we have been studying.

Hence, all previous results for the GLM apply to the GMM.

Suppose $c'\beta$ is an estimable function.

Find $Var(c'\hat{\beta})$, the variance of the LSE of $c'\beta$.

$$Var(c'\hat{\beta}) = Var(c'(X'X)^{-}X'y)$$

$$= Var(a'X(X'X)^{-}X'y)$$

$$= Var(a'P_{X}y)$$

$$= a'P_{X}Var(y)P'_{X}a$$

$$= a'P_{X}(\sigma^{2}I)P_{X}a$$

$$= \sigma^{2}a'P_{X}P_{X}a$$

$$= \sigma^{2}a'P_{X}a$$

$$= \sigma^{2}a'Y_{X}a$$

$$= \sigma^{2}a'Y_{X}a$$

$$= \sigma^{2}a'X(X'X)^{-}X'a$$

$$= \sigma^{2}c'(X'X)^{-}c.$$

Example: Two-treatment ANCOVA

$$y_{ij} = \mu + \tau_i + \gamma x_{ij} + \varepsilon_{ij} \quad i = 1, 2; \ j = 1, \dots, m$$

$$E(\varepsilon_{ij}) = 0 \quad \forall \ i = 1, 2; \ j = 1, \dots, m$$

$$Cov(\varepsilon_{ij}, \varepsilon_{st}) = \begin{cases} 0 & \text{if } (i, j) \neq (s, t) \\ \sigma^2 & \text{if } (i, j) = (s, t). \end{cases}$$

 x_{ij} is the known value of a covariate for treatment i and observation j (i = 1, 2; j = 1, ..., m).

Under what conditions is γ estimable?

 γ is estimable $\iff \cdots$?

 γ is estimable iff x_{11}, \dots, x_{1m} are not all equal, or x_{21}, \dots, x_{2m} are not all equal, i.e.,

$$oldsymbol{x} = egin{bmatrix} x_{11} \ dots \ x_{1m} \ x_{21} \ dots \ x_{2m} \end{bmatrix}
otag \mathcal{C} \left(egin{bmatrix} \mathbf{1} & \mathbf{0} \ \mathbf{m} \times 1 & m \times 1 \ \mathbf{0} & \mathbf{1} \ m \times 1 & m \times 1 \end{bmatrix}
ight).$$

This makes sense intuitively, but to prove the claim formally...

$$X = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & x_1 \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & x_2 \end{bmatrix}, \quad \text{where} \quad x_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{im} \end{bmatrix} \quad i = 1, 2.$$

$$oldsymbol{eta} = egin{bmatrix} \mu \ au_1 \ au_2 \end{bmatrix}.$$

If
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathcal{C} \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$
, then

$$X = egin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & a\mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & b\mathbf{1} \end{bmatrix} \quad ext{for some} \quad a,b \in \mathbb{R}.$$

$$z \in \mathcal{N}(X) \iff \begin{cases} z_1 + z_2 + az_4 &= 0\\ z_1 + z_3 + bz_4 &= 0 \end{cases}$$

$$\Rightarrow \begin{bmatrix} 0\\ -a\\ -b\\ 1 \end{bmatrix} \in \mathcal{N}(X).$$

Now note that

$$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} 0 \\ -a \\ -b \\ 1 \end{vmatrix} = 1 \neq 0.$$

It follows that

$$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \gamma \end{bmatrix} = \gamma$$

is not estimable.

This proves that if γ is estimable, then $x \notin \mathcal{C} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Conversely, if
$$x \notin \mathcal{C} \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$
, then $\exists x_{ij} \neq x_{ij'}$ for some i and $j \neq j'$.

Taking the difference of the corresponding rows of X yields

$$\begin{bmatrix} 0 & 0 & 0 & x_{ij} - x_{ij'} \end{bmatrix}.$$

Dividing by $x_{ij} - x_{ij'}$, yields

$$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}.$$

Thus,

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \in \mathcal{C}(\mathbf{X}'), \quad \text{and} \quad \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \gamma \end{bmatrix} = \gamma \text{ is estimable}.$$

To find the LSE of
$$\gamma$$
, recall $X = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & x_1 \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & x_2 \end{bmatrix}$. Thus

$$X'X = \begin{bmatrix} 2m & m & m & x \\ m & m & 0 & x_1 \\ m & 0 & m & x_2 \\ x & x_1 & x_2 & x'x \end{bmatrix}.$$

When
$$x$$
 is not in $\mathcal{C}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $rank(X) = rank(X'X) = 3$. Thus, a GI of $X'X$ is

$$\begin{bmatrix} 0 & \mathbf{0} \\ \mathbf{0} & \mathbf{A} \\ \mathbf{3} \times 1 \end{bmatrix}, \quad \text{where} \quad \mathbf{A} = \begin{bmatrix} m & 0 & x_1 \\ 0 & m & x_2 \\ x_1, & x_2, & \mathbf{x}' \mathbf{x} \end{bmatrix}^{-1}.$$

Because
$$\begin{bmatrix} m & 0 & x_1 \\ 0 & m & x_2 \\ x_1 & x_2 & x'x \end{bmatrix}$$
 is not so easy to invert, let's consider a

different strategy.

To find LSE of γ and its variance in an alternative way, consider

$$W = \begin{bmatrix} 1 & 0 & x_1 - \bar{x}_1.1 \\ 0 & 1 & x_2 - \bar{x}_2.1 \end{bmatrix}.$$

This matrix arises by dropping the first column of X and applying GS orthogonalization to remaining columns.

$$\begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{x}_1 \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{x}_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -\bar{\mathbf{x}}_1 \\ 0 & 1 & -\bar{\mathbf{x}}_2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{x}_1 - \bar{\mathbf{x}}_1 \cdot \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{x}_2 - \bar{\mathbf{x}}_2 \cdot \mathbf{1} \end{bmatrix}.$$

$$\begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{x}_1 - \bar{\mathbf{x}}_1.\mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{x}_2 - \bar{\mathbf{x}}_2.\mathbf{1} \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & \bar{\mathbf{x}}_1. \\ 1 & 0 & 1 & \bar{\mathbf{x}}_2. \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{x}_1 \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{x}_2 \end{bmatrix}$$

$$\mathbf{W} \qquad \qquad \mathbf{S} \qquad = \qquad \mathbf{X}$$

$$W'W = \begin{bmatrix} \mathbf{1} & \mathbf{0} & x_1 - \bar{x}_1 \cdot \mathbf{1} \\ \mathbf{0} & \mathbf{1} & x_2 - \bar{x}_2 \cdot \mathbf{1} \end{bmatrix}' \begin{bmatrix} \mathbf{1} & \mathbf{0} & x_1 - \bar{x}_1 \cdot \mathbf{1} \\ \mathbf{0} & \mathbf{1} & x_2 - \bar{x}_2 \cdot \mathbf{1} \end{bmatrix}$$

$$= \begin{bmatrix} m & 0 & \mathbf{1}'x_1 - \bar{x}_1 \cdot \mathbf{1}'\mathbf{1} \\ 0 & m & \mathbf{1}'x_2 - \bar{x}_2 \cdot \mathbf{1}'\mathbf{1} \\ \mathbf{1}'x_1 - \bar{x}_1 \cdot \mathbf{1}'\mathbf{1} & \mathbf{1}'x_2 - \bar{x}_2 \cdot \mathbf{1}'\mathbf{1} & \sum_{i=1}^2 \sum_{j=1}^m (x_{ij} - \bar{x}_{i\cdot})^2 \end{bmatrix}.$$

$$= \begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & \sum_{i=1}^{2} \sum_{j=1}^{m} (x_{ij} - \bar{x}_{i.})^{2} \end{bmatrix}$$
$$(\mathbf{W}'\mathbf{W})^{-1} = \begin{bmatrix} \frac{1}{m} & 0 & 0 \\ 0 & \frac{1}{m} & 0 \\ 0 & 0 & \frac{1}{\sum_{i=1}^{2} \sum_{j=1}^{m} (x_{ii} - \bar{x}_{i.})^{2}} \end{bmatrix}.$$

$$W'y = \begin{bmatrix} \mathbf{1} & \mathbf{0} & x_1 - \bar{x}_1 \cdot \mathbf{1} \\ \mathbf{0} & \mathbf{1} & x_2 - \bar{x}_2 \cdot \mathbf{1} \end{bmatrix}' \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
$$= \begin{bmatrix} y_1 \\ y_2 \\ \sum_{i=1}^2 \sum_{j=1}^m y_{ij}(x_{ij} - \bar{x}_{i\cdot}) \end{bmatrix}.$$

$$\hat{\alpha} = (W'W)^{-}W'y$$

$$= \begin{bmatrix} \bar{y}_{1.} \\ \bar{y}_{2.} \\ \frac{\sum_{i=1}^{2} \sum_{j=1}^{m} y_{ij}(x_{ij} - \bar{x}_{i.})}{\sum_{i=1}^{2} \sum_{j=1}^{m} (x_{ij} - \bar{x}_{i.})^{2}} \end{bmatrix}.$$

Recall that

$$E(y) = X\beta = W\alpha$$
$$= WS\beta = XT\alpha.$$

c'eta estimable $\Rightarrow c'Tlpha$ is estimable with LSE $c'T\hat{lpha}$.

Thus, LSE of β is

$$c' \qquad T \qquad \hat{\alpha}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -\bar{x}_{1} & 0 & 0 \\ 0 & 1 & -\bar{x}_{2} & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \bar{y}_{1} & 0 & 0 & 0 \\ \bar{y}_{2} & 0 & 0 & 0 \\ \frac{\sum_{i=1}^{2} \sum_{j=1}^{m} y_{ij}(x_{ij} - \bar{x}_{i} \cdot)}{\sum_{i=1}^{2} \sum_{j=1}^{m} (x_{ij} - \bar{x}_{i} \cdot)^{2}} \end{bmatrix}$$

$$= \frac{\sum_{i=1}^{2} \sum_{j=1}^{m} y_{ij}(x_{ij} - \bar{x}_{i} \cdot)}{\sum_{i=1}^{2} \sum_{j=1}^{m} (x_{ij} - \bar{x}_{i} \cdot)^{2}}.$$

Note that in this case

$$\mathbf{c}'\hat{\boldsymbol{\beta}} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \hat{\boldsymbol{\alpha}} = \hat{\alpha}_3.$$

$$\operatorname{Var}(\mathbf{c}'\hat{\boldsymbol{\beta}}) = \operatorname{Var}\left(\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \hat{\boldsymbol{\alpha}}\right)$$

$$\begin{aligned} \sigma(\mathbf{c}'\boldsymbol{\beta}) &= \operatorname{Var}\left(\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \boldsymbol{\alpha} \right) \\ &= \sigma^2 \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} (\boldsymbol{W}'\boldsymbol{W})^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \\ &= \sigma^2 \frac{1}{\sum_{i=1}^2 \sum_{i=1}^m (x_{ii} - \bar{x}_{i\cdot})^2}. \end{aligned}$$

Theorem 4.1 (Gauss-Markov Theorem):

Suppose the GMM holds. If $c'\beta$ is estimable, then the LSE $c'\hat{\beta}$ is the best (minimum variance) linear unbiased estimator (BLUE) of $c'\beta$.

Proof of Theorem 4.1:

 $c'\beta$ is estimable $\Rightarrow c' = a'X$ for some vector a.

The LSE of $c'\beta$ is

$$c'\hat{\beta} = a'X\hat{\beta}$$

= $a'X(X'X)^{-}X'y$
= $a'P_{X}y$.

Now suppose u + v'y is any other linear unbiased estimator of $c'\beta$.

Then

$$E(u + v'y) = c'\beta \quad \forall \beta \in \mathbb{R}^p$$

$$\iff u + v'X\beta = c'\beta \quad \forall \beta \in \mathbb{R}^p$$

$$\iff u = 0 \quad \text{and} \quad v'X = c'.$$

$$Var(u + v'y) = Var(v'y)$$

$$= Var(v'y - c'\hat{\beta} + c'\hat{\beta})$$

$$= Var(v'y - a'P_Xy + c'\hat{\beta})$$

$$= Var((v' - a'P_X)y + c'\hat{\beta})$$

$$= Var(c'\hat{\beta}) + Var((v' - a'P_X)y)$$

$$+ 2Cov((v' - a'P_X)y, c'\hat{\beta}).$$

Now

$$Cov((v' - a'P_X)y, c'\hat{\beta}) = Cov((v' - a'P_X)y, a'P_Xy)$$

$$= (v' - a'P_X)Var(y)P_Xa$$

$$= \sigma^2(v' - a'P_X)P_Xa$$

$$= \sigma^2(v' - a'P_X)X(X'X)^{-}X'a$$

$$= \sigma^2(v'X - a'P_XX)(X'X)^{-}X'a$$

$$= \sigma^2(v'X - a'X)(X'X)^{-}X'a$$

$$= 0 : v'X = c' = a'X$$

: we have

$$\operatorname{Var}(u + v'y) = \operatorname{Var}(c'\hat{\beta}) + \operatorname{Var}((v' - a'P_X)y).$$

It follows that

$$\operatorname{Var}(\boldsymbol{c}'\hat{\boldsymbol{\beta}}) \leq \operatorname{Var}(\boldsymbol{u} + \boldsymbol{v}'\boldsymbol{y})$$

with equality iff

$$Var((\mathbf{v}' - \mathbf{a}' \mathbf{P}_{\mathbf{X}})\mathbf{y}) = 0;$$

i.e., iff

$$\sigma^{2}(\mathbf{v}' - \mathbf{a}'\mathbf{P}_{X})(\mathbf{v} - \mathbf{P}_{X}\mathbf{a}) = \sigma^{2}(\mathbf{v} - \mathbf{P}_{X}\mathbf{a})'(\mathbf{v} - \mathbf{P}_{X}\mathbf{a})$$
$$= \sigma^{2}\|\mathbf{v} - \mathbf{P}_{X}\mathbf{a}\|^{2}$$
$$= 0;$$

i.e., iff

$$v = P_X a$$
;

i.e., iff

$$u + v'y$$
 is $a'P_Xy = c'\hat{\beta}$, the LSE of $c'\beta$.

Result 4.1:

The BLUE of an estimable $c'\beta$ is uncorrelated with all linear unbiased estimators of zero.

Proof of Result 4.1:

Suppose u + v'y is a linear unbiased estimator of zero. Then

$$E(u + v'y) = 0 \quad \forall \beta \in \mathbb{R}^{p}$$

$$\iff u + v'X\beta = 0 \quad \forall \beta \in \mathbb{R}^{p}$$

$$\iff u = 0 \quad \text{and} \quad v'X = \mathbf{0}'$$

$$\iff u = 0 \quad \text{and} \quad X'v = \mathbf{0}.$$

Thus,

$$\operatorname{Cov}(\mathbf{c}'\hat{\boldsymbol{\beta}}, u + \mathbf{v}'\mathbf{y}) = \operatorname{Cov}(\mathbf{c}'(X'X)^{-}X'\mathbf{y}, \mathbf{v}'\mathbf{y})$$

$$= \mathbf{c}'(X'X)^{-}X'\operatorname{Var}(\mathbf{y})\mathbf{v}$$

$$= \mathbf{c}'(X'X)^{-}X'(\sigma^{2}\mathbf{I})\mathbf{v}$$

$$= \sigma^{2}\mathbf{c}'(X'X)^{-}X'\mathbf{v}$$

$$= \sigma^{2}\mathbf{c}'(X'X)^{-}\mathbf{0}$$

$$= 0.$$

Suppose $c_1'\beta,\ldots,c_q'\beta$ are q estimable functions $\exists c_1,\ldots,c_q$ are LI.

Let
$$extbf{\emph{C}} = egin{bmatrix} extbf{\emph{c}}_1' \ dots \ extbf{\emph{c}}_q' \end{bmatrix}$$
 . Note that $rank(extbf{\emph{c}}_{q imes p}) = q$.

$$egin{aligned} m{C}m{eta} &= egin{bmatrix} m{c}_1'm{eta} \ dots \ m{c}_q'm{eta} \end{bmatrix} \end{aligned}$$
 is a vector of estimable functions.

The vector of BLUEs is the vector of LSEs

$$egin{bmatrix} egin{bmatrix} oldsymbol{c}'_1 \hat{oldsymbol{eta}} \ dots \ oldsymbol{c}'_q \hat{oldsymbol{eta}} \end{bmatrix} = oldsymbol{C} \hat{oldsymbol{eta}}.$$

Because $c'_1\beta,\ldots,c'_q\beta$ are estimable, \exists

$$a_i \ni X'a_i = c_i \quad \forall i = 1, \ldots, q.$$

If we let
$$A = \begin{bmatrix} a_1' \\ \vdots \\ a_q' \end{bmatrix}$$
 , then $AX = C$.

Find $Var(\mathbf{C}\hat{\boldsymbol{\beta}})$.

$$Var(\mathbf{C}\hat{\boldsymbol{\beta}}) = Var(\mathbf{A}\mathbf{X}\hat{\boldsymbol{\beta}})$$

$$= Var(\mathbf{A}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{y})$$

$$= Var(\mathbf{A}\mathbf{P}_{\mathbf{X}}\mathbf{y})$$

$$= \sigma^{2}\mathbf{A}\mathbf{P}_{\mathbf{X}}(\mathbf{A}\mathbf{P}_{\mathbf{X}})'$$

$$= \sigma^{2}\mathbf{A}\mathbf{P}_{\mathbf{X}}\mathbf{A}'$$

$$= \sigma^{2}\mathbf{A}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{A}'$$

$$= \sigma^{2}\mathbf{C}(\mathbf{X}'\mathbf{X})^{-}\mathbf{C}'.$$

Find $rank(Var(\mathbf{C}\hat{\boldsymbol{\beta}}))$.

$$q = rank(\mathbf{C}) = rank(\mathbf{A}\mathbf{X})$$

$$= rank(\mathbf{A}\mathbf{P}_{\mathbf{X}}\mathbf{X}) \le rank(\mathbf{A}\mathbf{P}_{\mathbf{X}})$$

$$= rank(\mathbf{P}_{\mathbf{X}}^{\prime}\mathbf{A}^{\prime}) = rank(\mathbf{A}\mathbf{P}_{\mathbf{X}}\mathbf{P}_{\mathbf{X}}^{\prime}\mathbf{A}^{\prime})$$

$$= rank(\mathbf{A}\mathbf{P}_{\mathbf{X}}\mathbf{P}_{\mathbf{X}}\mathbf{A}^{\prime}) = rank(\mathbf{A}\mathbf{P}_{\mathbf{X}}\mathbf{A}^{\prime})$$

$$= rank(\mathbf{A}\mathbf{X}(\mathbf{X}^{\prime}\mathbf{X})^{-}\mathbf{X}^{\prime}\mathbf{A}^{\prime})$$

$$= rank(\mathbf{C}(\mathbf{X}^{\prime}\mathbf{X})^{-}\mathbf{C}^{\prime})$$

$$\le rank(\mathbf{C}) = q. \therefore rank(\sigma^{2}\mathbf{C}(\mathbf{X}^{\prime}\mathbf{X})^{-}\mathbf{C}^{\prime}) = q.$$

Note

$$\operatorname{Var}(\hat{C\beta}) = \sigma^2 C(X'X)^- C'$$

is a $q \times q$ matrix of rank q and is thus nonsingular.

We know that each component of $C\hat{\beta}$ is the BLUE of each corresponding component of $C\beta$; i.e., $c_i'\hat{\beta}$ is the BLUE of $c_i'\beta$ $\forall i=1,\ldots,q$.

Likewise, we can show that $C\hat{\beta}$ is the BLUE of $C\beta$ in the sense that

$$Var(s + Ty) - Var(C\hat{\beta})$$

is nonnegative definite for all unbiased linear estimators s + Ty of $C\beta$.

Nonnegative Definite and Positive Definite Matrices

A symmetric matrix A is nonnegative definite (NND) if and only if

$$x'Ax \geq 0 \ \forall \ x \in \mathbb{R}^n.$$

A symmetric matrix \underline{A} is $\underline{\text{positive definite}}$ (PD) if and only if

$$x'Ax > 0 \ \forall \ x \in \mathbb{R}^n \setminus \{\mathbf{0}\}.$$

Proof that $Var(s + Ty) - Var(C\hat{\beta})$ is NND:

s + Ty is a linear unbiased estimator of $C\beta$

$$\iff E(s + Ty) = C\beta \quad \forall \ \beta \in \mathbb{R}^p$$

 $\iff s + TX\beta = C\beta \quad \forall \ \beta \in \mathbb{R}^p$
 $\iff s = 0 \text{ and } TX = C.$

Thus, we may write any linear unbiased estimators of $C\beta$ as Ty where TX = C.

Now $\forall w \in \mathbb{R}^q$ consider

$$egin{align*} & \mathbf{w}'[\operatorname{Var}(\mathbf{T}\mathbf{y}) - \operatorname{Var}(\mathbf{C}\hat{oldsymbol{eta}})]\mathbf{w} = \mathbf{w}'\operatorname{Var}(\mathbf{T}\mathbf{y})\mathbf{w} - \mathbf{w}'\operatorname{Var}(\mathbf{C}\hat{oldsymbol{eta}})\mathbf{w} \\ &= \operatorname{Var}(\mathbf{w}'\mathbf{T}\mathbf{y}) - \operatorname{Var}(\mathbf{w}'\mathbf{C}\hat{oldsymbol{eta}}) \\ &> 0 \quad \text{by Gauss-Markov Theorem because} \dots \end{aligned}$$

(i) $w'C\beta$ is an estimable function:

$$w'C = w'AX \Rightarrow X'A'w = C'w$$

 $\Rightarrow C'w \in C(X').$

(ii) w'Ty is a linear unbiased estimator of $w'C\beta$:

$$E(\mathbf{w}'T\mathbf{v}) = \mathbf{w}'TX\beta = \mathbf{w}'C\beta \quad \forall \ \beta \in \mathbb{R}^p.$$

(iii) $w'C\hat{\beta}$ is the LSE of $w'C\beta$ and is thus the BLUE of $w'C\beta$.

We have shown

$$\mathbf{w}'[\operatorname{Var}(\mathbf{T}\mathbf{y}) - \operatorname{Var}(\mathbf{C}\hat{\boldsymbol{\beta}})]\mathbf{w} \ge 0, \quad \forall \ \mathbf{w} \in \mathbb{R}^p.$$

Thus,

$$Var(Ty) - Var(C\hat{\boldsymbol{\beta}})$$

is nonnegative definite (NND).

Is it true that

$$Var(Ty) - Var(C\hat{\boldsymbol{\beta}})$$

is positive definite if Ty is a linear unbiased estimator of $C\beta$ that is not the BLUE of $C\hat{\beta}$?

No. Ty could have some components equal to $C\hat{\beta}$ and others not.

Then

$$\exists w \neq \mathbf{0} \ni w'[\operatorname{Var}(Ty) - \operatorname{Var}(C\hat{\boldsymbol{\beta}})]w = 0.$$

For example, suppose first row of T is $c'_1(X'X)^-X'$ but the second row is not $c'_2(X'X)^-X'$.

Then $Ty \neq C\hat{\beta}$ but

$$w'[\operatorname{Var}(Ty) - \operatorname{Var}(C\hat{\boldsymbol{\beta}})]w$$

$$= \operatorname{Var}(w'Ty) - \operatorname{Var}(w'C\hat{\boldsymbol{\beta}})$$

$$= 0 \quad \text{for} \quad w' = [1, 0, \dots, 0].$$