Cell Physiology

Cell Physiology

- The "Inner Life of a Cell"
- Components and their functions
- Cell to Cell Junctions Forming Tissues
- How it's Integrated

Part 1

The "Inner Life of a Cell"

Cell Components

• What are the basic components of a cell?

The Cell Membrane

- What does the cell membrane do?
 - Creates separation between ECF vs. ICF
 - Creates fluid compartments
 - Regulates ECF ICF exchange
 - Allows for communication
 - Provides structural support for cell and tissues

Cell Components

The Cell Membrane

- The physical barrier
 - Formed by the tail to tail arrangement of the phospholipid molecules
 - · Self assembles into

Cell Components

The Cell Membrane

- How does a barrier become a regulator?
 - 1. By being having a polar surface
 - 2. By specialized membrane components

Cell Components

The Cell Membrane

- Other phospholipid bilayer membrane components
 - cholesterol ()
 - sphingolipids
 - Membrane proteins

The Cell Membrane

- Sphingolipids
 - Group of membrane lipids with larger "heads"
 - Involved in
 - · cell signal transduction by forming caveolae
 - cell-cell communication
 - Endocytosis & uptake of viruses and bacteria
 - Form "lipid rafts" more cholesterol

Membrane Proteins

Cell Components

- 3 categories
 - transmembrane proteins
 - · peripheral proteins
 - lipid anchored (amphitropic) proteins

Cell Components The Cell Membrane

- Transmembrane Proteins
 - Types:
 - · Most common type in mammalian cells are alpha helical proteins
 - · Also beta barrels in mitochondria

Cell Components

The Cell Membrane

The Cell Membrane

- Functions of transmembrane proteins
 - Transport function
 - Enzyme function
 - Gated Ion channel formation
 - Receptor function/signal transduction

The Cell Membrane

- Peripheral Proteins -
 - attachments to the phospholipid bi-layer

Cell Components

The Cell Membrane

- Glycoconjugates
 - Includes glycolipids & glycoproteins
 - Form a glycocalyx on the exoplasmic surface
 - Many functions
 - Integrated with other membrane molecules/structures such as sphingolipids

Cell Components

The Cell Membrane

- Peripheral Protein Functions
 - Enzyme function
 - Mediate chemical reactions
 - Structural
 - Mediate attachment
 - Transporters
 - · Between/among cell membrane proteins
 - Electron carriers
 - · In electron transport chain
 - Regulators
 - Such as apoptosis

Cell Components The

The Cell Membrane

- Functions of glycocalyx:
 - Protection
 - · Cushions the plasma membrane and protects it from chemical injury
 - Immunity to infection
 - Enables the immune system to recognize and selectively attack foreign organisms
 - Defense against cancer
 - Changes in the glycocalyx of cancerous cells enable the immune system to recognize and destroy them
 - Transplant compatibility
 - Forms the basis for compatibility of blood transfusions, tissue grafts, and organ transplants
 - Cell adhesion
 - · Binds cells together so that tissues do not fall apart
 - Inflammation regulation
 - Glycocalyx coating on endothelial walls in blood vessels prevents leukocytes from rolling/binding in healthy states
 - Fertilization
 - · Enables sperm to recognize and bind to eggs
 - Embryonic development
 - Guides embryonic cells to their destinations in the body

The Nucleus

- Contains
 - DNA
 - Nucleolus
 - . DNA that regulates the synthesis of ribosomal RNA
 - Double phospholipid bilayer for a nuclear membrane
- Functions
 - Nuclear membrane compartmentalizes the nuclear material from the rest of the cell allowing control on both sides
 - Outer membrane is in contact with the endoplasmic reticulum membrane
 - · Material enters and exits through nuclear pores
 - Gene Expression
 - Can only happen if material is allowed in & out of the nucleus
 - Processing of pre-mRNA
 - Introns are removed, exons remain

Cell Components

The Cytoplasm

- Cytoplasm is divided functionally into
 - Cytosol
 - Site of many chemical reactions
 - Inclusions
 - Membranous Organelles
 - · Functional units of the cell

Cell Components

The Cytoplasm

- Cytosol functions (many in conjunction with other processes)
 - Cell signaling
 - Cytokinesis
 - Protein synthesis
 - Glycolysis
 - gluconeogenesis

Cell Components

- The Inclusions
 - Direct contact on the cytosol
 - Ribosomes
 - Involved in synthesis of proteins
 - Proteasomes
 - Involved in protein degradation
 - Vaults
 - Functional aspect TBD definitively
 - » Found associated with lipid rafts
 - » May play a role in transport into and out of the nucleus
 - Protein fibers
 - Provide structure and movement within the cell
 - » Actin
 - » Intermediate filaments
 - » microtubules

The Cytoplasm

The Cytoplasm

Actin

- Smallest cytoskeletal filament (aka microfilament)
- Fiber composed of actin molecules
- Associated with myosin for muscle contraction
 - Contains binding sites for myosin

Cell Components

The Cytoplasm

Intermediate Filaments

- Provide structure for
 - Type I & II Intermediate filaments
 - Hair/nails keratin fibers
 - Type III Intermediate filaments
 - Desmin
 - » Involved in structural support of sarcomeres
 - » Connects z discs to subsarcolemmal cytoskeleton!
 - » Involved in migration of cells during embryogenesis
 - Vimentin
 - » Support cell membranes
 - » Cytoskeltal component that anchors some organelles
 - Peripherins & GFAP's (glial fibrillary acidic protein)
 - » Intermediate filaments in nerves and glial cells

Cell Components

The Cytoplasm

- Intermediate filaments cont...
 - Type IV Intermediate filaments
 - Filament group that has types in neural tissue as well as muscle tissue
 - Type V Intermediate filaments
 - These are nuclear filaments, providing support for the nuclear membrane
 - Type VI Intermediate filaments
 - Aids in growth of axons

Cell Components

The Cytoplasm

- Microtubles
 - Assembled from monomers of tubulin ($\alpha \& \beta$)
 - (α & β) monomers combine to form dimers
 - these assemble to create protofilaments (single tubes) which then assemble into the larger structures of
 - Centrioles
 - » Direct microtubule formation during the M phase of the cell cycle
 - » Form basal bodies for flagella and cilia
 - flagella and cilia provide motility
 - » Using dyenin "motors"

The Cytoplasm

Assembly of a cilium

Cell Components

The Cytoplasm

- The cytoskeletal components help to
 - Maintain cell shape
 - Organize the internal compartment of the cell
 - Provide transport routes within cells
 - Aid in creation of tissues from cells
 - Create movement
 - Along with motor proteins such as
 Myosins Actin motor protein
 Dyenins
 Kinesins
 Other cellular motors proteins include:
 ATP synthase, DNA & RNA polymerase

Cell Components

The Cytoplasm

- The Membrane Bound Organelles
 - Provide additional specific functionality to cells
 - Protein production
 - Lipid, phospholipid, steroid manufacture
 - ATP generation
 - Defense/Protection
 - Storage

Cell to Cell Junctions

- The formation of tissues requires
 - Ability to attach cells to neighboring cells
 - Very important in epithelial cells & muscle cells
 - Production of extracellular materials
 - Very important in connective tissues
 - Communication between cells
 - Cell migration during development and repair

Cell to Cell Junctions

- Junctions between cells
 - Zonula occludens
 - Zonula adherens
 - Macula adherens
 - Gap junctions
 - Synapses
- Junctions between cells and the extracellular material
 - Hemidesmosomes
 - Focal adhesions

Cell to Cell Junctions Desmosomes

- zonula adherens & macula adherens
 - Function in providing strong attachemnts between adjacent lateral membranes
 - Difference is in continuity
 - Zonula (zone) is around the apical region of tightly packed cells (epithelial)
 - Macula (spot) occurs in spots on the lateral membranes of adjacent cells

Cell to Cell Junctions

- Why all this complexity in tight junctions?
 - Prevents integral protein migration
 - Maintains polarity of cells that utilize them
 - Prevents passage of substance between cell membranes

Cell to Cell Junctions

cell-matrix junctions

- Focal Adhesions & Hemidesmosomes
 - Attach to underlying extracellular matrix
 - Focal Adhesions
 - Transmembrane protein integrin interacts with fibers such as collagen to anchor the membrane
 - Cytoplasmic fibers (actin) interact with the integrin to provide intracellular stability
- FOCAL ADHESION SITE

 Vinculin

 plasma
 membrane

 vincellular
- Hemidesmosomes
 - Attach epithelials to underlying basement membrane
 - Similar to "regular" desmosomes, but only ½ and use integrins instead of cadherins

Cell to Cell Junctions

gap junctions

- Gap Junction Structure
 - Transmembrane proteins called connexons form "channels" between adjacent cells
- Function
 - Communication by allowing ions to flow from cell to cell very quickly
 - Form electrical synapses in neural tissue

Cell to Cell Junctions

Synapses

- Specialized junctions between neurons and
 - Other neurons
 - Muscle (neuromuscular junction)
 - Glands (neuroglandular junction)
- Specialized for
 - Communication via neurotransmitters!
- More on these later...

Integrative Physiology

• How do cells "fit in" the big picture?

Tissues

- What tissues are formed?
 - Epithelial
 - Connective
 - Muscular
 - Nervous

Tissues

- Epithelial Tissues
 - Form sheets of single or multiple layers of cells and glands
 - form barriers due to zonula adherens, zonula occludens and high cellularity
 - Functions in
 - Filtration
 - Absorption & Secretion
 - Protection & defense
 - Communication

Tissues

- Muscle
 - Functions
 - Movement
 - Heat generation
 - Protection
 - Types of muscle
 - Skeletal
 - Cardiac
 - Smooth

Tissue

- Connective
 - Many different types
 - Many different functions
 - Defense & Protection
 - Transportation
 - Structure
 - Storage
 - Shock absorption
 - Production

Tissues

- Nervous Tissue
 - Functions
 - COMMUNICATION!