Graphs and Shortest Paths

October 24, 2011

Graphs and Shortest Paths

@ Practice Problems:
23.1 2,3,5,7, 8-16, 20
232 1-7,12, 14, 15, 16
23.3 1-7

Graphs and Shortest Paths

Dijkstra’s Algorithm for Shortest Paths

Edsger Wybe Dijkstra (1930-2002), 1318 unpublished
manuscripts, University of Texas professor.

Labeling procedure for a vertex v:

(PL) permanent label: length L, of a shortest path 1 — v is
found.

(TL) temporary label: upper bound L, for the length of a
shortest path 1 — v is found.

We are going to have two sets of vertices at each step:

@ P the vertices with a permanent label.

@ 7T the vertices with a temporary label.

Graphs and Shortest Paths

Dijkstra's Algorithm for Shortest Paths

Algorithm Dijkstra’'s [G = (V, E)]

INPUT: Connected graph G = (V, E) with a origin 1.
OUTPUT: Lengths L; of the shortest paths from 1 — .

© |Initial Step: Vertex 1 is added to P with L; = 0. Vertex j is
added to 7 with label Lj- = .

@ Find a k in T for which L] is the smallest (take the smallest k
if there are several).

Set Ly = L} and move k from T to P.
IF T is empty then OUTPUT Ly, Lo, ..., L, STOP

ELSE CONTINUE

© Updating the Temporary Labels: For all j € T, set
Lj- = min(Lj-, Ly + £xj). GO TO Step 2.
END Dijkstra

Graphs and Shortest Paths

Dijkstra’s Algorithm Example

Graphs and Shortest Paths

23.4 Shortest Spanning Trees

In many applications it is helpful to find the smallest network
necessary for connecting each vertex. For example in building a
subway line to connect points of interest in a city.

A tree is a graph that is connected and has no cycles.

A Connected graph is a graph which has a path connecting any
two vertices.

A Spanning Tree in a given connected graph is a tree containing
all the vertices of the graph.

A spanning tree with n vertices has n — 1 edges. There can be
several spanning trees in a graph.

D |

Graphs and Shortest Paths

23.4 Shortest Spanning Trees

In many applications it is helpful to find the smallest network
necessary for connecting each vertex. For example in building a
subway line to connect points of interest in a city.

A tree is a graph that is connected and has no cycles.

A Connected graph is a graph which has a path connecting any
two vertices.

A Spanning Tree in a given connected graph is a tree containing
all the vertices of the graph.

A spanning tree with n vertices has n — 1 edges. There can be
several spanning trees in a graph.

D |

Graphs and Shortest Paths

23.4 Shortest Spanning Trees

In many applications it is helpful to find the smallest network
necessary for connecting each vertex. For example in building a
subway line to connect points of interest in a city.

A tree is a graph that is connected and has no cycles.

A Connected graph is a graph which has a path connecting any
two vertices.

A Spanning Tree in a given connected graph is a tree containing
all the vertices of the graph.

A spanning tree with n vertices has n — 1 edges. There can be
several spanning trees in a graph.

D |

Graphs and Shortest Paths

Shortest Spanning Tree

A shortest spanning tree T in a connected graph G (whose
edges of lengths ;) is a spanning tree for which) ¢;; (total
length of edges) is minimum compared to other spanning trees.

Simple Fact: The set of shortest paths from vertex 1 to all the
other vertices forms a spanning tree.

The key facts are that the set of all shortest paths will obviously
reach all vertices, and by Bellman’s principle it would not make
sense for it to include cycles.

Graphs and Shortest Paths

Kruskals Greedy Algorithm for Finding Shortest Spanning
Trees

Algorithm Kruskal [G = (V, E)]

INPUT: Connected graph G = (V, E).
OUTPUT: A Shortest Spanning Tree T in graph G.

© Order the edges of G in ascending order of length.

@ Choose them in this order as edges of T, rejecting an edge
only if it forms a cycle with the edges already choosen.

© If n— 1 edges have been choosen, then OUTPUT T (the set
of edges) STOP.
END Kruskal

Graphs and Shortest Paths

Example: Kruskal

Edges in Order: BD, CD, CE, FG, EF, EG, HI, BC, AB, DF, GH,
EH, FI.

Graphs and Shortest Paths

Example: Kruskal

Edges in Order: BD, CD, CE, FG, EF, EG, HI, BC, AB, DF, GH,
EH, FI.

Graphs and Shortest Paths

23.5 Prims Algorithm for Shortest Spanning Trees

The problem with Kruskal's Greedy algorithm is that it is a top
down approach. Note that in the example that we did there were a
number of edges we eventually rejected before we found the final
tree. Also notice that part way through the algorithm we had a
disconnected tree.

Prims method is to grow the spanning tree so that if we stop the
algorithm early, while we will not have spanning, we will always
have a tree.

The is particularly helpful for an exceptionally large graph, and in
the end the type of graphs we care about in the wild are always
exceptionally large.

The algorithm was discovered in 1930 by mathematician Vojtech
Jamik, and later independently by computer scientists Robert C.
Prim (1957), and also independently by Dijkstra in 1959.
Therefore it is sometimes called the DJP or Janik Algorithm.

Graphs and Shortest Paths

Prims Algorithm for Shortest Spanning Trees

Algorithm Prim [G = (V, E) |

INPUT: Connected graph G = (V, E).
OUTPUT: A Shortest Spanning Tree T in graph G.

@ Initial step: Set i(k) =1, U= {1}, and S =10.

Label vertex k with A\, = £;.

@ Addition of an edge to the tree T: Let \; be the smallest A4
for k not in U. Include vertex j in U and edge (i(j),J) in S.

If U=V then compute L(T) =) ¢; (summing over S)
OUTPUT S, L(T). STOP.

ELSE continue.

© Label Updating: For every k not in U if £j < Ay then set
Ak = ij and I(k) =Jj. GO TO Step 2.
END Prim

Graphs and Shortest Paths

23.6 Flows in Networks

Another type of combinatoric optimization is to maximize the flow
through a network. Here we turn from graphs to digraphs.

The weights on the edges of the network now refer to the capacity
of the network (think in terms of electric current, water, traffic,
information, etc.

13
20

10

Maximum Flow
The problem is to determine the maximum flow allowed in this
network from s — t.

Graphs and Shortest Paths

Flow Augmenting Paths

Given a network with a capacity and flow, we will attempt to look
for paths in the network from s — t which can be used to increase
the net-flow.

Let f; be the flow rate from i to j and ¢;; be the capacity.

Flow Augmenting Path
Is a path from s — t such that
@ No forward edge is used to capacity f; < ¢

@ No backward edge has zero flow f; > 0.

The point is that a Flow Augmenting Path represents unused
capacity.

Graphs and Shortest Paths

Example: Flow Augmenting Path

Find flow augmenting paths in the network:

11,11

where the first number is the capacity, and the second is the flow.

Graphs and Shortest Paths

A Cut Set of a network is a collection of edges which divide the
graph into two components with s in one and t in the other. The
idea should be very natural: If we want to know what is flowing
from s to t, we should cut the network and look in the 'pipes’.

Net Flow in Cut Sets Any given flow in the network G is the net
flow through any cut set of G.

Upper Bound for Flows A flow in the network G cannot exceed the
capcity of any cut set in G.

Graphs and Shortest Paths

Maximum Flow

The main theorem is then

A flow from s — t in a netowrk G is maximum iff there does not
exist a flow augmenting path s — t in G.

Suppose there exists a flow augmenting path. The flow augmenting
path represents unused capacity and we can increase the flow along
this path until it is no longer flow augmenting. (adding to f;; when
the arrow goes with the path, decreasing f;; when the arrow goes
against). Thus the flow could not have been maximum.

Graphs and Shortest Paths

Maximum Flow

The main theorem is then

A flow from s — t in a netowrk G is maximum iff there does not
exist a flow augmenting path s — t in G.

For the other direction suppose there is not a flow augmenting
path. Let Sy be the set of all vertices in G such that there is a flow
augmenting path to / from s, and let Ty be the set of all other
vertices. Consider any edge (/,/) in G with i € Sp and j € Tp. We
have a flow augmenting path from s — j but not from s — / — j.
Thus we must have

£ fci if (i,/) is forward
Y710 if (i,)) is backward

Graphs and Shortest Paths

Maximum Flow

The main theorem is then

A flow from s — t in a netowrk G is maximum iff there does not
exist a flow augmenting path s — t in G.

The sets Sy and Ty give a cut set for the graph, and thus by the
previous Theorems the net flow f is given by the sum of the f;
between Sp and Ty and any other flow is less than or equal to

f. Ol

Graphs and Shortest Paths

Ford Fulkerson Algorithm

The Ford Fulkerson Algorithm for finding the maximum flow of a
network, which we will not go into formally, relies on the principle
of flow augmenting paths. The algorithm searches our spare
capacity in the network by looking for flow augmenting paths and
then increasing the flow along those.

Graphs and Shortest Paths

23.8 Graph Coloring

One of the initial problems we began with was a scheduling
problem.

You are working for a company which is building an electronic
device. When the device is activated it spends one minute making
a number of measurements and computations which have to occur
at specific times during that minute:

Task A B C D E
Time Interval (0, 20) (10, 20) (10, 30) (20, 60) (20, 40)
F G H

(30, 45) (40, 50) (45, 60)

What is the minimum number of processors we will need to include
in this device to handle these 8 tasks?

Graphs and Shortest Paths

Graph Coloring

Label each task as a vertex and connect vertices whose time
intervals overlap.

Overlapping vertices cannot use the same processors, so the
question becomes: How many colors do we need so that each
vertex of the graph has a color, and no two adjacent vertices have
the same color?

Graphs and Shortest Paths

Famous Example

The Four-Color Problem

Any map only requires four colors to differentiate the countries.
No two adjacent countries will have the same color.

This problem was proposed in 1852, yet despite numerous incorrect
proofs a correct proof was not given until 1976 by Appel and
Hanken.

The reduced the problem down to a set of 1936 maps would could
have a counter example, by showing that any map had a portion
that looked like one of these.

They then used a computer to exhaustively demonstrate that four
colors were sufficient for each of those 1936 maps.

This was the first major theorem whose proof relied on the use of
computers!!

In 2005 a simpler proof was found by Gonthier using his Theorem
Proving software (no tricks, just logic).

Graphs and Shortest Paths

Lots of interesting questions now occur: Suppose instead of a
sphere, the earth was shaped as a doughnut, how many colors
would maps require then?

Suppose the topology was more complicated: A multi-holed
doughnut? A surface with a singularity?

Graphs and Shortest Paths

Random Graphs, Random Matrices

While we are here, let us mention the idea of studying random
graphs. Typical graphs of which we are concerned are quite large.
Often it is impossible to know for example, all of the lengths of the
graph precisely, or even to study all of the connections precisely.

The field of random graphs has been developed to study large
graphs with imperfect resolution.

Going back to the adjacency matrix, this leads naturally to the
question of how random matrices behave, particularly as the size of
the matrix becomes large.

Graphs and Shortest Paths

Random Graphs, Random Matrices

Finally this leaves us with an interesting question about graphs:
What do the eigenvalues of the adjacency matrix tell us about the

graph?
We don’t know much. There is some connection to the cycles of
the graph.

Interested? Come see me and we can talk about a project
for you to work on.

Graphs and Shortest Paths

