Sarawan Wongsa

Fault Detection Based on Signal Processing

Introduction

OVERVIEW

- Time-domain approaches
 - Correlation
 - Statistical analysis
 - Signal filtering
- Frequency domain approaches
 - Correlation
 - Band Frequency Analysis

Introduction

Two techniques:

- Time domain e.g. mean detection, max-min of signal, RMS etc.
- 2. Frequency domain e.g. spectrum peaks, power average, correlation etc.

1

Fault Detection Based on Signal Processing

Techniques

Time Domain Approaches

- Correlation
- Statistical analysis
- Signal filtering

Time Domain-Based

Correlation

a dimensionless measure of linear dependence by means of correlation coefficient $r_{\!\scriptscriptstyle xy}$

5

Fault Detection Based on Signal Processing

Time Domain-Based

$$r_{xy} = [-1 \ 1]$$

$$-r_{xy} > 0 \longrightarrow \text{Positively linear relationship } x \uparrow, y \uparrow$$

$$-r_{xy} < 0 \longrightarrow \text{negatively linear relationship } x \uparrow, y \downarrow$$

$$-r_{xy} = 0 \longrightarrow \text{No relationship}$$

7

Fault Detection Based on Signal Processing

Time Domain-Based

$$r_{xy} < 0$$

Time Domain-Based

9

Fault Detection Based on Signal Processing

Time Domain-Based

Find Correlation Using MATLAB

R=corrcoef(X,Y)

Calculates a matrix R of correlation coefficients for arrays X and Y

Fault detection using correlation

11

Fault Detection Based on Signal Processing

Time Domain-Based

Example — induction machine condition monitoring [1]

Schematic diagram of the monitoring system

Time Domain-Based

Example — induction machine condition monitoring [1]

Source of induction machine faults

- -Internal e.g. bearing faults, circuit faults, dielectric failure, rotor bars crack.
- -External e.g. voltage fluctuation, unbalanced voltage, humidity, temperature, cleanliness

[1] S. A. Saleh, A. Kazzaz and G.K. Singh, Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques, *Electric Power Systems Research*, 65:197-221, 2003.

13

Fault Detection Based on Signal Processing

Time Domain-Based

Example — induction machine condition monitoring [1]

Example — induction machine condition monitoring [1]

[1] S. A. Saleh, A. Kazzaz and G.K. Singh, Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques, *Electric Power Systems Research*, 65:197-221, 2003.

15

Fault Detection Based on Signal Processing

Time Domain-Based

Example – induction machine condition monitoring [1]

Hand ON I

17

Fault Detection Based on Signal Processing

Time Domain-Based

Kurtosis (γ)

the relative peakedness or flatness of a distribution compared to the normal distribution

Kurtosis
$$\longrightarrow K = \frac{E[x^4]}{(E[x^2])^4}$$

The kurtosis of the normal distribution is 3.

Kurtosis express
$$\longrightarrow \gamma = \frac{1}{N} \sum_{i=1}^{N} \frac{(x_i - \mu)^4}{\sigma^4}$$

$$|\gamma = K - 3|$$

Time Domain-Based

Kurtosis (γ)

 $\gamma > 0$ \longrightarrow a relatively peaked distribution (leptokurtic)

 $\gamma = 0$ \longrightarrow Normal distribution (mesokurtic)

 $\gamma < 0$ a relatively flat distribution (platykurtic)

19

Fault Detection Based on Signal Processing

Time Domain-Based

Kurtosis (γ)

Kurtosis in fault detection: Fault → non-Gaussian Normally used in the detection of bearing faults

21

Fault Detection Based on Signal Processing

Time Domain-Based

MATLAB command

K=kurtosis(x) returns the sample kurtosis

Hand ON II

23

Fault Detection Based on Signal Processing

Time Domain-Based

Signal Filtering

RMS – Root Mean Square → average power

$$x_{RMS} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2}$$

Matlab Command

RMSx = norm(x)/sqrt(N)

25

Fault Detection Based on Signal Processing

Time Domain-Based

Example – induction machine condition monitoring [1]

-Supply frequency = 50 Hz

-Rotor speed = 1445 rmp (48.5 Hz)

BP-filter 1

1-200 Hz

BP-filter 2

96-104 Hz

BP-filter 3

220-440 Hz

BP-filter 4

550-950 Hz

26

Example — induction machine condition monitoring [1]

Passband freq.	Description	Fault		
1-200 Hz	1 & 2 harnomics of bearing and shaft frequency	Mechanical unbalance		
96-104 Hz	$2f \pm 4$ f = supply frequency	Supply conditions i.e. unbalanced supply, turn- to-turn short, single phasing		
220-400 Hz	High order harmonics of bearing	Bearing		
550-950 Hz	Vibration of electromagnetic origin, i.e. rotor and stator slot harmonics.	Rotor and stator		

[1] S. A. Saleh, A. Kazzaz and G.K. Singh, Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques, *Electric Power Systems Research*, 65:197-221, 2003.

27

Fault Detection Based on Signal Processing

Time Domain-Based

Example — induction machine condition monitoring [1]

- (a) Vibration signal and filtered version;
- (b) (10-200 Hz) band pass; (c) (98-102 Hz) band pass;
- (d) (680-850 Hz) band pass.

Time Domain-Based

Example – induction machine condition monitoring [1]

	Healthy	Unbalanced	Single	Mechanical	Faulty bearing	Faulty bearing
	condition	supply	phasing	Unbalance	(dry)	(ball defect)
1-200 Hz	0.02966	0.06506	0.25115	0.01343	0.01582	0.18849
96-104 Hz	0.00770	0.08155	0.32252	0.01607	0.03263	0.08412
220-400 Hz	0.01617	0.01486	0.03942	0.01293	0.02255	0.13093
550-950 Hz	0.00204	0.00250	0.00993	0.00176	0.00300	0.02211

RMS value of selected frequency bands

[1] S. A. Saleh, A. Kazzaz and G.K. Singh, Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques, *Electric Power Systems Research*, 65:197-221, 2003.

29

Fault Detection Based on Signal Processing

Time Domain-Based

Frequency Domain-Based

Frequency Domain Approaches

- Correlation
- Band Frequency Analysis

31

Fault Detection Based on Signal Processing

Frequency Domain-Based

Power Spectral Density (PSD)

- PSD describes how the power of a signal or time series is distributed with frequency.
- PSD is commonly expressed in watts per hertz (W/Hz).

Frequency Domain-Based

Fault detection using correlation

33

Fault Detection Based on Signal Processing

Frequency Domain-Based

Hand ON IV

Frequency Domain-Based

Narrow Band Analysis

Freq. of Faults = function (fundamental frequency + its harmonics)

- Detect peaks at those frequencies

-Detect characteristics e.g. mean, peak, RMS of narrow band frequencies.

35

Fault Detection Based on Signal Processing

Frequency Domain-Based

Misalignment: Alignment is a condition whereby machine components have the correct angular position relative to each other; either coincident, parallel, or perpendicular, according to design requirements.

Frequency Domain-Based

Misalignment

Frequency (Hz)

37

Fault Detection Based on Signal Processing

Frequency Domain-Based

Imbalance/Unbalance:

Imbalance in a rotor denotes that the centre of gravity and the geometric centre of a disk are not at the same location.

Frequency Domain-Based

Imbalance

Fault Detection Based on Signal Processing

Frequency Domain-Based

Band Frequency Measurement

Bands of frequency are selected according to the origin of the fault.

RMS values of these bands are compared to the corresponding bands in the reference spectrum.

NB: some type of faults, where the vibration harmonics and its multiples may cover wide range of the spectrum may increase the uncertainty of the obtained information.

39

Frequency Domain-Based

Example — induction machine condition monitoring [1]

- (a) Vibration signal and filtered version;(b) (10-200 Hz) band pass;
- (c) (98-102 Hz) band pass;
- (d) (680-850 Hz) band pass.
- 0.005 1500 0.01 Acceleration [g] 0.000 0.01 500 1000 1500 0.005 500 1000 1500 0.01 0.005 500 1000 1500

[1] S. A. Saleh, A. Kazzaz and G.K. Singh, Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques, *Electric Power Systems Research*, 65:197-221, 2003.

41

Fault Detection Based on Signal Processing

FDD Procedure

Fault Classification

FDD Procedure

Dimensional reduction

For visualisation, i.e.

43

Fault Detection Based on Signal Processing

FDD Procedure

Feature Extraction

FDD Procedure

Fault Classfication

45

Fault Detection Based on Signal Processing

Frequency Domain-Based

Assignment

Suggested Readings

- S. A. Saleh, A. Kazzaz and G.K. Singh, Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques, *Electric Power Systems Research*, 65:197-221, 2003.
- W. Reimche, U. Sudmersen, O. Pietsch, C. Scheer and F-W Bach, Basics of vibration monitoring for fault detection and process control, III Pan-American Conference for NDT, Rio de Janeiro, Brasil, 2003.