STAT 598L Learning Bayesian Network Structure

Sergey Kirshner

Department of Statistics Purdue University skirshne@purdue.edu

November 2, 2009

Acknowledgements: some of the slides were based on Luo Si's viewgraphs (http://www.cs.purdue.edu/homes/lsi/CS590M_Spring_08/CS590M.html)

Outline

Overview

Constraint-Based Approaches

Score-based Structure Learning

Why Learn Structure?

Because often it is not known.

Density estimation: The joint distribution from the data can be used for prediction/inference.

Knowledge discovery: Dependence structure may shed light on relation between the variables in the domain.

Limitations

- Identifiability: At best, we can recover the structure up to the I-equivalence class.
- Noise: Distribution often cannot be reconstructed perfectly from a relatively small and noisy data.
 - Some edges are "borderline". Adding them may introduce spurious edges adding more free parameters.
 - Not adding them may lead to missing some dependence relations.
- Data is limited.
 - Factors with lots of parents are difficult to establish because of data fragmentation.
 - As a result, we often prefer sparser structures as they correspond to models with fewer parameters (simpler).

Why Learn Structure?

Because often it is not known.

Density estimation: The joint distribution from the data can be used for prediction/inference.

Knowledge discovery: Dependence structure may shed light on relation between the variables in the domain.

Limitations:

- Identifiability: At best, we can recover the structure up to the I-equivalence class.
- Noise: Distribution often cannot be reconstructed perfectly from a relatively small and noisy data.
 - Some edges are "borderline". Adding them may introduce spurious edges adding more free parameters.
 - Not adding them may lead to missing some dependence relations.
- Data is limited.
 - Factors with lots of parents are difficult to establish because of data fragmentation.
 - As a result, we often prefer sparser structures as they correspond to models with fewer parameters (simpler).

Approaches to Learning BN Structure

Score-based structure learning

- Performing model selection.
- Pose an optimization problem: define the scoring (loss) function of the model's fit to the data.
- Search: find the structure \mathcal{G} maximizing the scoring function.
- Limitation: the search space of graphs is super-exponential. For the general case, the problem is NP-hard.

Constraint-based structure learning

- Bayesian network represents dependencies.
- Want to find the network that represents the conditional independence relations represented in the data.
- Limitation: sensitive to failures in independence tests. True dependence model may not fall within the search space.

Approaches to Learning BN Structure (Bayesian Model Averaging)

Bayesian model averaging (BMA): treat the structure as a random variable and integrate it out. Alternatively, consider a distribution over structures (and/or parameters) and compute the posterior over structures.

- True dependence may not be represented by a BN (or MN) structure anyway.
- Because of the noise and finite sample size, lots of models have about the same score.
- In many tasks, we are after a distribution over variables and may not be interested in a structure. Integrating the structure out removes one source of uncertainty.
- In a Bayesian setting, we may be able to estimate the probabilities or confidence measures for having particular edge/structures.
- Limitation: The number of possible structures is huge $(2^{\mathcal{O}(n^2)})$. Averaging over them can be extremely difficult.

Constraint-Based Structure Learning

Goal: Want to find a minimal I-map satisfying the conditional independence relations in the data set.

- Fixing the order.
- For each node, looking for the minimal set of parents.
 - Dependence/independence is established using independence tests.

Limitations:

- Independence tests involve a large number of variables.
- Construction involves a large number of queries.
- Constructed network is sensitive to the chosen ordering, and the true ordering is unknown.

Looking for a P-map

Assumptions:

- Network has bounded in-degree d for each node.
- The independence test can answer the query perfectly for up to 2d + 2 variables.
- Underlying distribution has a P-map (yeah, right...)

Algorithm:

- Find skeleton
- Find immoral sets of v-structures
- Oirect constrained edges

How To Test for Independence

Basic Setup: given data, determine whether two variables are independent. This is a classical statistical problem of hypothesis testing.

- H_0 : null hypothesis that the variables are independent, P(X, Y) = P(X) P(Y).
- Want a procedure to either accept or reject the hypothesis based on the evidence (data).
 - χ^2 statistic: $d_{\chi^2}(\mathcal{D}) = \sum_{X,Y,Z} \frac{\left(M[x,y,z] M \times \hat{P}(z)\hat{P}(x|z)\hat{P}(y|z)\right)^2}{M \times \hat{P}(z)\hat{P}(x|z)\hat{P}(y|z)}$
 - Conditional mutual information between X and Y given Z.
- Accept H_0 if the value is low; reject if the value is high.

Score-based Structure Learning

Goal: Want to find a structure \mathcal{G} (and, possibly, parameters $\theta|\mathcal{G}$) that maximize the fit of the model to the data.

- First, we need to define scoring function.
- Need to search over the space of all possible graphs (DAGs) to find the graph that maximizes the scoring function.

Key: Scoring function plays a very significant role.

- Likelihood-based scores: $ScoreL(\mathcal{G}; \mathcal{D}) = In P(\mathcal{D}|\mathcal{G}, \theta_{MLE})$
- Bayesian scores: integrate out the multinomial parameters given structure

Likelihood-based Scores

$$\mathcal{G}^{\star} = \underset{\mathcal{G}}{\operatorname{argmax}} \ln P(\mathcal{D}|\mathcal{G}, \theta_{\textit{MLE}}) \text{ where } \theta_{\textit{MLE}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln P(\mathcal{D}|\boldsymbol{\theta}, \mathcal{G})$$

- Not very useful: if the structure is not restricted, adding edges will always increase the objective function.
 - Solution: Add regularizer (prior over structures).
 - Another solution: Restrict models within a certain class (no more than *d* parents).
- Bad news: If d > 1, the problem is NP-hard.
- Good news: Tractable for maximum spanning trees.

Chow-Liu Trees (Incomplete)

Problem:

Given a complete data set $\mathcal{D} = \{ \mathbf{x}^1, \dots, \mathbf{x}^m \}$ of *n*-variate vectors, find a tree-structured Bayesian network (\mathcal{G}, θ) maximizing the likelihood of the data.

Solution:

It is easier go back and forth between Bayesian and Markov networks, estimating the parameters θ_{MLE} using Bayesian networks, but to search through the space of all equivalent spanning trees using the equivalent Markov network.

 Given a tree structure G, the sufficient statistics are defined over the pairs of variables corresponding to the edges.