
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

196

Manuscript received January 5, 2008

Manuscript revised January 20, 2008

 An Adaptive School Web Site Construction Algorithm

Using Association Rules

Jeongmin Lee †, and Woochun Jun ††

†Yongin Kogi Elementary School, Yongin, Kyunggido, Korea

†† Dept. of Computer Education, Seoul National University of Education, Seoul, Korea

Summary

Advances in Web technologies have been changing school
environment. Especially, school Web site is now a representative
communication tool for teachers, students, and parents, etc. As
more people are visiting school Web sites, it is necessary to
provide right and up-to-date information by analyzing
requirements and characteristics of visitors. In this paper, an
adaptive school Web site construction algorithm is designed and
implemented. For the proposed algorithm, meaningful behavior
patterns are extracted by applying association rule, one of the
data mining techniques, to log data. Based on the analyzed
behavior patterns, the proposed algorithm is designed to reflect
pattern documents on the school Web Site. It is proved that
performance of the proposed system is better than that of the
existing best algorithm. The proposed algorithm can provide
popular information to visitors. Also, the proposed system can
provide information associated each other to those visitors. In
addition, teachers responsible for Web site management can be
relieved from a tedious task such as periodic site update.

Key words

Web mining, Adaptive Web

1 Introduction

Due to the significant investment into the
informatization of elementary education by the
government during the 1990's, most schools have
constructed their Web sites, which provide a wide variety
of educational contents to the students and parents[6]. So,
the school Web site needs to be automated from the
analysis of visitors access patterns to the reflection of that
pattern to the school Web site. Because firstly, for a web
master the automation will lighten the burden of having to
update the contents constantly. Secondly, the time
consumed in analyzing and updating the Web sites will be
greatly reduced. Thirdly, the ability to react to the
ever-changing requirements and characteristics of the
visitors will be much more effective. Fourthly, the Web site
will be able to link related contents to the visitors, thus
greatly increase the effectiveness of the way visitors can

search for content. Lastly, a Web master may manage the
sites scientifically in adding, deleting, updating of the
school Web site by using extracted patterns.

The aims of this research are to design an algorithm that
will extract to the related Web documents by analyzing the
visitors access patterns, and to propose how to construct a
school adaptive Web site that will reflect the pattern
document on school Web site automatically. The proposed
algorithm in this paper converts the data from a Web log
file into a binary tree to the optimum pattern search and
extracts the associated Web documents from the tree. The
extracted pattern is then serviced to visitors as lists of
recommendations. The above series of works will be
implemented as an application program.

The remainder of the paper is structured as follows. In
Section 2, we will present an overview of the existed
adaptive Web site construction algorithms. In Section 3,
we will explain the mining process by using the
association rules. In Section 4, the proposed algorithm will
be analyzed theoretically.. And the conclusion and future
works will be presented in Section 5.

2 Related Works

Adaptive Web sites are defined by Perkowitz and
Etzioni as Web sites that automatically improve their
organization and presentation by learning from visitor
access patterns[10]. Related works regarding adaptive Web
sites are as such.

2.1 The PageGather Algorithm

Perkowitz and Etzioni have proposed the ‘PageGather
Algorithm’ that uses the clustering mining[10]. Table 1
describes the four stages of the PageGather Algorithm.
This algorithm uses a Web log access file and the basic
information of clustering as inputs. As a result of this
algorithm, candidate index-page contents are obtained.

The PageGather Algorithm contributed much to the
development of adaptive Web site studies. The algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

197

explains how to analyze visitor’s access patterns and
proposes the idea of synthesizing Web pages automatically
by using the index page. However, this algorithm does not
take into account the hyperlink's infrastructure, so
meaningless sites, having high hits, were included in
mining process.

Table 1. The PageGather Algorithm[10]

Step 1. Process the access log into visits.

Step 2. Compute the co-occurrence frequencies between

pages and create a similarity matrix.

Step 3. Create the graph corresponding to the matrix,

and find cliques (or connected components) in

the graph.

Step 4. For each cluster found, create a Web page

consisting of links to the documents in the

cluster.

2.2 Web Documents Recommendation Algorithm

In [5], Web documents recommendation algorithm used
clustering algorithm and Apriori algorithm without any
modifications. This algorithm as in Table 2 recommends
the frequent Web document to users.

However, the above algorithm did not take into account
the hyperlink infrastructure in its filtering process therefore,
the sites without intent of visit have a high value number
of support. Furthermore, the Apriori is famous for its
founding of the association rules but we can point out two
short comings that it needs to scan the database multiple
times and it has to generate a huge number of
candidates[7]. Recently, diverse algorithms such as the
FP-growth have been developed to reinforce the Apriori
algorithm[8]. Because it furnishes a key for the
construction of adaptive Web site to extract association
rules effectively from a massive amount of information, it
is necessary to modify the Apriori algorithm with it.

Table 2. Web Documents Recommendation Algorithm[5]
String[] RecomPages(String requested) {

 //Input : requested, Output : recoms[]

 int num=0;

 float th = 0.5;

 String[] recoms;

 Vector[] page_conf;

 page_conf = recomPage(requested);

 num = page_conf.length;

 if(num==1) return recoms;

 else if(num>1) {

 comp_threshold(page_conf, th);

 recoms = sort();

 return recoms;

 }

 else return null;

}

2.3 Web Documents Recommendation Algorithm
Using Markov Chain

In case study [4], we can observe that the Markov chain
has had developed for a considerable amount of change to
have become stabilized. It is called the stable state. The
algorithm in case study [4] proposed a Web document
recommendation system that shows a meaningful
document set to visitors automatically by using Markov
properties. Table 3 is the algorithm proposed by case study
[4]. This algorithm using the Markov chain has been
known to mine information previously inaccessible by
using the anti-frequent-item-set method.

However, the above algorithm requires extensive
calculations of the conditional probability of each page.
Recent trends of school Web sites carrying various
contents and services, thus surmising a massive Web
database, development of an algorithm that will reduce the
amount of calculations is paramount.

Table 3. Web Documents Recommendation Algorithm
Using Markov Chain[4]

(1) Conversion of log access file.

(2) Construction of matrix by calculating the support

(3) Calculation of the stable state probability by using

Markov chain

(4) Decision of a candidate solution by using the founded

frequent itemset.

2.4 TPA (Traversal Pattern Analysis) Algorithm

The suggested Traversal Pattern Analysis algorithm in
[1] is a modified algorithm of the Apriori to extract the
sequential pattern. Table 4 shows the TPA algorithm's
forward phase and its backward phase.

When examining the TPA's forward phase, TPA forms a
length-1-frequent itemset. Let L1 be the complete set of
length-1 frequent itemsets. Then the algorithm creates the
set of length-2 candidates, denoted as C2, and is generated
from L1. After scanning the database once more to count
the support value of each itemset in C2, The itemsets in C2
passing the support threshold form the length-2 frequent
itemsets, L2. A similar process goes on until no candidate
can be derived or no candidate is frequent. In the forward
phase, similar candidate itemsets combination is avoided,
in the backward phase, the TPA uses a function to reduce
the cost of scanning the database. However, even the
TPA algorithm is considered to have problems regarding
time and space management due to constant database scans
and the creation of candidate itemsets.

Therefore, this research gleans the meaningful Web
document set from Web log access file, and proposes way

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

198

that will reduce the number of scans, so that the mining
process will become more effective and streamline.

Table 4. TPA Algorithm[1]

/* Forward Phase */
L1 ={large 1-sequences};
C1 = L1;
last = 1;
For (k=2;Ck-1 ≠ {} and Llast ≠ {} ; k++) do

Begin
If (Lk-1 ≠{}) then Ck ={New candidates generated from

Lk-1};
Else Ck ={New candidates generated from Ck-1};
If (k==Next(last)) then

 Begin
 Forall data sequence c in the data-sequences do

Increment the count for all candidates in Ck
that are contained in c
 Lk = candidates in Ck with minimum support
 last = k;
 End

End

/* Backward Phase */

For (k=last ; k >=1; k--) do
 If (Lk not found in forward phase) then
 Begin
 Delete all sequences in Ck contained in some Li, i>k;
 Forall data sequence c in the data-sequences do
 Increment the count for all candidates in Ck
that are contained in c
 Lk = candidates in Ck with minimum support.
 End
 Else /* Lk already known */ Delete sequences in Lk
contained in some Li, i>k;
 Answer = UkLk
Function Next(k: integer)
Begin
 If (hitk > Υ) return k+2
 Else return k+1
End

3 Frequent Web Document Pattern Mining
Method using Association Rule

Adaptive School Web site divides the processes into, the
preprocessing of the access log file, the construction of the
pattern tree from scanning of the database, the mining
through the pattern tree, the storing and renewing process
of the mined pattern, and lastly the presentation of the
hyperlink on the Web site.

3.1 The Preprocessing of the Log File

The log file in its raw format consists of large mounts of
unnecessary data for pattern mining. Therefore to insure an

effective mining process, log file has to go under a
preprocessing phase. The transaction database is formed
from the preprocessing phase. However, it is necessary to
have two hypotheses as thus, before the formation of
transaction database

Identification of the Visitor : Each IP address will be

treated on one situation. Therefore each different IP
address will be treated as a new visitor.

Identification of the Session : the series of hits in the

user specified maximum time gap will be considered to be
a single session. When a visitor has exceeded his or her
time gap, a new hit will induce a new session, resulting in
a new transaction.

The preprocessing is divided in itself into two phases. In
the first phase, the log file is cleaned up. And unwanted
information and repeated information are discarded. In the
second phase, the information resulting from the
backtracking function of the Web-browser is eliminated.
Table 5 is an example of a transaction database after the
prepossessing.

Table 5 Transaction database
Transaction

ID

Raw Transaction

Database

Reconstructed

Transaction Database

100 ABACGJGCF BJF

200 ABEBADH EDH

300 ACGJGI ACJI

400 HDBABABACCCF HDBCF

500 EBACGHGI EBACHI

600 ACFCGI AFGI

700 DABEBACF DECF

800 ABEBACF ECF

900 ADHDACGJ HCGJ

If you follow the transaction ID number 100 in Table 5,
we can see that the visitor had traversed the Web pages in
the following path: ‘A-B-A-C-G-J-G-C-F’. (Web
document are represented by letters) The path is
transformed into the tree structure shown in Fig. 1. The
algorithm will pick out 'B', 'J', 'F' as the meaningful
documents in pattern mining. The algorithm will deduct in
the sequence 'A-B-A', the user wanted data 'B', and in the
sequence of 'C-G-J-G-C', the user went through the process
to ultimately access data 'J'.

Fig. 1. Web document traversal tree in TID 100

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

199

3.2. The Formation of a Pattern Tree

Frequent Web document pattern mining consists of two
phases. Firstly, an FWDP-tree is created with a
preprocessed transaction database. Secondly through the
traversal of FWDP-tree that has been already created, the
frequent Web document pattern mining occurs.

The FWDP-tree consists of the header table, the root
node, and the Web document-prefix-sub-tree as a child of
root. The header table is created to help the traversal of the
FWDP-tree, and is consisted of three fields. The first one is
the document name field, which is used to save the name
of frequent Web document. The second one is the head of
the node-link field, which is used to store the link
information. In the FWDP-tree formation process, if a new
node is created, pointer information is stored to indicate
the new node in this field. The other is the last of the
node-link field, which is used to store the information
indicating to the last node created. Regarding the colossal
size of the data involved in pattern mining, it is time
consuming and inefficient to write out the node-link fields
of the node considering the whole pattern tree when a new
node is inserted into the tree. To solve this problem, the
FWDP-tree uses the last node field. That field has the
pointer information of the latest node added in tree. So
when a node with the same name is added, the node-link
field of node may be modified easily.

The node of FWDP-tree is a structure, which are
commonly organized into five different fields as in Fig. 2.
The document name field is used to store the Web
document name. The count field is used to store the
number of transactions on the database. The parent link
and the children link each pertain the parent and children
node, and the node link field point to the nodes that have
the same name as each other, and if there are not any that
have the same name, the node link field gets the value
'null'. The FWDP-tree algorithm scans the database two
times to load the information needed for the frequent
pattern mining on memory.
Because the loaded information is huge, and the Web
documents have the complicated reference relationship, we
cannot accurately predict the number of referring to Web
pages for each Web documents. The reason why is the
number of linked nodes to the FWDP-tree node is not
constant to each other. To remedy this, this research is
proposing a binary tree that has a maximum number of
nodes at two, unlike the FP-tree algorithm[8]. Therefore,
the children-link field of FWDP-tree node is divided
intotwo links, the child-link and the sibling-link.

If the same data are in transaction database, the
FWDP-tree algorithm does not create a new node but
change the count field. This is the Web
document-prefix-subtree. The FWDP-tree will be smaller
than the database at least by sharing nodes with repeated

data. Table 6 describes the FWDP-tree algorithm.

Table 6. FWDP-tree Algorithm
Input : A transaction database DB and a minimum
support threshold SUPmin
Output : FWDP-tree
Step1. Scan the transaction database DB once.
 Collect F. /* F is the set of frequent document */

 Sort F in support-descending order as FList.
 Create FArray. /* FArray is the array of FList */
Step2. Create the Header Table, H
 /* H is consist of three fields. Hname is the field of

Document-Name. Hfirst is the first node link area.

And Hlast is the last node link area. */

Set Hfirst with FList.
Create the root of an FWDP-tree, T

Step3. For each transaction Trans in DB do {
 Select the frequent document in Trans and
 sort them according to the order of
FList.
 Let the sorted frequent-document list in Trans
be [p|P]. /* p is the element of P */

 For each p do {
 Insert_tree(p, T)
 }
 }
Function insert_tree(p, T) {
 If T has a child N such that
N.Document-name=p.Document-name
 then increment N's Count by 1.
 else { Create a new node newNode.
 Insert a newNode as the last right
child of root.

After that, a newNode becomes a
left child of parent node.

Count =1 ;
Children-link=null ;

 Parent-link=parent node ;
 }

In step one of the algorithm, through a database scan, a

frequent Web document set F is formed and the Web
documents of F are sorted according to their support value
in descending order. In step two, we can see that the root
node is created, as the first operation of the FWDP-tree, T.
The root node has a null value. In step three, FWDP-tree
algorithm is performed iteratively as the following.
Firstly, the algorithm selects the frequent Web document in
a transaction and sorts the documents according to their
support in descending order. And then the intert_tree()
function is constantly recalled to form the FWDP-tree.

In Table 5, if the threshold support is 3, F would be
{(C.6), (F.5), (E.4), (A.3), (B.3), (D.3), (I.3)}. Afterward
the algorithm will scan each transaction and match the
frequent Web document list (C, F, E, A, B, D, I) and
organize it accordingly.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

200

Table 7 is reconstructed from <Table 5> to illustrate that
the FWDP-tree is better. Fig. 2 is to illustrate the
FWDP-tree based on Table 7. For practical reasons the
header table is given in Fig. 2(i).

Table 7. Transaction sequence and sorted frequent

Web documents

Transaction ID
Transaction

Sequence

Sorted frequent Web

document

100

200

300

400

500

600

700

800

900

B J F

E D H

A C J I

H D B C F

E B A C H I

A F G I

D E C F

E C F

H C G

F B

E H D

C A I

C F H B D

C E H A B I

F A I

C F E D

C F E

C H

3.3. Mining the Pattern Tree

By Using the FWDP-tree formed in the section above

and the minimum threshold support, pattern is mined. In
the adaptive Web site, to induce relevant frequent Web
document pattern mining, a FP-growth algorithm[9] is
modified and then applied.

This research in creating an adaptive school Web site,
takes great interest in the Web document that the visitors
have frequently visited. In this research, we design that an
adaptive school Web site will allow a much more
interactive, convenient and helpful Web site to its visitors
through finding out the Web documents associated with a
frequent Web document. Therefore to be effective, one has
to find the Web site 'X' that is frequently visited, and the
Web site 'Y' which is frequently visited by visitor who
have visited Web site 'X.' Table 8 is FWDP-mine algorithm
applied in pattern mining. According to the frequent Web
document list, the complete set of frequent Web document
can be divided into subsets (7 for our example) without
overlap.

Fig. 2. FWDP-tree

Table 8. FWDP-mine Algorithm
Procedure FWDP-mine(){

for each ai do { /* FList = a1, a2, … an (1≤i≤n) */

 Pattern P={ } /* P = { (x1,s1), (x2,s2), …, (xn,sn),}

x is node name, s is support */

 forall the path of ai do {

 Let sup(ai) be the support of ai on the path.

 ptr = parent node of ai. /* ptr is a pointer */

 forall each node from ptr to root do {

 if (ptr=ptr.parent-link.child-link)

then {

Create pattern node(xptr,sptr)

 if (node(xptr,sptr)=node(X,S) in P)

then S += sptr

 else insert node(xptr,sptr)in P

}

 ptr = ptr.parent-link

}

 }

 Organize the frequent pattern set freq_pattern for a

ai

}

 return freq_pattern

}

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

201

First frequent Web document sets having 'I' are mined.

And then the sets having document 'D' but not 'I' are mined.
In this manner FWDP-mine algorithm is performed
iteratively to mine patterns for each frequent Web
documents. So in case Fig. 2, it is repeated eight times.

After processing the FWDP-mine algorithm, the F and
freq_pattern are presented in Table 9. We can see that
four frequent Web documents were mined. Examining the
algorithm process, people who have visited Web site 'I,'
also tended to visit Web site 'A' and people who have
visited Web site 'C' tended to visit Web site 'H,' 'E,' and 'F'.

Table 9. The Set P and the maximum length frequent

Web document pattern
Web

Doc
P freq_pattern

I

D

B

A

H

E

F

C

{(C:2),(A:3),(E:1),(H:1),(B:1),(F:1)}

{(E:2),(H:2),(C:2),(F:2),(B:1)}

{(F:2),(C:2),(H:2),(E:1),(A:1)}

{(C:2),(E:1),(H:1),(F:1)}

{(E:2),(C:3),(F:1)}

{(C:3),(F:2)}

{(C:3)}

Ø

{(A:3),I}

Ø

Ø

Ø

{(C:3),H}

{(C:3),E}

{(C:3),F}

Ø

3.4. Storing of the Pattern and Updating the Site

This process consists of the processes of storing the

mined patterns and the automatic integration of the
information into the school Web sites. The mined patterns
are stored in pattern tables having formats such as Table
10.

Table 10. The example of pattern table
Document Pattern

I A

A I

H C

E C

F C

The pattern saving module, if there are more than one
patterns extracted, will sort the patterns into descending
order and save it into the database.

The mined pattern is serviced to the visitors in various
forms. Some ways could be by the use of index pages that
has no need of destroying the original Web infrastructure,
or by encoding and inserting hyperlinks, or by changing
the font size, type or color [2,3]. By using the index page
method, one can avoid destroying the Web site's
infrastructure or change the content. However, in recent
PC oriented environment, for personal ease or for security
reasons pop-ups are sometimes disabled and frequent
index pages may cause the visitors to tire from having to

click the mouse button frequently and having a hard time
navigating.

To remedy this, in this research, we chose the method of
inserting hyperlinks into the Web document. This method
by having hyper-links inserted into the Web document can
keep the Web site design congruent from before and can
overcome the shortcomings of creating index pages.
In another words, when one visits Web site 'X,' the host,
by consulting the Web server database pattern table, the
server examines for related Web site 'Y'. If Web site 'Y'
exists then the title of 'Y' would be added into 'X' with
hyper-link information. Fig. 3 demonstrates the new
hyperlink infrastructure.

Fig. 3. Web site infrastructure and pattern link

4 Analysis of Pattern-mining Algorithm

FWDP-mine algorithm is a modification of the
FP-growth algorithm for the use of school Web sites. But
in the FWDP-mine algorithm does not have the
'Growth'[7] idea of the association rule patterns that the
FP-growth used. Instead the FWDP-mine algorithm only
calculates the maximum length patterns. This is so to
maximize the capabilities to use the hyper-link method of
updating the adaptive school Web site.

Theorem: the maximum length frequent Web document
pattern extraction of FWDP-mine takes considerably less
time complexity than when the FP-growth is applied.

Proof: let us assume that a certain FP-tree's tree existed
and that a Supmin existed. 'F' is a set of frequent Web
documents and F= { a1, a2, …, an }. For some frequent
Web document, ai (only if, ai∈F, 1≤i≤n), path(ai) will
be all possibilities including path ai. Also as the current
time pathNode(ai) will mean all possibilities between the
root node and the ai 's parent node. The sum of all the root
of the path of ai will be pathNode(ai) (k ≥1), k (only if,
k>=1), and set 'm', the number of node in the k's nodes as
the least possible the minimum support value.

Even in a worse case scenario in the FWDP-mine
algorithm, the time complexity is O(n×k). On the other
hand, in the FWDP-tree, even when dealing with a single
path situation, the time calculation comes out to be O(n×
(2m-1)) even in a best case scenario. Therefore
FWDP-mine algorithm is better than FP-growth to mine
the conditional pattern.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

202

5 Conclusions and Future Research

In this research, we proposed an algorithm that can
extract the user's access patterns and a method in which to
apply it into the adaptive school Web sites. From the Web
site that the visitors frequently visit, we were able to
extract the associated sites that are important and reflected
the information gathered back into the Web sites by the
means of hyper-links, thus providing the users, a more
efficient and user-friendly venue.

The suggested FWDP-tree algorithm transforms a raw
data into a suitable data structure. And FWDP-mine
algorithm mines the frequent Web document patterns
through traversing the FWDP-tree. This algorithm does not
create multiple database scans nor does it create candidates,
yet able to mine the maximum length patterns. Mined
frequent pattern is a set of the associated Web documents
and a list of recommendation. The research, for the
construction of an adaptive Web site create a pattern miner
application. Developed pattern miner automates a series of
process from the preprocessing of a log file to the updating
a school Web site.

Through the adaptive Web site used in school Web sites,
users will be able to experience short-cut access interfaces
and the provider will be able to experience less workload
concerning data analysis, maintenance and presentation.

In the future, the research has to earn support

and confidence from its users, and use it to further

mine behavior pattern mine and integrate it into

the adaptive school Web site. In addition, to

develop an algorithm that will personalize the Web

data pattern and to present a personal Web site

will be our task for the future.

References

[1] Ko, K., A Study on Adaptive Web Site Construction by
Analyzing User Access Patterns. Master's Thesis,
Kyonggi University, Suwon, Kyunggido, Korea
(2001)

[2] Kim, J., Data Analysis Using Web Mining. Master's
Thesis, University of Seoul, Seoul, Korea, (2001)

[3] Song, M., A Study on Efficient Data Structure for
Mining Association Rules. Master's Thesis, Hongik
University, Seoul, Korea (2001).

[4] Lee, S., A study for adaptive Web-site construction
through Web-mining. Master's Thesis, Hanyang
University,, Seoul, Korea, (2000).

[5] Lee, Y., A personalized Web recommender system
using clustering and association rules. Master's Thesis,
Inha University, Inchon, Korea, (2002)

[6] Lee, J., Design and implementation of a School

Web-board for Adaptive Web Site Construction,
Master's Thesis, Graduate School of Seoul National
University of Education, Seoul, Korea, (2004).

[7] Kantardzic, M. Data Mining,
WILEY-INTERSCIENCE, (2003)

[8] Han, J. and Pei, J. Mining Frequent Patterns by
Pattern-Growth : Methodology and Implications.
ACM SIGKDD, Vol. 2,. Issue. 2, (2000) 14-20.

[9] Pei, J. Pattern-growth Methods for Frequent Pattern
Mining, The Degree of Doctor of Philosophy, Simon
Fraser University, Vancouver, BC Canada, (2002)

[10] Perkowitz, M. and Etzioni, O. Adaptive Web Site:
Automatically Synthesizing Web Page.
IJCAI:Proceedings of the conference, Vol.15, No. 1,
(1998) 727-732

Jeongmin Lee received the
Bachelor and Master degrees, from
Korea National University of Education
and Seoul National University of
Education, in 1997 and 2005,
respectively. She has been a teacher at
Yongin Kogi Elementary school since
2006. Her research interests include web
mining and web-based instruction.

Woochun Jun has been an a
professor in Dept. of Computer
Education at Seoul National University
of Education , Seoul, Korea, since
1998.. His areas of interest include
web-based instruction, mobile learning,
web mining, semantic web. He holds a
Ph.D. degree in Computer Science from
University of Oklahoma, USA in 1997.
He also received a Master’s degree and
BS degree in Computer Science from

Sogang University, Seoul, Korea, in 1987 and 1985, respectively.

