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Adinkras as Translator

“The use of symbols to connote ideas which defy simple verbalization is
perhaps one of the oldest of human traditions. The Asante people of West
Africa have long been accustomed to using simple yet elegant motifs
known as Adinkra symbols, to serve just this purpose.”

— Michael Faux& S. J. Gates, Jr

Physics Combinatorics Topology Geometry

Generators of
super Poincare algebra ⇔

Chromotopology

(doubly Even Code) ⇔
Universal covering

by X (In) ⇔
Belyi pair

(X , β)

+ or − ⇔ Odd Dashing ⇔
Vanishing of

H i (X (A), Z2) ⇔
Super Riemann Surface

Structure

Placement of ∂t
(Engineering dimension) ⇔ Ranking ⇔ − ⇔ Morse Divisors
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The representation of algebra po1|N

N−extended supersymmetry algebra in 1 dimension is generated by ∂t and
n supersymmetry generators Q1,Q2, . . . ,Qn with

{QI ,QJ} = 2iδIJ∂t , [∂t ,QI ] = 0, I , J = 1, 2, . . . , n

What’s the representation on basis?

{∂kt φI , ∂kt ψJ |k ∈ N, I , J = 1.2. . . . .m}

Here the R-valued functions {φ1, . . . φm} : bosons and {ψ1, . . . , ψm} :
fermions. The #ψ = #φ :off-shell.
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Operators in po1|N

We introduce the engineering dimension: operator ∂t adds the engineering
dimension by 2, and thus QI adds the dimension by 1(denoted by
[QI ] = 1). So

either QIφA = ±ψB or QIφA = ±∂tψB .

Thus [φA] + 1 = [ψB ] or [φA] + 1 = ψB + 2. A varies from 1 to m, then B
also vary from 1 to m.

Also,

either QIψB = ±iψA or QIψB = ±i∂tφA.

We may see φs and ψs as points and connect them with lines. We give
line the color, dashing, ranking.

QIφA(t) = c∂λt ψB(t)⇔ QIψB(t) =
i

c
∂1−λt φA(t)

c ∈ {1,−1} and λ ∈ {0, 1}
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Chromotopologies

Definition

A n−dimensional chromotopology is a finite connected simple graph A
such that

1 A is n−regular and bipartite(same number).

2 Elements of E (A) are colored by n different colors, denoted by
[n] = {1, 2, . . . , n}

3 For any distinct i ,j in E (A), edges in E (A) in color i and j form
disjoint 4−cycles.(2-color 4-cycle)
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Two Structures in Chromotopologies

1 Ranking : A map V (A)→ Z that gives A the additional poset
structure.

2 Dashing : Each edge is assigned an element in Z2. An odd dashing is
a dashing that for each 2-color 4-cycle, the sum must be 1. If A is
dashed by odd dashed, we call it well-dashed.
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What’s their correspondence in physics?

and we have the following dictionary

Adinkras Representation of po1|N

Vertex bipartition Bosonic/Fermionic bipartition
Colored edges by I Action of QI

Dashing Sign in QI

Change of rank power of ∂t
Rank function Engineering dimension
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n-cube

The n-cube has a natural structure that satisfies all the requirements

We use Zn
2 as the points, connect by hamming distance 1(that differs

exactly one element), and color the edge by the corresponding color. Use
the ranking to be number of 1 in it. But for dashing, we need some
induction hypothesis which will be stated later.
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Adinkras

An adinkra is a ranked well-dashed chromotopology. A natural question:

How can we distinguish two Adinkra?

But the solution comes from various side, since the isomorphism of Adinkra
has various unequivalent definitions! So we first consider the following:

How can we distinguish two chromotopology?

Surprisingly, the answer is coding theory!
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Reminder of Codes

An n-codeword is a vector in Zn
2. Weight of the code is the number of the

non-zero component, by wt(v). We now have

Code

An (n, k)-binary code L is k dimensional subspace of Zn
2. It is even if for

all v ∈ L, 2|wt(v); doubly-even if 4|wt(v).

Now we may use linear algebra to construct subspace Zn
2/L(later denoted

by I nc /L).

Problem

Can the equivalence class define a chromotopology?

The answer is yes, but some only when code is doubly even!
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Multichromotopology

Note: we may wonder if double edge or self loop is allowed in
generalization of adinkras. The former is excluded by dashing and later is
excluded by ranking. But we may allow something called
”multichromotopology”.
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Properties of codes

Lemma

1. A has a loop if and only if L contains a code word of weight 1, and a
double-edge if and only if L has a word of weight 2. So A is simple if and
only if all words in L has weight 3 or greater.
2.A can be ranked iff it is bipartite, and which is true iff L is even.

Reason:1. is obvious.
2.If not bipartite, then it has odd cycles, the preimage of odd cycle is an
odd path from v to w , where v − w ∈ L, so L is not even.

But the most complicated one is the dashing, which involves some Clifford
algebra of the code.

Lutian Zhao (SJTU) Adinkras December 13, 2014 13 / 42



Properties of codes

Lemma

1. A has a loop if and only if L contains a code word of weight 1, and a
double-edge if and only if L has a word of weight 2. So A is simple if and
only if all words in L has weight 3 or greater.
2.A can be ranked iff it is bipartite, and which is true iff L is even.

Reason:1. is obvious.
2.If not bipartite, then it has odd cycles, the preimage of odd cycle is an
odd path from v to w , where v − w ∈ L, so L is not even.
But the most complicated one is the dashing, which involves some Clifford
algebra of the code.

Lutian Zhao (SJTU) Adinkras December 13, 2014 13 / 42



The Classification Theorem

Theorem

A = I nc /L is well-dashed if and only if L is doubly even code.

With previous theorems, we may have the following:

Chromotopology

Chromotopology is exactly A = I nc /L,where L is even code with no weight
2 word.

Also, it’s easy to see that

Adinkraizable Chromotopology

Adinkraizable Chromotopology is exactly A = I nc /L,where L is is doubly
even code.
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Proof of one-side

Theorem

A = I nc /L is well-dashed ⇒ L is doubly even code.

We denote qI (v) to be the unique point connected to v that has color I .
We consider the code

L = {(x1, . . . , xn) ∈ Zn
2|q

x1
1 . . . qxn

n (v) = v ,∀v ∈ V (A)}

It’s obvious that

qx1+y1
1 . . . qxn+yn

n (v) = qx1
1 . . . qxn

n (qy1
1 . . . qyn

n (v)).

Also, the identity and inverse are obvious.
By a translation, we know that C is independent of choice of v .

Direct Verification

I nc /L is exactly A.
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Reason for doubly even

First, we suppose v ∈ L.

Qx1
1 . . .Qxn

n F∗(t) = c∂
wt(v)/2
t F∗(t)

We must see what is c . Because

Qx1
1 . . .Qxn

n Qx1
1 . . .Qxn

n F∗(t) = c2∂
wt(v)
t F∗(t).

Using anti-commutative of Qi we know

c2∂
wt(v)
t F∗(t) = (−1)(wt(v)2 )Q2x1

1 . . .Q2xn
n F∗(t) = (−1)(wt(v)2 )iwt(v)∂

wt(v)
t F∗(t).

This means c2 = 1. But on the other hand, we recall QIQJ contribute one
power of i , thus c = ±1 implies wt(v) ≡ 0 mod 4.
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The Universal Covering

Construct X (A) by filling all 2-color 4 cycle with a disk. The Z2 complex
C0 is formal sum of vertices, C1 is formal sum of edges, C2 is formal sum
of faces. Thus

Universal covering

A is an (n, k)−adinkraizable chromotopology, A = I nc /L. Then
X (A) = X (I nc ) as quotient complex, L acts freely on X (A). We have X (I nc )
is a simply-connected covering space of X (A), L is deck transformation

The reason is that X (I nc ) is 2−skeleton of hypercube Dn, we know that H1

and π1 must agree.
An interpretation for dashing is, if we see H1(X (A),Z2) by sending e to
d(e). Then H2(X ,Z2) vanish if and only if the dashing is odd.
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Decomposition of Adinkra

Delete all edge with single color may create some separate adinkras

Motivated by this, we say adinkra is i-decomposable if removing these
edge i create two separate parts A = A0

∐
A1.

Lemma

Color i decompose A if and only if for all v ∈ L(A), the i-th digit of v is 0.

A direct result is, I nc is decomposable by all i .
Intuitive fact:A is (n, k) chromotopology, then A0,A1 is (n − 1, k)
chromotopology.
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Dashing on I n
c

So far, we have not given the dashing on I nc ! So the question is:

How can we find dashing of I nc ?

If there exists dashing, then

How many distinct odd dashing o(A) are there on I nc ?

Answer: The same number as even dashing, with
|o(A)| = |e(A)| = 22

n−k+k+1 on an adinkraizable (n, k)−chromotopology.
Surprising fact: Number does not depend on the code!
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Equivalence of Odd and Even Dashing

Equivalence

|e(A)| = |o(A)| if A is adinkraizable chromotopology.

Proof.

l = |E (A)|, and see all dashing as vector space in Zl
2, with solid 0 and

dashed 1.
1. Even dashing create a vector space.
2.o(A) is not a vector space. But odd + even = odd . So if odd dashing
exists, |o(A)| = |e(A)|
3.|o(A)| > 0 since adinkraizable.
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Construct odd dashing by decomposition

Theorem

If A has l edges colored i , and A = A0
∐

i A1, then each even(odd) dashing
and 2l dashing of i-colored edge uniquely determine an even(odd) dashing

Here’s an intuitive approach

So by induction, |e(I nc )| = 22
n−1.
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Labeled Switching Class

There’s an operation called vertex switching

The labeled switching class(LSC) are the orbits(or equivalent class under
vertex switching).
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Computation of dashing in LSC

Proposition

In an adinkraizable (n, k) chromotopology A, there’re exactly 22
n−k−1

dashing in each LSC

Proof :

1 Vertex switch has order 2 and commutative, so give Z2 vector space.

2 If an operator fix a dashing, then each edge must have its vertex both
switched or unswitched

3 Since connected, so all switched or all unswitched.

So 2n−k vertices has 22
n−k−1 ways of different switching. A corollary is

that I nc has only one LSC.
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Homological Computation of all dashing

We may count orbit of even dashing.

Proposition

Let A be an adinkraizable (n, k)-chromotopology, then there’re exactly 2k

LSCs on A

We consider the complex 0→ C2
d2→ C1

d1→ C0 → 0 The even dashing is
exactly Im(d2)⊥, since as a formal sum of edge with Z2, its inner product
with all 2-color 4-cycle is 0. Hence

dim((Im(d2)⊥)) = dim(C1)−dim(Im(d2)) = dim(H1) + dim(C0)−dim(H0)

Since dim(C0) = 2n−k , dim(H0) = 1, thus the dimension for switching
class is exactly dim(H1). But π1(X (A)) = L. By H1 is abelianization of
π1, we know H1 = Zk

2 , and dim(H1) = k .

|e(A)| = |o(A)| = 22
n−k+k−1
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The Rank Family

The set of all rankings of A is the ranking family R(A). For I 2, we have

The natural question is

What is enumerative property of R(A)?
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Hanging Garden Theorem

The main structure theorem

For a bipartite graph A, if S ⊂ V (A) and hS : S → Z satisfies

1 hS has odd value on bosons and even on fermions.

2 For distinct s1, s2 ∈ S , D(S1, s2) ≥ |hS(s1)− hS(s2)| Then there’s a
unique ranking h of A such that h agrees with hS on S and sink of h
are exactly S . (S can also be source by symmetry)

We take Av to be the graph having only v as sink.
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Rank Family Poset

We define two operators, the vertex loweringDs and vertex raisingUs . The
lowering operator acts only on the sink and change the ranking
h′(s) = h(s)− 2. Similar with raising. Then

Theorem

Any two ranking can be obtained from a sequence of vertex-lowering and
vertex-raising process.
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Counting Ranking on hypercube

Let A = A0
∐

i A1, we first define
inc(b1b2 . . . bn−1, j → i) = b1, b2 . . . bi−1jbi . . . bn−1, just an inserting. Let
z0 = (~0, i → 0) and z1 = (~0, i → 1), then |h(z1)− h(z0)| = 1. We denote
A = A0 ↗i A1 when h(z1) = h(z0) + 1 and A = A0 ↘i A1 otherwise.

So if we have A = A0
∐

n A1, and two rankings on A0 and A1, we must
compare inc(c, 0→ n) and inc(c , 1→ n) to see if they differ by 1, this
need 2n−1 tries. But the following lemma reduce the time

Lemma

For (n, k)-ranking A and (n − 1, k) ranking A0 and A1, we have
A = A0 ↗n A1 if and only if the colors and vertex labeling of three ranking
are consistent and following condition: for each c ∈ Zn−1

2 and pair of
s0 = inc(c , 0→ n) and s1 = inc(c , 1→ n) that at least one of s0 or s1 is a
sink, we have |h(s0)− h(s1)| = 1
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Counting Algorithm

The counting of ranking

1 Start with ranking of R(I 1c ).
2 Given the ranking of R(I n−1c ), iterate all pair of ranking (A,B) in

R(I n−1c )× R(I n−1c )

1 Consider ranking B ′ identical to B and hB′(~0) = hB(~0) + 1
2 For each sink s ∈ S(A) ∪ S(B ′), verify |hA(s)− hB′(s)| = 1
3 If true, put A↗n B ′ in R(I nc ).
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Embedding of surface

Let X be a compact connected oriented surface without boundary(denoted
by surface) and G a bipartite graph.
A two-cell embedding(or bipartite map) B is embedding of G to X such
that X\G = ∪Di . Di

∼= D.

We mark the bipartite as black or white point,
and construct a group:

By natural orientation on X induce a cyclic permutation of edge attached
to each point. Denote the local rotation of black by g0 and of white by g1.
The group 〈g0, g1〉 is called monodromy group G . Note that fixed point of
g l
∞ = (g0g1)−l is 2l-gon.
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Monodromy group of Hypercube

We take the graph I nc and the cyclic ordering of black point to be
(123 . . . n)

The faces are 4−gons, and there’re 2n vertices, n2n−1 edges and n2n−2

faces, so genus is 1 + (n − 4)2n−3
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Upperplane as an universal covering

We would also like to find the “universal covering” for these embeddings.
We consider the upper half plane U in hyperbolic geometry and the
modular group Γ = PSL2(Z) consists of the Möbius transform

T : z 7→ az + b

cz + d
, (a, b, c, d ∈ Z, ad − bc = 1).

Now we acts transitively on P1(Q) = Q ∪ {∞}, so we consider the
extended hyperbolic plane

Ū = U ∪Q ∪ {∞}
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Upperplane as an universal covering

Consider three disjoint set

[0] =
{a

b
∈ Q ∪ {∞}| a is even and b is odd

}
[1] =

{a

b
∈ Q ∪ {∞}| a and b are both odd

}
[∞] =

{a

b
∈ Q ∪ {∞}| a is odd and b is even

}
And we take ∞ = 1/0. Stablizer of [0] is Γ0(2) = {T ∈ Γ|c ≡ 0 mod 2}
and stablizer of three sets is Γ(2) = {T ∈ Γ|b ≡ c ≡ 0 mod 2}.

We may
now construct the universal bipartite graph B̂.

Which edge are hyperbolic geodesic combining a/b and c/d , where
ad − bc = ±1. a and c has different parity, thus bipartite.
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now construct the universal bipartite graph B̂.

Which edge are hyperbolic geodesic combining a/b and c/d , where
ad − bc = ±1. a and c has different parity, thus bipartite.
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The Belyi pair

The automorphism of B̂ is Γ(2), generated freely by t0 = z 7→ z
−2z+1 and

t1 : z 7→ z−2
2z−3 . Thus we use the map

Γ(2)→ G ,T0 → g0, ,T1 → g1

The stabilizer of edge is subgroup B of index N = |E | in Γ(2). And G acts
transitively if and only if B is normal in Γ(2). One can regard B̂/B as B.

So we consider the compact Riemann Surface X = Ū/B and a mapping

B̂ → B̂/B ∼= B → B̂/Γ(2) ∼= B1

The map β : B → B1 is from the graph to a line in Σ ∼= Ū/Γ(2), which is
a sphere. (X , β) is called Belyi pair, ramified at most on {0, 1,∞}.
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The Belyi pair for Adinkras

Intuitively, the Belyi pair for Adinkra is just Riemann surface that fill in the
2-color 4-cycle with colors {i , i + 1}, where n + 1 = 1. So the genus of
Riemann surface is just like what we have calculated before, that is,
1 + 2n−k−3(n − 4) for (n, k)-adinkraizable chromotopology. Particularly,
for n = 4, k = 0, genus is 1, which means this is an elliptic curve.

Jones,1997

Belyi pair (Xn, β) for n−cube factors through (Bn, β), Bn is Σ ∼= CP1 with
one vertex at 0, one at ∞ and one edge of each color connecting these
vertices with angle 2πi

n , the Belyi map is

β̃(x) =
xn

xn + 1
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Inverse covering

The Belyi pair for (n, k) Adinkra (X(n,k , βk) and (Xn, β) has the following
factor through property:
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Kasteleyn Orientation and Spin Structure

A Kasteleyn Orientiation for graph G embedded in X is an orientation of
edge so that you go around the boundary of X counterclockwise you go
against odd number of edges.

This straightly fit odd dashing.

Cimasoni,Reshetikhin,2007

The Kasteleyn Orientation corresponds to spin structure on X .

Lutian Zhao (SJTU) Adinkras December 13, 2014 37 / 42



Super Riemann Surface

A super Riemann surface X is locally C1|1 (Locally (x , θ) with
xθ = θx , θ2 = 0) and whose tangent bundle TX has a totally nonintegrable
0|1 subbundle D. (This means 1

2{D,D} is independent of D)

A typical example is D takes the form Dθ = ∂
∂θ + θ ∂

∂z . Now Dθ2 = ∂
∂z , and

Dθ,Dθ
2 span TX .
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Adinkras as super Riemann Surface

The superconformal change of coordinate is

Z̃ = u(z) + θη(z)
√

u′(z), θ̃ = η(z) + θ
√

u′(z) + η(z)η′(z)

Now we need on Uα and Uβ, zα = uαβ(zβ), θα = [u′αβ]1/2θβ. A choice of
sign correspond to spin structure. Thus odd dashing implies super
Riemann.

Lutian Zhao (SJTU) Adinkras December 13, 2014 39 / 42



Future development

1 Which Adinkraic representation is irreducible?

2 When two adinkras are isomorphic?

3 How to interpret Clifford algebra in Adinkras?

4 How to generalize to pop|q?
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Thank you for Coming!
Any Questions or Remarks?

Lutian Zhao (SJTU) Adinkras December 13, 2014 42 / 42


	Physical Background
	Classification Theorem for Chormotopology
	Dashing
	Ranking
	Dessin d'enfant

