A. BOUNDS ON MULTIPLE-THRESHOLD FUNCTION

This report presents some preliminary results regarding multiple-threshold functions. A lower bound on the number of thresholds required to realize all functions of n variables will be derived.

Multiple-threshold functions will be defined as follows.

DEFINITION 1: A Boolean function $f(x_1, \ldots, x_n)$ is \(k \)-threshold threshold realizable if there exists a set of real numbers $w_1, \ldots, w_n, T_1, \ldots, T_k$ such that

\[
\prod_{j=1}^{k} \left(\sum_{i=1}^{n} w_i x_i - T_j \right) > 0 \iff f(x_1, \ldots, x_n) = q
\]

(1)

\[
\prod_{j=1}^{k} \left(\sum_{i=1}^{n} w_i x_i - T_j \right) < 0 \iff f(x_1, \ldots, x_n) = \overline{q},
\]

where $q = 0$ or 1. Thus a given set of w_i and T_j define one function with $q = 1$ and the complement of that function with $q = 0$. It is also clear that if a function is realizable with k thresholds it is realizable with m thresholds for m greater than k.

It is of substantial theoretical and practical interest to determine the minimum number of thresholds required to realize any function of n variables. We shall give a lower bound for this minimum number. To the author's knowledge no one has exhibited an n-variable function that requires more than n thresholds. We will show that for sufficiently large n such functions must exist.

We see that

This work was supported in part by the National Science Foundation (Grant GP-2495), and the National Aeronautics and Space Administration (Grants NsG-334 and NsG-496).
(XIII. PROCESSING AND TRANSMISSION OF INFORMATION)

\[\prod_{j=1}^{k} \left(\sum_{i=1}^{n} w_i x_i - T_j \right) = 0 \] (2)

will be satisfied iff Eq. 3 holds.

\[\sum_{i=1}^{n} w_i x_i - T_j = 0 \quad \text{for some } j, \ 1 \leq j \leq k. \] (3)

Consider an \((n+k)\)-dimensional space (called the realization space) with axes labeled \(w_1, \ldots, w_n, T_1, \ldots, T_k\). Each point in this space corresponds to multiple-threshold realizations of a function and its complement. Both these realizations require \(k\) or fewer thresholds. Using the vectors \(\mathbf{W} = (w_1, \ldots, w_n)\) and \(\mathbf{X} = (x_1, \ldots, x_n)\), we can write Eq. 3 as

\[\mathbf{W} \cdot \mathbf{X} - T_j = 0. \] (4)

For any particular \(\mathbf{X}\), Eq. 4 is the equation of a hyperplane passing through the origin of the realization space.

For a given \(\mathbf{X}\), the \(k\) hyperplanes defined by Eq. 5 below divide the realization space into a finite number of regions, the exact number depending on the relative orientations of the hyperplanes.

\[\mathbf{W} \cdot \mathbf{X} - T_j = 0 \quad 1 \leq j \leq k \] (5)

The coordinates of any point on any hyperplane are such that

\[\prod_{j=1}^{k} \left(\mathbf{W} \cdot \mathbf{X} - T_j \right) = 0. \] (6)

The coordinates of a point that is not on any hyperplane (internal to a region) are such that either

\[\prod_{j=1}^{k} \left(\mathbf{W} \cdot \mathbf{X} - T_j \right) > 0 \] (7)

or

\[\prod_{j=1}^{k} \left(\mathbf{W} \cdot \mathbf{X} - T_j \right) < 0. \]

Furthermore, the coordinates of all points internal to a given region will yield the same sign for the product in Eq. 7.
Now let \overline{X} be a vector in n-dimensional switching space. Each of the 2^n possible \overline{X}'s generates k hyperplanes. Thus all $2^n \overline{X}$ vectors generate $k^2 n$ hyperplanes, which divide the realization space into a finite number of regions. The coordinates of a point internal to a given region specify a Boolean function and its complement, both of which require k or fewer thresholds for their realizations. The coordinates associated with all points in a given region correspond to realizations of the same two functions. It is possible, however, that different regions of the realization space may correspond to the same two functions.

Let $S(k, n)$ be the maximum number of regions into which the realization space can be divided by $k^2 n$ hyperplanes, all passing through the origin. Then $2S(k, n)$ is an upper bound to $T(k, n)$, the number of n-variable Boolean functions that are realizable with k or fewer thresholds. Using a result of Cameron, 3 we have

$$S(k, n) = 2 \sum_{\ell=0}^{n+k-1} \binom{k^2 n - 1}{\ell}$$

This gives

THEOREM 1:

$$T(k, n) < 4 \sum_{\ell=0}^{n+k-1} \binom{k^2 n - 1}{\ell}.$$ \hspace{1cm} (8)

Employing a bound of Winder 4 and then using Stirling's approximation, we have

$$T(k, n) < \frac{4(k^2 n)^{n+k-1}}{(n+k-1)!} < \frac{2}{\sqrt{\pi}} \left(\frac{ekn}{n + k - 1} \right)^{n+k-1}.$$ \hspace{1cm} (9)

Let $K(n)$ be the smallest number of thresholds required to realize all 2^{2^n} functions of n variables. $K(n)$ must be such that

$$\frac{2}{\sqrt{\pi}} \left(\frac{eK(n)}{n + K(n) - 1} \right)^{n+K(n)-1} > T(K(n), n) \geq 2^{2^n}$$ \hspace{1cm} (10)

Using the fact $^2, 5$ that $K(n) \geq n$ and $K(n) \leq 2^n$ and a series of manipulations on the left-most term of Eq. 11, we can establish

THEOREM 2:

$$K(n) > \frac{2^{n-2}}{n} \text{ for } n \geq 2.$$ \hspace{1cm} (12)

Thus for values of $n \geq 8$, $K(n) > n$, and hence there must exist functions of 8 variables
that require more than 8 thresholds.

Also, with reference to Spann6 we have shown the following.

THEOREM 3: For $n \geq 10$ the class of Modular Threshold functions does not contain all functions.

I would like to thank Dr. D. Haring of the Electronic Systems Laboratory of M.I.T. for bringing Winder's correspondence to my attention.

R. N. Spann

References

