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Abstract: In recent years, detecting anomalies in real-world computer networks has become a
more and more challenging task due to the steady increase of high-volume, high-speed and high-
dimensional streaming data, for which ground truth information is not available. Efficient detection
schemes applied on networked embedded devices need to be fast and memory-constrained, and must
be capable of dealing with concept drifts when they occur. Different approaches for unsupervised
online outlier detection have been designed to deal with these circumstances in order to reliably
detect malicious activity. In this paper, we introduce a novel framework called PCB-iForest, which
generalized, is able to incorporate any ensemble-based online OD method to function on streaming
data. Carefully engineered requirements are compared to the most popular state-of-the-art online
methods with an in-depth focus on variants based on the widely accepted isolation forest algorithm,
thereby highlighting the lack of a flexible and efficient solution which is satisfied by PCB-iForest.
Therefore, we integrate two variants into PCB-iForest—an isolation forest improvement called ex-
tended isolation forest and a classic isolation forest variant equipped with the functionality to score
features according to their contributions to a sample’s anomalousness. Extensive experiments were
performed on 23 different multi-disciplinary and security-related real-world datasets in order to com-
prehensively evaluate the performance of our implementation compared with off-the-shelf methods.
The discussion of results, including AUC, F1 score and averaged execution time metric, shows that
PCB-iForest clearly outperformed the state-of-the-art competitors in 61% of cases and even achieved
more promising results in terms of the tradeoff between classification and computational costs.

Keywords: intrusion detection; outlier detection; streaming data; network security; online learning;
unsupervised learning; machine learning

1. Introduction

As the diversity and number of interconnected embedded devices steadily grow,
energized by various trends, such as IoT, network monitoring, including traffic-based
intrusion detection, will play a crucial role in future systems. Although being a fundamen-
tal part of computer network security, intrusion detection systems (IDSs) still face major
challenges [1–3], e.g., the inability to handle massive amounts of throughput and process
data in almost real-time due to inherent resource limitations. The permeating application of
machine learning (ML) has favored the detection of novel sophisticated network-based at-
tacks changing their behavior dynamically and autonomously. In particular, unsupervised
outlier detection (OD) algorithms can help uncover policy violations or noisy instances
as indicators of attacks by observing deviations in high-dimensional and high-volume
data without requiring a priori knowledge. However, the ubiquity of massive continu-
ously generated data streams across multiple domains in different applications poses an
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enormous challenge to state-of-the-art, offline, unsupervised OD algorithms that process
data as a batches. Data streams in real-world applications are encountering evolving data
which are enormous in number, potentially infinite; data are continuously streaming from
many places in almost real-time. Therefore, efficient and optimized schemes, in terms of
processing time and memory usage, in intelligently designed IDSs are required. These
should be able to process the time-varying and rapid data streams one-pass at a time, while
only a limited number of data records can be accessed. Furthermore, legitimate changes in
data can occur over time, called concept drift, which require updates to a model in order to
counteract less accurate predictions as time passes.

Recently, many OD solutions have been developed that are able to compute anomaly
scores while dealing with data streams. Data streams can be subdivided into streaming
data (SD) and streaming features. In this work, we do not focus on the latter case in which
the amount of features changes over time. Furthermore, we do not focus on SD in the
context of time-series data, as it is the object of many other research papers, such as [4,5]. In
this paper, we first highlight the most popular OD solutions for SD with an in-depth view
of promising online variants of one of the most widely accepted (offline) OD algorithms
called isolation forest (iForest) [6]. Moreover, substantial requirements are derived to
compare the existing state-of-the-art solutions. As the main contribution of this article,
we propose the so-called Performance Counter-Based iForest, denoted as PCB-iForest, a
generic and flexible framework that is able to incorporate almost any ensemble-based OD
algorithm. However, in this work, we focus on two iForest-based variants, an improvement
of classical iForest applied in a streaming setting and a variant of classical iForest able
to score features according to their contributions to a data record’s anomalousness in
a completely unsupervised way. PCB-iForest is able to deal with concept drifts with a
dedicated drift detection method, as we take advantage of the recently proposed NDKSWIN
algorithm [7]. Our solution is hyperparameter-sparse, meaning that one does not have
to deal with complex hyperparameter settings, which often demands a priori knowledge.
In extensive experiments involving various multi-disciplinary but also security-related
datasets with different characteristics, we show that the proposed PCB-iForest variants
outperform off-the-shelf, state-of-the-art competitors in the majority of cases. This work
offers the following contributions and mainly differs from others presented in Section 2 in
said ways:

• Carefully engineered and specified requirements for an agile, future-oriented, online
OD algorithm design are derived, which are compared with state-of-the-art solutions,
thereby pointing out the need for a more flexible solution which, consequently, is
presented in this article.

• Contrary to other adaptions of iForest for SD, a flexible framework called PCB-iForest
is proposed that "wraps around" any iForest-based learner (it might even be general-
ized to other ensemble-based approaches) and regularly updates the model in cases
of concept drift by only discarding outdated ensemble components.

• Two iForest-centric base learners are integrated into PCB-iForest providing (i) the
first application of the improved iForest solution—extended isolation forest—on SD
denoted as PCB-iForestEIF, and (ii) online feature importance scoring by utilizing a
recent iForest-based feature selection method for static data—isolation-based feature
selection (IBFS)—in our online proposal, denoted as PCB-iForestIBFS.

• Extensive evaluations were conducted for PCB-iForest and off-the-shelf online OD
algorithms on numerous, multi-disciplinary datasets with diversity in the numbers of
dimensions and instances which no other iForest-based competitor for SD has dealt
with yet.

The remainder of this work is organized as follows—Section 2 first provides relevant
background for the reader for unsupervised OD on SD and provides related work with
the most popular state-of-the-art solutions, especially existing iForest adaptions for SD.
Substantial requirements for online OD algorithms are derived in Section 3 and compared
with the related work. In Section 4, details on the conceptualization and operating principle
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of PCB-iForest can be found. It is able to satisfy all requirements stated in Section 3. In
Section 5, the test environment is presented, and details on the extensive evaluation are
presented together with the discussion of results (Section 6), which reveals the superiority
of PCB-iForest among the state-of-the-art by most the measurements. The conclusions are
drawn in Section 7, alongside glances at future work.

2. Related Work

Outlier detection, also referred to as anomaly or novelty detection, is an important
issue for many real-world application domains, especially detecting indicators of malicious
activity in computer networks. Outlier detection identifies atypical patterns or observations
that significantly deviate from the norm based on some measure by assuming that (i) the
majority of data are normal and there is only a small portion of outliers (imbalance); (ii)
outliers are statistically different from the normal data (distinction) and (iii) they do not
occur frequently (rarity). Numerous techniques have been introduced for OD, such as
statistical, distance, clustering or density-based ones [8]. An OD algorithm OD(·) : xi → y
assigns a class label y ∈ {normal, abnormal} or a score value y ∈ R, describing the strengths
of anomalousness, for each data object in X. This divides X into a set of outliers X+ and
inliers X− (X = X+ ⋃

X−). In the streaming setting, {Xt ∈ Rnt×d, t = 1, 2, ...} is a
continuous transmission of data records which arrive sequentially at each time step t. The
count of features is denoted as d (dimension) and xt the nt-th d-dimensional, most recent
incoming data instance at time t.

To concentrate on supervised or semi-supervised learning, widely accepted online
anomaly detection algorithms such as Hoeffding trees [9] and online random forests [10]
achieve good accuracy and robustness in data streams [11]. However, the main focus
of this work lies on unsupervised approaches, since the amount of unlabeled data with
missing ground truth generated across many scientific disciplines, especially intrusion
detection, has steadily increased. In recent years, many methods have been proposed
for unsupervised online OD, such as [12–14], but only a few of them apart from iForest,
namely, HS-Trees [15], RS-Hash [16] and Loda [17] have been shown to outperform nu-
merous standard detectors and hence are considered the state-of-the-art [18,19]. Since
xStream proposed in [18] is as competitive as those detectors, particularly effective in
high-dimensions and revolutionized online OD algorithms by being able to deal with
streaming features, we count it on the list of the state-of-the-art.

RS-Hash samples axis-parallel, subspace grid regions of varying size and dimension-
ality to score data points by utilizing the concept of randomized hashing. Its adaption,
RS-Stream, is able to operate on SD by computing the log-likelihood density model using
time-decayed scores. Thus, compared to other work that applies sliding windows, for
example, it uses continuous counting where points are down-weighted by their up-to-
dateness. Compared to RS-Hash, the streaming variant requires greater sophistication in
the hash-table design and maintenance, although the overall approach is quite similar [20].

Loda, a lightweight online detector of anomalies, is an ensemble approach consisting of
a collection of h one-dimensional histograms; each histogram approximates the probability
density of the input data projected onto a single projection vector. Projection vectors
diversify individual histograms, which is a necessary condition to improve the performance
of individual classifiers in high-dimensional data. The features used must only be of
approximately the same order of magnitude, which is an improvement over other methods,
such as HS-Trees. Loda’s output f (x) on a sample x is the averaged logarithm of the
probabilities estimated on a single projection vector. It is especially useful in domains
where large numbers of samples have to be processed, because its design facilitates very
good balance between accuracy and complexity. The algorithm exists in different variants
for batch and online learning. For online processing, a subdivision can be made. Similarly
to HS-Trees, two alternating histograms can be used in Loda, denoted as LodaTwo Hist.,
where the older set of histograms is used for classification and the newer one is built in
the current window. If the new set is built, it replaces the currently used histogram set. A
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floating window approach, LodaCont., denotes an implementation of continuously updated
histograms based on [21].

xStream is able to deal with data streams that are characterized by SD in terms of
instances (rows), and evolving, newly-emerging features can be processed while xStream
remains constant in space and time. Due to a fixed number of bins for the one-dimensional
histograms, growing feature space cannot be handled by Loda. The authors of xStream
overcame this limitation by so-called half-space chains where the data, independently of
streaming features, are projected via sparse random projection into recursively constructed
partitions with splits into small, flexible bins. This density-based ensemble handles non-
stationarity, similarly to HS-Trees and LodaTwo Hist., by a pair of alternating windows.

The random forest is one of the most successful models used in classification and
is known to outperform the majority of classifiers in a variety of problem domains [20,
22]. Due to their intuitive similarity, iForest is an unsupervised approach that has been
established as one of the most important methods in the field of OD. Much work has been
done to improve iForest, e.g., [23,24], and to adapt it to other application scenarios, such as
feature selection [25]. Even if it was initially not designed to work as an online algorithm,
over the last few years, manifold variants of online algorithms have been proposed that are
either based on iForest’s concept or adapt it to operate in a streaming fashion.

HS-Trees, a collection of random half-space-trees, is based on a similar tree ensemble
concept as iForest. HS-Trees has a different node splitting criterion and calculates the
anomaly scores based on the sample counts and densities of the nodes. Furthermore,
the trees have a fixed depth (height), whereas iForest uses adaptive depths with smaller
subspaces. For SD with concept drifts, HS-Trees utilizes two windows (batches) of equal
size, and as in the learning of HS-Trees in the current window, the HS-Trees trained in the
previous one replace the old.

One of the first approaches adopting iForest for SD was iForestASD proposed in [26].
It utilizes a sliding window with a fixed length to sample data with which the ensemble of
trees is built. Based on a predefined threshold value, changes within the window can be
detected. In the case of an occurring concept drift, this leads to a re-training of the whole
ensemble based on the information of the current sliding window content. The authors
themselves proposed significant improvements for future work. For instance, that the
predefined threshold relying on a priori knowledge should be replaced alongside partial
re-training of only some trees was suggested, rather than discarding the complete model.
A detailed description of the differences between HS-Trees and iForestASD can be found
in [7].

Recently, iForestASD has been implemented in an open source ML framework for
data streams scikit-multiflow [27] and improved in [7] to better handle concept drifts
by extending it using various drift detection methods. Therefore, the authors extended
ADWIN [28] and KSWIN [29] drift detectors and denoted them SADWIN/PADWIN
and NDKSWIN. Their OD solutions in this article are denoted as IFA(S/P)ADWIN and
IFANDKSWIN. However, some major disadvantages of their proposals, such as partially
updating the model rather than discarding the complete forest, have still been present in
subsequent work.

More recently, the work of [30] improved LSHiForest, a classifier based on iForest to
handle high-dimensional data while detecting special anomalies, e.g., axis-parallel ones,
to handle SD and produce time-efficient results when processing large, high-dimensional
datasets. Their improvement, denoted as LSHiForestStream in this article, consists of a
combination of streaming pre-processing based on dimensionality reduction with principal
component analysis (PCA) and a weighted Page–Hinckley test to find suspicious data
points. Furthermore, locality sensitive hashing is applied that hashes similar input items
into the same branches with high probability, and dynamic iForest is applied with efficient
updating strategies. Thus, rather than exchanging the whole model as with iForestASD,
this approach repeatedly checks if new suspicious data points exist and updates them in
the tree structure.
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Another hybrid method called iMondrian forest, denoted as iMForest, was proposed
in [31]. Mondrian forest is a method based on the Mondrian processes for classification and
regression on SD. The authors embedded the concept of isolation from iForest by using the
depth of a node within a tree and the data structure used in Mondrian forest to operate for
OD on SD.

The concept of growing random trees or GR-Trees was proposed in [11], which is
also capable of partially updating the ensemble of random binary trees. The GR-Trees
approach is quite like the iForest with respect to the training process, as is the approach for
anomaly score assignment to the data instances. In an initial stage using the first sliding
window content, the ensemble is built without explicit training data. Incremental learning
is achieved by combining an update trigger deciding when to update the ensemble. Online
tree growth and mass weighting ensure that the model can be adapted in time and is able
to handle concept drifts.

Referring to Section 4, most related to our PCB-iForest approach—in order to only
partially update the ensemble-based model rather than completely discarding it (as present
in iForestASD and IFA variants)—are the solutions presented within LSHiForestStream, iM-
Forest and GR-Trees. Both LSHiForestStream and iMForest do not fulfill the requirement of
algorithm agility because of being tailored to dedicated data structures for online learning
and classification, rather complexly in the case of LSHiForest. Since LSHiForestStream is
designed to deal with multi-dimensional multi-stream data, it is seemingly more compu-
tationally intensive than multi-dimensional, single-stream solutions, and considering the
inclusion of k-means clustering for anomaly detection in online mode, the same applies for
iMForest. GR-Trees is similar to iForest in its training and classification process, and in its
framework for SD. During online detection of an initially created ensemble, the classified
normal instances are stored in a buffer and are used for the streaming updates, leading
to tree growth and updating the trees in the ensemble. The trees are discarded based on
the mass weights of the results evaluated by each tree for the sliding window. The tree
online growth and mass weighting mechanisms ensure that the detection model can be
adjusted in time as the data distribution changes to avoid misjudgments caused by concept
drift. Apart from the sliding window, our approach does not need an additional buffer
which preserves memory. Additional hyperparameters, such as update rate and discard
rate, rather than the ensemble size and subsample size, could require some adjustments to
suit the actual needs to obtain better results. Furthermore, apart from the replacement of
discarded trees with trees obtained from a building window, existing trees are updated
based on an update window. Both mechanisms use the buffered normal instances, which
could pose a slight performance issue, as stated in [6]; refer to the section "Training using
normal instances only."

3. Requirement Specification and Validation

In this section, we specify the requirements OD algorithms for SD have to satisfy
to be applied in real-world, future-oriented scenarios. Additionally, some requirements
are added that help with a holistic incident handling process—for example, providing
functionality to assist with identifying the root causes of incidents rooted in outliers. We
structure the requirements into operation, data, performance and functionality-related
ones.

As already pointed out in the introduction, the missing ground truth values in evolving
(theoretically infinite) data that require real or almost near real-time processing, taking
the evolution and speed of data feeding into account, demands unsupervised methods,
leading to the requirement we will denote as (R-OD01). In addition, those must be capable
of dealing with SD (R-OD02). Both requirements are categorized into the operation-related
ones.

We can see additional requirements, as follows, that shall play a major role in future
systems. Another operation-related requirement is that the settings of hyperparameters
should be of low complexity, and in particular, no information of ground truth should
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be mandatory for the settings, or even better, no hyperparameters should be set at all
(R-OD03). This requirement is important since, nowadays, domain experts are expected
to have a high level of multi-disciplinary expertise from data science, e.g., extensive
knowledge in statistics, in order to properly set up a machine learning pipeline. Even
if recent developments in the field of automated machine learning [32] have tried to aid
domain experts, they require extensive offline supervised training and testing for each
hyperparameter value, and thus do not operate in the unsupervised online cases. Hence,
aiding the domain experts by not burdening them with setting parameters seems important
for manageable systems. Furthermore, the time-varying nature of SD, especially in highly
dynamic networks, is subject to the phenomenon called concept drift. This means the data
stream distribution changes over time. With the different types of concept drifts (sudden,
gradual, incremental, recurring and blips) [33], algorithms must be able to efficiently adapt
to these changes and continuously re-train or update their models (R-OD04) to prevent
being outdated, which would lead to performance degradation. Dedicated drift detection
methods might come to the rescue for OD algorithms to deal with data’s varying nature.

From a data-related perspective, in the field of network-based OD, data flow from a
single source (single-view) and do not necessarily have to be normalized (R-OD05)—e.g.,
as a raw network interface, as statistics from network switching elements or in the form of
log-files from devices. Features can be defined in advance by an expert since incorporating
domain knowledge can help select relevant features to improve learning performance
greatly. Thus, the cardinality of the feature set (meaning the number of dimensions) is
fixed (R-OD06), thereby not demanding algorithms that are able to deal with streaming
features. For network-based features, one may distinguish between basic features (derived
from raw packet headers (meta data) without inspecting the payload, e.g., ports, and
MAC or IP addresses), content-based features (derived from payload assessment having
domain knowledge, e.g., protocol specification), time-based features (temporal features
obtained from, e.g., message transmission frequency and sliding window approaches)
and connection-based features (obtained from a historical window incorporating the last
n packets) [34]. However, with the technological advancements and the increasing of
potential features, the algorithms must efficiently operate on high-dimensional and high-
volumes of data (R-OD07) and must cope with missing variables that might occur due to
unreliable data sources (R-OD08).

Performance-related requirements can be subdivided into computational and classifi-
cation performance requirements. The former demands lightweight algorithms (R-OD09),
in terms of time and space complexity, for both model-updating and classification, to be
implementable in embedded software. SD is potentially infinite, and algorithms must
temporarily store as little data as possible and process the data as fast as possible due to the
time constraint of observing incoming data in a limited amount of time. The classification
performance needs to be sufficiently good (R-OD10), i.e., producing decent area under
the ROC curve (AUC), in which ROC is the receiver operating characteristic, or F1 score
metric, in order to detect malicious activity in a reliable way. It should be noted that
stream methods, compared to their batch competitors, typically perform worse in terms
of classification. However, under the assumption of applying a subsequent root cause
analysis, we strongly support the justification in [27] that when considering critical SD
applications, an efficient method, even with less accuracy, is preferred.

Functionality-related requirements can be subdivided as follows. One still unresolved
issue for IDS is the lack of finding the actual root cause of incidents. Instead of yielding
simple binary values (normal or abnormal), requirement (R-OD11) demands algorithms
that provide outlier score values. Those carry more information and could help a sub-
sequent root cause analysis, for instance, by dealing with false negatives. In addition,
the importance of features can play an important role, thereby demanding functionality
to score or rank features according to their outlier score contributions (R-OD12), and so
providing information about which feature (mainly) caused the outlier. Reducing the data’s
dimensionality can help deal with the curse of dimensionality, referring to the phenomenon
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that data becomes sparser in high-dimensional space and can still be represented accurately
with less dimensions. This adversely affects both the storage requirements and compu-
tational cost of the algorithms. Reduction by methods such as PCA maps higher-order
matrices into ones with lower dimensions with a certain probability. However, the physical
meaning of the features is no longer retained by this projection and impedes root cause
analysis (feature interpretability). Feature selection methods reduce the dimensions by
only selecting the most relevant features, and hence, preserve their physical meanings.
Applying feature selection on SD would possibly lead to changing top-performing-features
as time passes and thus demand for OD algorithms that are capable of changing feature
sets during runtime (R-OD13). Considering the multitude of recent work that is tailored
to attack machine learning, e.g., [35,36], we can see, similarly to cryptographic agility, the
flexibility to exchange the actual algorithm as a forward-looking requirement (R-OD14)
in the case where the currently used algorithm (poisoning) or its model (evasion) gets
compromised. More likely it is the former, since an evasion of the model seems, due to the
continuous updating, more irrelevant.

Over the past few years, much attention has been paid to establishing OD algorithms
for SD in the field of network security, and is increasingly facing trends of massive amounts
of data generated with high velocity and afflicted with the phenomenon of concept drift.
Many existing works have tried to improve the algorithm settings in terms of performance-
related requirements by competing on the same (often outdated) benchmark dataset. For
real-world applications, in which most of the algorithms might perform insufficiently, we
expect that designing algorithms and finding a tradeoff between the stated requirements is
more crucial. Thus, assuming the application of a subsequent root cause analysis enabled
by, e.g., (R-OD12), certain numbers of false positives and false negatives are acceptable
when referring to (R-OD10). In particular, considering critical application domains, it might
be preferred to quickly and efficiently detect outliers, even with less accuracy. Table 1
validates state-of-the-art algorithms presented in Section 2 using the specified requirements.
It can clearly be seen that none of the existing methods have good results across the majority
of requirements.

Table 1. Comparison of existing OD work for SD from Section 2 with the requirements specified (3 and 7 denote the
requirement is either fulfilled or not, respectively; ∅ denotes missing information to analyze the respective requirement;
(+/++/+++) denotes—as objectively as possible—how well the requirement is fulfilled).

Work R-O
D

01

R-O
D

02

R-O
D

03

R-O
D

04

R-O
D

05

R-O
D

06

R-O
D

07

R-O
D

08

R-O
D

09

R-O
D

10

R-O
D

11

R-O
D

12

R-O
D

13

R-O
D

14

HS-Trees [15] (3) 1 3 ++ + 3 3 + ∅ + ++ 3 ∅ 3 7
RS-Stream [16] 3 3 + ++ 3 3 ++ ∅ ++ ++ 3 (∅) 2 7 7

LodaTwo Hist. [17] 3 3 +++ ++ 3 3 +++ 3 +++ ++ 3 3 3 7
LodaCont. [17] 3 3 ++ ++ 3 3 +++ 3 +++ ++ 3 3 7 7
xStream [18] 3 3 + + 3 (7) 3 +++ ∅ ++ +++ 3 ∅ (3) 4 7

iForestASD [26] 3 3 + + 3 3 + ∅ + + 3 ∅ 3 (3) 5

IFA(S/P)ADWIN [7] 3 3 ++ ++ 3 3 + ∅ ++ ++ 3 ∅ 3 (3) 5

IFANDKSWIN [7] 3 3 ++ +++ 3 3 + ∅ + ++ 3 ∅ 3 (3) 5

LSHiForestStream [30] 3 3 + + 7 3 ++ ∅ + + 3 7 ∅ 7
iMForest [31] 3 3 + + 3 3 ++ ∅ + ++ 3 ∅ 7 7
GR-Trees [11] 3 3 + + 3 3 + ∅ ++ + 3 ∅ 7 (3) 5

1 Uses only normal data for training (semi-supervised). 2 "Results from the detector are interpretable and provide a good description of the
outliers." 3 Additionally, designed for streaming features; 4 Feature set can be changed for each arriving datum. 5 Framework is "wrapped
around" the base learner, and thus would allow for exchange.

4. Generic PCB-iForest Framework

In this section we focus on the design of an intelligent OD solution that is able
to satisfy all of the aforementioned requirements. Thus, we carefully reviewed related
work and combined the merits of the most promising approaches while alleviating their
shortcomings. Our focus lies on the iForest-based approaches, since iForest is (i) a state-
of-the-art algorithm for OD, (ii) widely used by the community, (iii) efficient in terms of
computational and classification performance and (iv) can easily be adapted for the SD
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application [7]. The wide acceptance in research is reflected in numerous improvements and
extensions—for instance, extended isolation forest (EIF) [23], functional isolation forest [24],
entropy iForest [37], LSHiForest [38] and SA-iForest [39]—for different application domains
or focusing on special problems, such as dealing with categorical and missing data [40].
However, those adaptions are mainly tailored for static datasets rather than the application
on SD. Thus, our aim was to provide a framework that is able to exchange the iForest-based
classifier in cases of compromising data or if the application domain, with its specific task,
demands another base learner. Moreover, the framework can be generalized to basically
incorporate any ensemble-based algorithm consisting of a set of components such as trees.
The workflow of our so-called Performance Counter-Based iForest framework, denoted as
PCB-iForest, is shown in Figure 1.

xt   Xt model-centricDrift Detection 
Method

Sliding Window

y (xt)

data-centric

Base Learner

xt , xt-1, xt-2,  

Scoring

Partial Fitting

Performance 
Counter-Based 

Scoring
Discard & Add
Components

Ensemble Components

...

Figure 1. The workflow of PCB-iForest’s incremental learning framework.

Data instance (data point) xt with dimensions d of the data stream {Xt ∈ Rnt×d, t =
1, 2, ...} will be captured as the latest instance at each time step t in the count-based sliding
window W and in parallel will be evaluated in the Scoring module, which provides an
outlier score y for each xt. The sliding window is composed of the latest w instances such
that W = {xt, xt−1, ..., xt−w}. A dedicated drift detection method is applied that triggers
the partial fitting process to discard and add components, denoted as C, of the ensemble E.
The core of PCB-iForest is the Performance Counter-Based Scoring module, which is able
to identify well and badly performing components of an ensemble. Partial fitting will then
discard only the poorly-performing data and replaces them with newly created ones from
the most recent instances contained in the sliding window. In the following, we provide
more details on the main parts of our framework.

4.1. Drift Detection Method

Detecting changes in multi-dimensional SD is a challenging problem, especially when
considering scaling with the number of dimensions. A sometimes applied solution is
to reduce the number of dimensions by either performing PCA (cf. LSHiForestStream) or
random projections. Furthermore, one might even reduce the number to one (or more) uni-
dimensional statistics and apply a well-known drift detection method, such as DDM [41]
or ADWIN [28,42]. For IFA(S/P)ADWIN, drift detection will be performed on the one-
dimensional statistic of either the binary prediction value (PADWIN) or the actual score
value (SADWIN). Reduction is achieved by the learning model. Thus, it is referred to as a
model-centric approach. However, generic approaches, such as [43,44], exist that deal with
multi-dimensional changes performed specifically on the SD, referred to as data-centric.

We can see that model-centric approaches (indicated by the dotted line in Figure
1) might be prone to a phenomenon called positive feedback. This means that drift de-
tection causing partial fitting will be negatively influenced by the actual classification
results in such a way that the ensemble results tend to be the same by discarding "badly"
performing components from the model point of view. Positive feedback is also present
within iForestASD, since drift detection depends on the anomaly rate computed by the
model’s scoring results. Furthermore, iForestASD’s anomaly rate is dependent on a priori
knowledge, which is hardly feasible in real-world applications. Therefore, we recommend
the usage of data-centric solutions, which are unbiased of the applied model only relying
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on the SD characteristics. Since NDKSWIN in [7] has, as of now, proven to be a reliable
drift detection method, we are applying it to PCB-iForest, but our approach is open to any
data-centric or model-centric solution. NDKSWIN adapts a relatively new one-dimensional
method called KSWIN [29] based on the Kolmogorov–Smirnov (KS) statistical test, which
does not require any assumption of the underlying data distribution to be capable of
detecting concept drifts in multi-dimensional data.

In KSWIN, the sliding window W is divided into two parts. The first sub-window,
called R, contains the latest data instances where concept drift might have taken place. The
length of R is predefined by the parameter r. The second sub-window, called L, contains
uniformly selected data instances that are a sampled representation of the old data. The
concept drift is detected by comparing the distances of the two empirical cumulative
distributions from R and L according to dist(R, L) >

√
−r−1ln(α), in which α is the

probability for the statistical KS test. NDKSWIN extends this test by declaring concept drift
if drift is detected in at least one of the d dimensions. However, contrary to IFANDKSWIN,
the application of NDKSWIN in PCB-iForest differs. We do not apply drift detection inline
before scoring. Our parallel setting, that newly arriving data instances are immediately
forwarded to the scoring function, allows us to detect anomalies in near real-time without
losing time when performing upstream applied drift detection. Although possible concept
drift might already afflict the new instance, thereby legitimizing the approach to first
update the model before scoring, we again state that for network-based anomaly detection,
an accelerated but less precise model is favored. PCB-iForest’s design seems obviously
more performant, especially if a high throughput is demanded. Our approach further
improves the computational benefit with NDKSWIN since, contrary to iForestASD or
IFANDKSWIN, we do not discard the whole model in cases of detected drift, but are able
to only partially update it. Consequently, even if NDKSWIN detects slightly more drift,
our approach is a good tradeoff between a resource-saving model up-to-dateness and a
continuously updating model, e.g., HS-Trees or LodaCont., which continuously fit their
models with each arriving instance even if there is no need.

4.2. Performance Counter-Based Scoring

Performance Counter-Based Scoring monitors the performance of each component C
(herein an iTree) in the ensemble E (herein the iForest) by assigning it with a performance
counter (PC). In general, the approach favors or penalizes individual ensemble components
at runtime by referring to their contributions to the ensemble’s overall scoring result. Thus,
the PC-value is changed for each data instance, i.e., increased or decreased depending on
the component’s scoring quality in the ensemble’s anomaly score. The PC-values increase
or decrease by 1 for well and poorly performing components, depending on whether each
individual score is above or under the anomaly threshold s (herein 0.5 for iForest-based
learners, as discussed in [6]). For example, the ensemble scores a sample with score_E > s,
which indicates an anomalous sample. Each individual component’s score contribution
is verified such that if the score of the i-th component Ci is greater than s, score_C_i > s,
the PC-value of Ci, pc_i increases. In turn, if score_C_i ≤ s, Ci is penalized by decreasing
pc_i. However, one might even increase or decrease the PC-values in an even more
granular fashion, e.g., ±2, 3, ..., depending on the confidence level of the ensemble score
and each individual component’s score contribution. For instance, if 1 > score_E > 0.8,
the confidence level of the ensemble is high, so the sample is anomalous. Thus, if any
score_C_i � 0.8, component Ci might be penalized to a larger extent by decreasing pc_i
with a higher value. For the sake of simplicity in this article, we apply the more simple
binary approach in which each individual PC is increased/decreased by 1 if its score value
is greater/less than the ensemble’s score value. The counting goes until a drift is detected.
Once this happens, the weaker performing components, as indicated by their negative PC
values, are replaced with new ones built on data instances present in the current window
W . The PC values of all trees are set to zero after the partial update is finished; hence,
even resetting the values for previously well performing trees clears the old bias (effect
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of previous scoring). Referring to Figure 1, Algorithm 1 shows the working principle,
including the core of the Performance Counter-Based Scoring. Additionally, we neglected
the initialization phase in which, once the sliding window is filled, the components are
initially built and the PC values are set to zero.

Algorithm 1: The working principle of PCB-iForest.
Input: Sample xt, Sliding Window W , Anomaly Threshold s
Output: Outlier score y
Data: Ensemble E of Components C
.Scoring of Ensemble and each Component

1 for i in |E| do
2 score_C_i← ComponentScore(i)

3 y← 1
|E| ∑i score_C_i

.Updating PC values
4 for i in |E| do
5 if score_E > s then
6 if score_C_i > s then
7 pc_i = pc_i + 1
8 else
9 pc_i = pc_i - 1

10 else
11 if score_C_i < s then
12 pc_i = pc_i + 1
13 else
14 pc_i = pc_i - 1

.Drift Detection and Partial Update
15 drift_detected← NDKSWIN(W)
16 if drift_detected == true then
17 for i in |E| do
18 if pc_i < 0 then
19 delete Ci
20 Ci ← build(W)

21 pc_i← 0

22 return y

4.3. Base Learner

The PCB-iForest framework is designed to allow exchanges of the base learner. Al-
though being initially intended for iForest-based approaches, the conceptualization can
easily be generalized for any ensemble method with its components, such as trees, his-
tograms and chains. With the partial updating, unlike iForestASD and the IFA-approaches,
higher throughput is possible since the complete model does not need to be updated.
Rather, only a certain number of penalized trees are updated, allowing it to not completely
and abruptly forget previously learned information by flushing the whole model, similarly
to catastrophic interference known from the field of neural networks. Thus, with respect
to non-iForest-based approaches, we see the potential of our framework to replace, e.g.,
the alternating windows of HS-Trees or LodaTwo Hist. in which new ensembles are built
and continuously replace those currently used-even if there is no necessity. Our approach
would be more resource-preserving while keeping a set of ensemble components as long
as there is no need to replace them, e.g., due to a concept drift. However, in this article we
focus on iForest-based approaches for the reasons stated in the beginning of this section.
In particular, we want to present two application scenarios underlining the fulfillment of
crucial requirements from Section 3.
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4.3.1. Algorithm Agility

SD is afflicted with a theoretically infinite flow of data. Thus, in some cases, it
might be necessary to exchange the base learner as time passes. A possible application
scenario would be if the currently used base learner has been compromised. This means
it is vulnerable to, e.g., poisoning of the algorithm, and an adversary might bypass the
detection of its malicious activity. Another non-malicious use case would be a major change
of data due to the long term running time that is beyond a concept drift which requires
a different type of base learner. Some iForest improvements might then need tailoring
for specific application scenarios. In this article, apart from classic iForest, we prove the
algorithm’s agility by incorporating EIF. It addresses the drawbacks of iForest’s branching
using random horizontal and vertical cuts by substituting them with non-axis-parallel
hyperplanes with random slopes. Thus, to the best of our knowledge, PCB-iForest is
the first work that applies the improved version of iForest on SD. Since the PCB-iForest
framework only "wraps around" EIF, no other specific adaptions are necessary except for
adding the Performance Counter-Based Scoring. We denote this variant as PCB-iForestEIF.
However, it should be remarked that feature interpretability is irretrievably lost with
the improvement of branching in EIF. Therefore, in addition, we are taking on the topic
of feature importance measurement for OD on SD by a second variant explained in the
next section.

4.3.2. Feature Scoring

Apart from popular dimensionality reduction algorithms such as PCA, feature selec-
tion for OD aims to only select relevant features for the classification task by discarding
irrelevant and redundant features, which reduce dimensionality. This leads to more com-
putationally efficient OD, all the while preserving feature interpretability. Especially in
a consecutively applied root cause analysis, feature interpretability plays a crucial role
for future forensics use cases. While some feature selection approaches only provide a
subset of relevant features, others are able to score and rank features according to their
contribution to a sample’s anomalousness. Therefore, one is able to select the best per-
forming features as indicated by their score values. In particular, since iForest is inferior
to projection-based methods on high-dimensional noisy datasets [18], feature selection
would significantly aid in reducing dimensions, and thus, amplify iForest’s classification
performance in lower dimensions. This coincides very well with the suggestion from Togbe
et al. in [7], mentioning that feature selection could mitigate the effect of choosing the most
important dimensions for drift detection.

Much work has been done in the field of feature selection but, to the best of our
knowledge, existing approaches either focus on feature selection for SD (but not with the
focus on imbalanced data classification), e.g., [45–47], or focus on feature selection for OD,
e.g., [25,48,49], (but mainly in a supervised and offline fashion). Thus, we see it as crucial to
contribute with feature scoring solutions to SD that focus on OD which might be exploited
for feature selection. Pevný, in [17], proposed a one-tailed, two-sample test for Loda to
achieve feature scoring without increasing its overall complexity. This approach seems
most related to the intention of scoring relevant features (for the task of OD) in a streaming
fashion, which one might use to rank and select the top-performing features.

In order to achieve feature scoring, we take advantage of the unsupervised isolation-
based feature selection (IBFS) method recently proposed in [25] tailored for OD. The
method exploits the training phase of the classical iForest, in particular, the random
selection of feature values, and computes score values for each feature by calculating
imbalance scores using an entropy measure. Although this method is designed for offline
iForest, it can easily be adapted to our PCB-iForest in a streaming fashion, denoted as
PCB-iForestIBFS. Since it is designed for the training phase, we only obtain feature scores
after each partial update (training). In order to receive representative feature scores as time
passes, we will continuously update the score values with each partial update as shown
in Algorithm 2. Once a partial update is triggered, we let IBFS compute feature scores
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s f i(k) for the i-th feature fi based on the data instances in W resulting in a one-dimensional
array s f = {s f 1, s f 2, ..., s f d} of d feature scores. With each partial update we continuously
update the feature scores by incremental averaging. For the sake of simplicity, we apply the
incremental average s̄ f i(k) =

1
k (s̄ f i(k−1)(k− 1) + s f i(k)) with a continuous counter value k

for each partial update, in order to obtain the averaged array of feature scores s̄ f . It must be
noted that other methods exist—e.g., those discussed in [5]—that might be superior when
concept drifts occur within the feature scores. While only preserving d values for the current
average scores and one value for the continuous counter k and performing d updates of
the scores, both the space and time complexity for each feature score averaging yields
O(d) when applying the well-known Welford’s algorithm [50]. This does not significantly
increase the overall complexity of PCB-iForestIBFS since d is fixed. A summary of the
feature scoring functionality is shown in Algorithm 2. As time passes and feature scores are
continuously computed, one might rank the feature scores and identify the top-performing
ones. Thus, it might be necessary to change the feature set or reduce the number of features
from the original set. PCB-iForestIBFS is able to change the feature set during runtime. Once
a partial update is triggered, instead of discarding only poorly performing components,
the whole model can be discarded and the new ensemble can be built using the newly
proposed feature set.

Algorithm 2: Feature scoring in PCB-iForest utilizing IBFS.
Input: Sliding Window W
Output: Averaged feature scores s̄ f

1 drift_detected← NDKSWIN(W)
2 if drift_detected == true then
3 s f ← IBFS.compute_scores(W)
4 s̄ f ← feature_scores.moving_average(s f )

5 return s̄ f

5. Experimental Evaluation

This section gives a glance at the experimental setup used for evaluation. First, the
methodology is explained, followed by information on the dataset collection used and
descriptions of the metrics as evaluation criteria.

5.1. Methodology and Settings

Drift detection plays a crucial role when in it comes to detecting changes that require
partial updating. Thus, we (i) performed measurements to check whether NDKSWIN
works within our model using dedicated datasets for drift detection. Since the most related
work historically used the same set or subset of four specific datasets, we aggregated
their results from the original work and (ii) performed measurements on those datasets
utilizing both, PCB-iForestEIF (referring to Section 4.3.1) and PCB-iForestIBFS (referring
to Section 4.3.2). A major drawback of the aforementioned is the insignificant number of
multi-disciplinary datasets with an outdated, small number of dimensions in terms of
today’s real-world applications. Furthermore, most of the related work from Section 2 ig-
nores the existence of some competitors, since they included rather insignificant algorithms
in their evaluations (cf. [31]). Therefore, (iii) a selection of state-of-the-art, off-the-shelf
ensemble OD algorithms is compared with PCB-iForestEIF and PCB-iForestIBFS using a
large collection of multi-disciplinary datasets with various dimensions. PCB-iForestIBFS
performed online feature (importance) scoring. The scored features were then used in a
second run on a selection of algorithms to evaluate the effects when utilizing a feature
subset. Lastly, since the main application domain is network security, we (iv) evaluated our
PCB-iForest variants and a selection of performant algorithms on an up-to-date dataset for
network intrusion detection. It should be remarked that LSHiForestStream was not included
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in any of our evaluations, since it is designed for multi-dimensional multi-stream data;
thus, a fair comparison is not possible within the focus of this article.

Experiments were conducted on a virtualized Ubuntu 20.04.1 LTS equipped with 12
× Intel(R) Xeon(R) CPU E5-2430 at 2.20 GHz and 32 GB memory running on a Proxmox
server environment. Overall, nine off-the-shelf ensemble algorithms, including five iForest-
based competitors, took part in the experiments. For equal conditions, all algorithms
are coded in Python 3.7. Unless otherwise stated, the default hyperparameters of the
algorithms were used and outlier thresholds fixed for all measurements. In particular, the
latter seemed legitimate since one important requirement is to not burden human domain
experts with complex hyperparameter settings, especially to simulate the appliance in
real-world applications. For PCB-iForest we used the default parameters for NDKSWIN,
as discussed in Section 6.1, and in terms of iForest, we stuck to the default parameter of an
ensemble size with 100 trees and an outlier threshold of 0.5. For EIF, the fully extended
version was used by setting the extension level to 1. Thus, PCB-iForest is hyperparameter-
sparse and mainly affected by hyperparameter window size. However, except for Section
6.2, the window size was set to 200 for all window-using or window-based algorithms.
All results (except in Sections 6.1 and 6.4) were averaged across 10 independent runs,
since most of the methods are non-deterministic, e.g., negatively affected by random
projection. The UNSW-NB15 measurements in Section 6.4 were averaged across three
independent runs due to the large number of instances accompanied with an enormous
evaluation-runtime for some inefficient classifiers.

5.2. Data Sources

To achieve high quality in our evaluation, we utilized four different dataset sources.
In order to measure the performance of NDKSWIN, we utilized the recently proposed
ensemble of synthetic datasets for concept drift detection purposes from the Harvard Data-
verse [51]. It contains 10 abrupt and 10 gradual datasets, each consisting of approximately
40,000 instances and the same three locations where abrupt and gradual drifts were injected.
In particular, rt_2563789698568873_abrupto and rt_2563789698568873_gradual were used in
our evaluation.

Since some of the iForest-related work performed measurements on four of the
datasets used in [26], we stuck to this approach and performed measurements using
PCB-iForest on HTTP, SMTP (from security-related KDD Cup 99 (http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html, accessed 12 May 2021)), ForestCover and Shuttle
(from UCI Machine Learning Repository [52]) datasets. We truncated the datasets vary-
ing in number of samples while keeping their outlier percentages as in the original sets
(HTTP—0.39%, SMTP—0.03%, ForestCover—0.96%, Shuttle—7.15%) in order to reduce
processing runtime. In the following, the four datasets are denoted as HSFS.

In recent years, the majority of state-of-the-art IDS datasets, including KDD Cup 99 and
its improved successor NSL-KDD (https://www.unb.ca/cic/datasets/nsl.html, accessed
12 May 2021), have been criticized by many researchers since their data are out of date
or do not represent the threat landscape of today [53,54]. Therefore, we have chosen
two improvements compared to the aforementioned evaluation datasets. First, we have
selected fifteen real-world candidate datasets from the Outlier Detection DataSets (ODDS)
Library (http://odds.cs.stonybrook.edu/about-odds/, accessed 12 May 2021) [55] tailored
for the purpose of OD. Those will serve to benchmark PCB-iForest in terms of a variety of
different amounts of features, contrasting outlier percentages and the application across
multi-disciplinary domains. In particular, we included the ensemble of datasets from
ODDS shown in Table 2 with their characteristics. To reduce the processing runtime of each
OD algorithm, mnist, musk, optdigits, pendigits, satellite, satimage-2 and shuttle were
truncated while mostly maintaining their original outlier percentages.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
http://odds.cs.stonybrook.edu/about-odds/
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Table 2. Characteristics of the partially truncated datasets from ODDS [55].
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Even though CSE-CIC-IDS2018 (https://registry.opendata.aws/cse-cic-ids2018/, ac-
cessed 12 May 2021) overcomes most of the aforementioned criticism and is said to be
well designed and maintained [54], in terms of a network security related dataset, we have
selected its competitor UNSW-NB15 [56] for the following reasons. It is also well structured,
and labeled, and more complex than many other security-related datasets, making it a
useful benchmark for evaluation [54]. However, apart from the proneness to the issue of
high-class imbalance for CSE-CIC-IDS2018 mentioned in a recent publication [57], the main
reason for choosing UNSW-NB15 is that the aggregated datasets contain the IP address
(source and destination), and the respective port features, which we deem essential for
a consecutively applied root cause analysis. Especially, similarity-based alert analysis
approaches such as [58] cannot be utilized when those features are missing, since they
mainly operate on this information.

UNSW-NB15 incorporates nine types of attacks, namely, fuzzers, analysis attacks,
backdoor attacks, DoSs, exploits, generic attacks, reconnaissance, shellcode and worms
created by the IXIA PerfectStorm tool. In terms of feature generation, Argus and Bro-
IDS tools, among others, were utilized to generate 49 features which can be divided
into five feature sets: flow, basic, content, time and additional. Since the four CSV files
available only contain the raw features, further data preparation steps had to be performed,
including handling inconsistent values, dropping irrelevant features and dealing with
categorical attributes. Sanitizing had to be performed for source and destination port
features containing some values that did not conform with others. Hexadecimal values
were converted to integers, and for ICMP-protocol-based features, some values containing
the character "-" were set to zero. Empty string values were replaced by 0 and typecast
according to their column types defined in [56]. We dropped the timestamp feature, since it
has no added value for OD, albeit important for a consecutive root cause analysis. However,
in real-world scenarios the timestamp will be added after the detection of outliers, since it
is not contained in the incoming data.

Except for srcip, sport, dstip, dsport, proto, state and service (we do not count the ac-
tual binary prediction label and the attack category), the datasets contained only numerical
and binary data, which could be processed by the applied OD algorithms. Various methods
can be applied to handle IP-addresses, such as converting them into their binary or integer
representations (one-to-one), splitting them into four numbers (one-to-four) or applying
the widely-used one-hot encoding for categorical features (one-to-many). However, the
latter is not feasible in the real-world online setting since (i) all possible IP-addresses that
might occur must be known in advance and (ii) one-hot encoding leads to a significantly
higher number of features. We chose to convert the IP-addresses into integers, since it is an
acceptable option for network intrusion detection [59] and does not increase the number
of dimensions. The port feature can easily be converted into an integer, and for proto,
state and service, one-hot encoding was used such that the number of features did not
grow too large and could be utilized on SD. Other than, e.g., proto, only TCP and UDP
have the largest proportions; categories have been limited to only the most important ones
in terms of frequency by merging the least occurring values into one category (beneath
1% occurrence). A domain expert could also predefine those categories based on domain

https://registry.opendata.aws/cse-cic-ids2018/
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knowledge. By this method, the generated feature space of the whole dataset could be
reduced from 207 to finally 57 features. The four sanitized CSV files with its characteristics
are summarized in Table 3.

Table 3. Characteristics of the four preprocessed CSV files from the UNSW-NB15 dataset [56].

UNSW-NB15 #1 #2 #3 #4

# Instances 700k 700k 700k 440k
# Dimensions 57 57 57 57
Outliers (%) 3.17 7.53 22.49 20.20

5.3. Evaluation Criteria

The confusion matrix, consisting of the parameters true negatives (TN), false negatives
(FN), false positives (FP) and true positives (TP), is the most intuitive and widely-used
performance measure for binary classification of machine learning algorithms. Further
parameters can be derived, such as accuracy, precision, recall or specificity. The most
widely used as the standard metric for the score-wise evaluation of outlier detectors is
AUC of the receiver operating characteristic (ROC) curve. ROC is created by plotting the
true positive rate (TPR), meaning the recall against the false positive rate (FPR), which
corresponds to 1-specificity. TPR is computed by TP

TP+FN and FPR by FP
FP+TN . The AUC

metric is used for the sake of comparing related work results in Table 4. It is computed as
AUC = 1

2 (1 + TPR− FPR) as proposed in [60].

Table 4. Classification performances of different iForest-based competitors aggregated from their respective original works
with PCB-iForestEIF and PCB-iForestIBFS (*best setting with w = 2048; best performing values in bold).

iForestASD* GR-Trees
PCB-iForestEIF PCB-iForestIBFS

w=128 w=256 w=512 w=1024 w=128 w=256 w=512 w=1024

HTTP 0.95 0.95 0.86 0.89 0.90 0.91 0.92 0.95 0.96 0.96
SMTP 0.85 0.83 0.84 0.90 0.93 0.95 0.70 0.67 0.71 0.70

ForestCover 0.84 0.58 0.62 0.71 0.93 0.50 0.75 0.83 0.92 0.50
Shuttle 0.98 0.89 0.97 0.98 0.94 0.66 0.95 0.96 0.96 0.95

The harmonic mean of precision and recall, denoted as F1 score, is used for represen-
tation of the classification performance for all other measurements. It can be computed
as F1 = TP

TP+ 1
2×(FP+FN)

. Compared to ROC, we deem the F1 score more appropriate for

OD since, e.g., the FPR used in the ROC metric depends on the number of TN whose
proportion in OD is typically quite large. Thus, the ROC tends to be near 1 when classifying
imbalanced data, and thus, is not the best measure for examining OD algorithms. A good
F1 indicates low FP and FN and is therefore a better choice to reliably identify malicious
activity in the network security domain without being negatively impacted by false alarms.

Furthermore, we measured the average runtime per OD algorithm, denoted as avg_t,
as a representative metric for the computational performance. Thus, we accumulated the
elapsed time for individual steps necessary to perform, e.g., partial fitting or prediction,
to derive the average runtime after multiple iterations for processing a particular dataset.
Providing a tradeoff between the classification and computational performance, the last
metric is the ratio of F1/avg_t.

6. Discussion of Results

In this section we discuss some of the key results obtained by the comprehensive
evaluation. It is structured in the following parts. We discuss the capability of PCB-iForest’s
drift detection by examining NDKSWIN. Then, PCB-iForestEIF and PCB-iForestIBFS are
extensively evaluated against related work in the following sections. This includes three
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different types of data sources and includes the evaluation of the feature importance scoring
functionality by PCB-iForestIBFS.

6.1. NDKSWIN Drift Detection

NDKSWIN drift detection is mainly affected by the hyperparameters sliding window
size w, the number of samples to be tested n_sample as a percentage value of the window
size, sub-window size for the latest samples r, the number of dimensions to be evaluated
n_dim and the α-value of the KS-test. For the sake of low hyperparameter complexity, we
will rely on the default values n_sample = 0.1, r = 30, n_dim = 1 and α = 0.01 used in [7].
Since the sliding window size is a crucial parameter, not only for NDKSWIN but also for
PCB-iForest, this section examines possible effects of slightly varying hyperparameters of
NDKSWIN and discusses potential impacts on PCB-iForest. Since marginal changes in α did
not remarkably influence the results, we varied parameters with the sets w = [100, 200, 500],
n_sample = [0.1, 0.2], r = [30, 50] and n_dim = [1, 2].

Across all measurements, NDKSWIN was mostly able to detect the gradual and abrupt
drifts but was afflicted to a high number of false detections as exemplary shown in Figure 2
with two different settings. The duration of a gradual drift lasted for 1000 samples, which
is indicated by rectangles in gray. The sliding window size is indicated by rectangles in
red which apply to gradual and abrupt drift detection. The actual detected drift location
can only be pinpointed within the range of a window. Thus, detected gradual drifts were
counted if either the gray or the red rectangle was intersecting, and the abrupt drift had to
be detected near the red rectangle. In general, from the 24 measurements with the varying
settings, NDKSWIN was able to detect 61 out of 72 gradual and 40 out of 72 abrupt drifts.

Generally, by increasing NDKSWIN’s hyperparameters, multiple tests performed for
many dimensions led to increasing probability of falsely detected drifts for one dimension,
although none was present. This phenomenon might be reasoned due to the widely known
problem in statistics called multiple comparison or multiple testing. Independent of the
window size, this problem is more distinct for higher values n_sample, r and n_dim, as
shown in an exemplary way in Figure 2a,b. To strengthen our assumption, we have varied
n_sample, r and n_dim each at a time while observing the change in false detections. Its
number was higher every time we increased each value. In particular, increasing n_sample
from 0.1 to 0.2 while keeping the other hyperparameters stable resulted in a doubling
of false detections. In turn, increasing r (30 to 50) and n_dim (1 to 2) led to approximate
increases of 40% in false detections. The problem can be alleviated by choosing small
hyperparameter values. Thus, the default parameters proposed in [7] n_sample = 0.1,
r = 30, n_dim = 1 and α = 0.01 achieved decent results and mostly mitigated the
multiple comparisons problem for its small values and were therefore used in our further
measurements.

0 5, 000 10, 000 15, 000 20, 000 25, 000 30, 000
Indices for drift locations in the dataset

actual abrupt drifts

actual gradual drifts

detected abrupt drifts

detected gradual drifts

(a) w = 200, n_sample = 0.1, r = 30, n_dim = 1

0 5, 000 10, 000 15, 000 20, 000 25, 000 30, 000
Indices for drift locations in the dataset

actual abrupt drifts

actual gradual drifts

detected abrupt drifts

detected gradual drifts

(b) w = 500, n_sample = 0.2, r = 50, n_dim = 2
Figure 2. Exemplary visualization of NDKSWIN gradual and abrupt drift detection with two different hyperparameter
settings (rectangles in gray—duration of gradual drift; rectangles in red—sliding window size).
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Since the performed measurements are only non-deterministic snapshots without
averaging the results over multiple runs, more intensive measurements for drift detection
are necessary in future work. We deliberately chose to not average the results, since
this would blur the results in terms of actual drift detection and would not show the
effects in real-world applications. Future measurements will include the comparison
to other data-centric drift detection methods and take into account higher dimensional
datasets. Furthermore, we want to focus on improving the NDKSWIN method by tackling
the proneness to the multiple comparisons problem. Although drift detection plays a
crucial role in our model, it is not the main focus of our article. We conclude from the
measurements that NDKSWIN is able to reliably detect actual drifts and regularly updates
our model when triggered by falsely detected drifts. However, it should be remarked that
the used datasets lack information regarding the drift characteristics, meaning how distinct
drifts are to be detected. For the rest of our evaluation, we set the default parameters
(except for the window size) to achieve a good tradeoff between updating our model in
regular times and not demanding extensive resources by continuously updating it with
every sample.

6.2. Competitor-Based HSFS

PCB-iForestEIF and PCB-iForestIBFS were evaluated on the HSFS datasets used by some
of the iForest-based competitors: iForestASD, IFA(S/P)ADWIN and IFANDKSWIN and GR-
Trees. Table 4 shows the results; the best-performing values from the competitors’ original
work have been included together with the measurement results for the two PCB-iForest
versions using different window sizes w. Although Togbe et al. in [7] used all four datasets
to compare HS-Trees and iForestASD, they only performed measurements on Shuttle and
SMTP utilizing IFA(S/P)ADWIN and IFANDKSWIN. What is more, contrary to iForestASD and
GR-Trees, the authors chose the F1 instead of AUC metric. Since we included Shuttle in
our ODDS measurements in the next section and also relied on the F1, only the results from
iForestASD and GR-Trees are presented. It must be noted that the authors of GR-Trees
constrained the abnormal proportion of each dataset to 10% in their evaluation. This step
can be seen as critical since the datasets normally have outlier percentages between 0.03%
and 7.15% so that classification results can be blurred by this step. Despite that, GR-Trees
performed inferiorly to iForestASD and both PCB-iForest versions, as shown in Table 4. For
this reason, GR-Trees was excluded from the rest of our measurements. As expected, with
its showing an improvement over the outlier scoring of iForest, PCB-iForestEIF yielded
the best AUC results in most cases except for HTTP. PCB-iForestIBFS achieved very good
results on HTTP across all window sizes. Though it was outperformed by both PCB-iForest
variants on three datasets, iForestASD achieved decent AUC results. However, it is firstly
remarked that the predefined threshold parameter used to trigger concept drifts, and
thus update the iForestASD model, depends on a priori knowledge, thereby limiting its
applicability in real-world scenarios. Secondly, the measurements did not take into account
computational performance, since we assumed that iForestASD performs much worse than
our PCB-iForest, which is able to partially update its model. We discuss the results of our
tradeoff measurements between classification and computational performance in the next
section.

6.3. Multi-Disciplinary ODDS

Since in real-world applications, hyperparamater optimization is difficult, especially
on SD afflicted with concept drifts, we compared the results of several off-the-shelf, state-of-
the-art OD algorithms with our proposed PCB-iForest versions using the default parameters
proposed in the respective original work and across multi-disciplinary datasets with
varying characteristics.
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6.3.1. Full Dimensions

First, we ran each classifier on full dimensions. Later, the effects of PCB-iForestIBFS’s
feature importance scoring using a subset of the best-performing features applied on
different algorithms were evaluated. The results of the F1 metric are shown in Table
5. In approximately half of the datasets, PCB-iForestEIF outperformed the other online
OD algorithms by achieving the best classification result, and hence achieved the first
rank averaged over all datasets. Other than datasets with IDs 7, 10 and 11, PCB-iForestEIF
performed at least comparably with the other datasets, and PCB-iForestIBFS only marginally
performed worse, with an overall rank 3, being only slightly outperformed by iMForest.
All iForest-based competitors achieved similar averaged outlier scores, taking the rankings
6–9.

Table 5. F1 results for different online OD algorithms on datasets with ID i (best performing values in bold; "-", measurement
aborted after 42 h runtime; avg denotes the average outlier score over all datasets; rank, from best (1) to worst (11)
performance).
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1 0.248 0.207 0.358 0.178 0.256 0.380 0.413 0.400 0.401 0.419 0.268
2 0.143 0.152 0.317 0.353 0.552 0.391 0.365 0.521 0.510 0.642 0.526
3 0.029 0.239 0.134 0.014 0.088 0.204 0.205 0.196 0.213 0.271 0.220
4 0.422 0.605 0.239 0.430 0.601 0.496 0.478 0.488 0.487 0.482 0.479
5 0.001 0.199 0.196 0.087 0.145 - - - - 0.141 0.138
6 0.424 0.040 0.229 0.003 0.493 0.409 0.445 0.451 0.446 0.670 0.582
7 0.425 0.480 0.253 0.264 0.570 0.138 0.222 0.009 0.007 0.007 0.032
8 0.142 0.083 0.104 0.189 0.134 0.149 0.151 0.155 0.142 0.275 0.241
9 0.038 0.139 0.143 0.034 0.063 0.095 0.094 0.095 0.091 0.170 0.095
10 0.000 0.584 0.259 0.397 0.288 0.269 0.265 0.250 0.259 0.274 0.314
11 0.000 0.218 0.385 0.348 0.543 - - - - 0.187 0.244
12 0.105 0.044 0.084 0.005 0.104 0.078 0.068 0.037 0.037 0.037 0.033
13 0.000 0.430 0.548 0.069 0.487 - - - - 0.904 0.828
14 0.109 0.123 0.093 0.001 0.162 0.091 0.096 0.092 0.092 0.094 0.091
15 0.101 0.158 0.482 0.130 0.544 0.527 0.550 0.550 0.523 0.522 0.470

avg 0.146 0.247 0.255 0.167 0.335 0.215 0.223 0.216 0.214 0.340 0.304
rank 11 5 4 10 2 8 6 7 9 1 3

However, considering the slightly better average runtime, PCB-iForestIBFS outper-
formed PCB-iForestEIF in terms of F1/avg_t in almost all measurements, as depicted on
two exemplary datasets mnist and optdigits in Figure 3, thereby presenting itself as an
OD algorithm with a good tradeoff between classification performance and computational
costs. Except for those two datasets, LodaTwo Hist. achieved the best F1/avg_t results across
all online OD algorithms, as shown in Table 6, summarizing the F1/avg_t results. Except
for the efficiently performing LodaTwo Hist. on rank 1, our proposed PCB-iForestIBFS and
PCB-iForestEIF showed consistently remarkable results with rank 2 and 3, even superior
to the well performing iMForest with respect to its F1 results. Table 6 also shows the
inefficient processing of the iForest-based competitors; in particular, the IFA variants took
ranks 7–9 evenly and iForestASD the last rank.
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Figure 3. F1/avg_t results for the well-performing PCB-iForestIBFS on datasets mnist (a) and optdigits
(b) referring to the results of Tables 5 and 6.

In most of the measurements, iForestASD yielded the longest avg_t value followed by
IFANDKSWIN and IFA(S/P)ADWIN and xStream. The avg_t results for two exemplary datasets
ionosphere and wbc are shown in Figure 4. It should be remarked that for datasets letter,
satellite and shuttle the avg_t exceeded 4 hours per dataset iteration due to the extensive
runtime of those four classifiers. Therefore, we excluded them from the remainder of our
evaluation.
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Figure 4. avg_t results for the datasets ionosphere (a) and wbc (b) referring to the results of Tables 5
and 6.

Table 6. F1/avg_t results for different online OD algorithms on datasets with ID i (best performing values in bold; "-",
measurement aborted after 42 h runtime; avg denotes the average outlier score over all datasets; rank, from best (1) to worst
(11) performance; values are scaled by a factor of ×103 in units of 1/s).
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1 21.29 18.87 369.03 0.25 11.52 1.02 1.76 1.71 1.74 4.85 57.62
2 3.89 4.75 118.89 0.98 29.01 0.06 0.47 0.62 0.63 35.17 95.53
3 5.48 38.42 362.71 0.23 8.21 3.49 3.53 3.34 3.66 88.98 191.21
4 47.23 86.57 355.57 4.52 45.42 1.98 2.49 2.54 2.55 62.55 166.02
5 0.02 6.15 65.84 0.23 6.85 - - - - 7.39 8.42
6 8.26 0.88 60.96 0.01 13.23 0.07 0.56 0.57 0.57 24.97 99.41
7 17.43 22.54 127.22 0.89 21.92 0.09 0.37 0.02 0.01 0.44 8.21
8 3.46 2.19 35.43 0.44 5.57 0.02 0.19 0.19 0.18 13.05 42.16
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Table 6. Cont.
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9 1.04 4.3 55.59 0.1 3.68 0.01 0.1 0.1 0.1 9.63 16.06
10 0 38.25 178.64 2.05 19.87 0.18 0.54 0.51 0.53 27.29 90.4
11 0 3.52 67.08 0.48 16.6 - - - - 4.67 6.57
12 2.91 1.4 30.82 0.01 4.92 0.02 0.07 0.05 0.05 2.16 6.2
13 0 6.83 95.85 0.1 18.43 - - - - 21.58 21.12
14 3.21 4.03 35.8 0 8.66 0.05 0.12 0.13 0.13 5.93 19.92
15 10.79 17.94 671.91 1.28 41.87 1.7 2.45 2.44 2.35 78.35 173.65

avg 8.33 17.11 175.42 0.77 17.05 0.58 0.84 0.81 0.83 25.80 66.83
rank 6 4 1 10 5 11 7 9 8 3 2

6.3.2. Feature Subsets

Due to the extensive runtime of some classifiers, we continued our evaluation using
RS-Hash, HS-Trees, iMForest, LodaTwo Hist. and our two PCB-iForest variants to evaluate
the online-capable feature importance scoring functionality of PCB-iForestIBFS. Thus, we
used the scored feature values s̄ f obtained by PCB-iForestIBFS, ranked them and supplied
subsets of 25%, 50% and 75% to each online OD algorithm. Ideally, if feature scoring
operates correctly, the subset of features on the one hand yields a more precise classification
result, while on the other hand, the computational effort can be limited by minimizing the
cardinality of the selected feature set. Thus, the F1/avg_t metric should tend to achieve
better results using a subset compared to the full dimension measurements with all features
in average across all algorithms. This can also be seen from the results in Table 7. The
full feature set is only top performing for 5 datasets while applied feature subsets yield
the best result for 10 datasets. Since, to the best of our knowledge, (as of now) no other
online unsupervised feature selection method for OD exists, we could not cross-check our
results. In addition no ground truth information is available for ODDS revealing details
on which features mainly cause outliers. Thus, with respect to the 5 badly-performing
datasets (ID 10–13 and 15), outliers tend to occur in a wide range of dimensions leading
to a higher F1 degradation using a subset than benefiting from the avg_t reduction, thus,
resulting in a worse F1/avg_t. This effect is strengthened by Table 7 showing that higher
numbers of features in a subset for the badly-performing datasets generally resulted higher
F1/avg_t. Likewise, without ground truth information, it cannot be shown that for the
67% well-performing datasets, subsets from 25–75% of the features caused the majority of
outliers and thus resulted in good F1/avg_t values. Nevertheless, the focus of the feature
selection results should be set on the high-dimensional datasets, such as arrhythmia, mnist
and musk with IDs 1, 6 and 7, since as stated and discussed in [18] most of the classifiers
can efficiently handle lower dimensions. For those datasets all feature subsets achieved
better results than full dimension.
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Table 7. F1/avg_t results averaged for each online OD using different feature sets for datasets with
ID i (full_dimension refers to using all features; *_25,50,75 refers to using the top scoring 25%, 50%
and 75% features obtained by PCB-iForestIBFS; top performing values bold; values are scaled by a
factor of ×103 in units of 1/s).

ID fu
ll_
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m

en
si

on

PC
B_I

BFS
_2

5

PC
B_I

BFS
_5

0

PC
B_I

BFS
_7

5

1 14.49 21.10 18.34 18.32
2 15.34 13.04 15.75 15.97
3 33.52 33.86 30.66 27.81
4 67.95 60.71 67.08 68.89
5 5.22 6.41 6.62 5.58
6 11.87 13.55 13.12 14.09
7 16.24 19.63 17.61 17.86
8 5.49 2.54 3.14 6.22
9 4.15 3.60 5.18 4.86

10 30.01 27.91 20.18 28.89
11 7.69 6.22 7.23 7.59
12 2.76 2.16 2.58 2.71
13 16.04 3.15 11.48 15.05
14 5.44 3.24 5.32 5.51
15 52.78 46.25 45.82 50.06

A better picture of the good performance shown in an exemplarily way for high-
dimensional arrhythmia and musk, can be obtained by examining the feature scores s̄ f , as
shown in Figure 5. Having a high number of dimensions, feature selection can significantly
aid to reduce them, which in turn increases a classifier’s classification performance while
reducing its computational cost only processing relevant features for the purpose of OD.
With regard to the F1 score results for arrhythmia and musk, as shown in Figure 6, 50%
of the 274 features from arrhythmia are already sufficient for achieving better results than
utilizing the full feature set. For musk, the same applies at the 25% mark of the 166 features.

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
s̄fi(k)

arrhythmia - ID 1

75% - 206 features 50% - 137 features 25% - 68 features

(a)

0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018
s̄fi(k)

musk - ID 7

75% - 124 features 50% - 83 features 25% - 42 features

(b)
Figure 5. Exemplary plots for feature scores s̄ f on the high-dimensional arrhythmia (a) and musk (b), including 25%, 50%
and 75% subsets, shown in different colors.
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Figure 6. F1 results for the high-dimensional datasets arrhythmia (a) and musk (b) utilizing different
feature sets (full_dimension refers to using all features. *_25,50,75 refers to using the top scoring 25%,
50% and 75% features obtained by PCB-iForestIBFS).

In order to show the influence of applying a feature set to each classifier, we refer
to Table 8 showing the percentage increase/decrease of avg_t and F1 when applying a
feature subset compared to full dimension on the arrhythmia and musk dataset. Except
for PCB-iForestIBFS on both datasets and HS-Trees on musk, the avg_t could be reduced
for all classifiers. Generally, the average runtime could be reduced by approximately 6%
on arrhythmia and 9% on musk. Contrary to PCB-iForestIBFS, as expected, PCB-iForestEIF
significantly benefits by the dimensionality reduction for both datasets. In terms of F1,
again we see a performance degradation for PCB-iForestIBFS but a significant increase for
PCB-iForestEIF on both datasets, especially musk. Generally, the F1 performance could be
increased by approximately 11% on arrhythmia and 30% on musk. Excluding the high value
achieved by PCB-iForestEIF on musk, the percentage increase is still notable with an increase
of 5%. The poor performance of PCB-iForestIBFS utilizing a feature subset only takes place
for those two datasets and wbc. On all other datasets, PCB-iForestIBFS could increase
the F1 while additionally reducing the avg_t with at least one of the subsets. Although
being a projection-based method that is designed to operate on high-dimensional datasets,
LodaTwo Hist. achieves performance boosts on both high-dimensional datasets, arrhythmia
and musk, for avg_t and F1. In summary, it can be said that each individual method reacts
differently to feature subsets and although the performance partially degrades for some of
them, the overall benefit by a combination of classifiers is clearly evident.

Table 8. Individual classifier performance in terms of the percentage increases/decreases of avg_t
and F1 when applying a feature subset compared to full dimensions on the arrhythmia and musk
datasets.

arrhythmia-ID 1 (75%) musk-ID 7 (25%)

% avg_t % F1 % avg_t % F1

RS-Stream −1.30 −11.52 −0.63 10.91
HS-Trees −0.23 69.45 0.14 −2.72
iMForest -8.55 −0.88 −30.00 3.88

LodaTwo Hist. -3.29 10.35 −5.29 27.42
PCB-iForestEIF −22.65 7.40 −18.87 153.89

PCB-iForestIBFS 1.92 −10.40 2.07 −13.92

6.4. Security-Related UNSW-NB15

The results of the time intensive processing-running approximately 38 h-of the four
UNSW-NB15 CSV files for only 3 iterations utilizing 6 online OD methods are presented
in Table 9. Again, LodaTwo Hist. achieves the best results across all measurements for the
avg_t resulting in a notable 1.0 ms to process one data instance. This is faster by a factor of
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approximately 15 compared to the slowest algorithms, iMForest and RS-Stream, achieving
approximately 15 ms. For HS-Trees it takes approximately 11.6 ms and for PCB-iForestEIF
5.6 ms to process one sample. Remarkably, PCB-iForestIBFS operates most competitively to
LodaTwo Hist. with 1.6 ms. Albeit processing samples very efficiently, with respect to the
F1/avg_t metric, LodaTwo Hist. could only outperform our proposed PCB-iForestIBFS for
CSV files #1 and #3.

Table 9. F1 and avg_t results for different online OD algorithms on the four preprocessed CSV files from the UNSW-NB15
dataset (best performing values in bold).

UNSW-NB15 RS-Stream HS-Trees iMForest LodaTwo Hist. PCB-iForestEIF PCB-iForestIBFS

avg_t F1 avg_t F1 avg_t F1 avg_t F1 avg_t F1 avg_t F1

#1 10211 0.059 7892 0.091 9153 0.062 645 0.057 3165 0.084 943 0.080
#2 10522 0.132 8139 0.138 11341 0.140 660 0.111 4067 0.239 1102 0.380
#3 10489 0.353 8174 0.111 11249 0.367 675 0.202 4103 0.594 1209 0.342
#4 6767 0.326 5244 0.169 6292 0.336 438 0.180 2666 0.310 809 0.597

In terms of F1, our proposed PCB-iForest variants outperform the other classifiers on
all four CSV files except for #1 where all algorithms performed poorly. The reason behind
this poor performance on #1 might be the slightly different distribution of attack categories
and the high imbalance of normal and abnormal data. The generic attack category has the
highest proportion of all other classes, on all files. However, on file #2-#4 the proportion
of the generic class is higher with approximately 4% on #2, 17% on #3 and 14% on #3
compared to only approximately 1% on #1. Furthermore, the higher proportion of normal
data with approximately 97% on #1 compared to 92% on #2, 78% on #3, 80% on #4 leads,
in general, to poorer F1 values due to the extreme imbalance of positive and negative
classes [61].

7. Conclusions and Future Work

Over the past few years, the continuous increase in high-volume, high-speed and
high-dimensional unlabeled streaming data has pushed the development of anomaly
detection schemes across multiple domains. Those require efficient unsupervised and
online processing capable of dealing with challenges such as concept drift. The most
popular state-of-the-art outlier detection methods for streaming data were discussed in
this paper, with a focus on algorithms based on the widely known isolation forest (iForest),
and they were compared against thoroughly engineered requirements pointing out the
lack of a flexible, robust and future-oriented solution.

Thus, this article introduces and discusses a novel framework called PCB-iForest that
"wraps around," generically, any ensemble-based online OD method. However, due to its
popularity, the main focus lies on the incorporation of iForest-based methods for which we
present two variants. PCB-iForestEIF is (to the best of our knowledge) the first application of
the iForest improvement called extended isolation forest on streaming data. PCB-iForestIBFS
applies a recently proposed feature importance scoring functionality designed for static
data, which is adapted to function in a streaming fashion. We provide details of PCB-
iForest’s core functionality based on performance counters assigned to each ensemble
component in order to favor or penalize well or poorly performing components. The latter
will be replaced if concept drifts are detected by newly built ones based on samples within
a sliding window. Since drift detection is crucial, in order to regularly update our model if
required, we rely on a recently proposed method denoted as NDKSWIN, but are open to
any multi-dimensional data-centric method.

Our extensive evaluation firstly evaluated the drift detection functionality, which
showed that NDKSWIN is able to detect concept drifts, and even if afflicted by some
additional detections, regularly updates PCB-iForest. Comprehensively comparing both
PCB-iForest methods with state-of-the-art competitors pointed out the superiority of our
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method in most cases. In terms of area under the receiver operating characteristic (AUC)
curve, we achieved the best results on four datasets used by online iForest-based competi-
tors. On the multi-disciplinary ODDS, PCB-iForest clearly outperformed nine competitors
in approximately 50% of the datasets and achieved comparable results in 80% with respect
to the F1 metric and its tradeoff with the average runtime. Utilizing the four most efficient
competitors and our PCB-iForest variants on four security-related UNSW-NB15 datasets
again proved the superiority of our approach. It achieved the highest F1 (we do not include
the poor performance of all classifiers on one dataset) while still being comparable in speed
to the extremely fast Loda algorithm.

PCB-iForest’s current implementation faces two limitations which will be addressed as
part of future work by taking advantage of the framework’s flexible design to incorporate
other ensemble-based OD algorithms and replacing the drift detection method. Thus,
firstly, we will focus on the integration of LodaTwo Hist. into PCB-iForest, given (i) its
rapid processing and (ii) the fact that its classification results could be further improved
by replacing the pair of alternating windows with our approach. Therefore, the set of
histograms will only partially be replaced if concept drift is detected and will not completely
be discarded after each window.

Secondly, drift detection is a crucial component of our approach, since it must reliably
detects concept drifts and should not be prone to a high number of false detections, because
this would degrade both the classification and computational performance. Therefore, our
future work will (i) focus on the improvement of NDKSWIN, since it is possibly prone to
the multiple comparisons problem, and (ii) evaluate the use of other multi-dimensional
data-centric algorithms within PCB-iForest.

More research will also be part of PCB-iForestIBFS’s feature scoring functionality, since
even if it is able to score and rank the best-performing features during runtime, determining
the "optimum" number of features that should be used as a feature subset is still an open
issue. Although the subsets with 25–75% of the whole feature set could achieve promising
results, this is highly dependent on the data source and algorithm type. Thus, a method
will be developed that determines the best feature subset based on the analysis of the
feature scores.
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