THE MEDIAN PROBLEM ON \(k \)-PARTITE GRAPHS

KARUVACHERY PRAVAS

Government Polytechnic College
Koratty-680 308
India

E-mail: pravask@gmail.com

AND

AMBAT VIJAYAKUMAR

Cochin University of Science and Technology
Cochin-682022
India

E-mail: vambat@gmail.com

Abstract

In a connected graph \(G \), the status of a vertex is the sum of the distances of that vertex to each of the other vertices in \(G \). The subgraph induced by the vertices of minimum (maximum) status in \(G \) is called the median (anti-median) of \(G \). The median problem of graphs is closely related to the optimization problems involving the placement of network servers, the core of the entire networks. Bipartite graphs play a significant role in designing very large interconnection networks. In this paper, we answer a problem on the structure of medians of bipartite graphs by showing that any bipartite graph is the median (or anti-median) of another bipartite graph. Also, with a different construction, we show that the similar results hold for \(k \)-partite graphs, \(k \geq 3 \). In addition, we provide constructions to embed another graph as center in both bipartite and \(k \)-partite cases. Since any graph is a \(k \)-partite graph, for some \(k \), these constructions can be applied in general.

Keywords: networks, distance, median, bipartite, \(k \)-partite.

2010 Mathematics Subject Classification: 05C12.

References

 doi:10.1145/245108.245123

 doi:10.1002/jgt.3190040408

 doi:10.1016/S0012-365X(02)00630-1

Received 24 February 2014
Revised 20 June 2014
Accepted 15 August 2014