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Abstract: To meet the low-latency constraints arising from future smart mobile devices,
Internet-of-Things, and 5G applications, major interest is currently given to the integration of
centralized cloud computing and distributed edge computing infrastructures to deliver higher
performance and reliability to edge devices in accessing mobile cloud services. The three-tier
network architecture arising from cloud, cloudlet, and edge-devices can handle miscellaneous
latency requirements for both latency-sensitive and latency-tolerant applications more efficiently
than conventional two-tier networks. In this paper, we primarily focus on the static cloudlet network
planning problem and propose an analytical hybrid cost-optimization framework for optimal cloudlet
placement. We formulate this problem as a convex optimization problem and solve by using
Karush-Kuhn-Tucker (KKT) conditions, and show that this framework can be evaluated without
any scalability issues observed with integer programming based frameworks for large datasets.
Moreover, we derive user-friendly closed form expressions that provide a first-hand estimation
of cloudlet deployment cost depending on a few important network parameters like split-ratio,
population density, and network bandwidth. Finally, we also show that the optimal solution of this
analytical framework can be considered as a tight lower bound of the optimal solutions of integer
programming based frameworks and makes a better cloudlet installation cost estimation compared
to other existing frameworks.

Keywords: cloudlet; cost-minimization; edge computing; fiber-wireless access network; quasi-convex
optimization

1. Introduction

The recent advancements in mobile hardware technology have not only resulted in trendy,
lightweight, and easily portable smart devices from bulky with limited functionality devices, but also
paved the path for applications like augmented reality, cognitive assistance, and face recognition,
to name a few. However, these applications are highly computation intensive, and this limited
computing capability of portable mobile devices like iPhones, Android phones, and Google glasses
are unable to support these applications. Although mobile cloud computing enables mobile devices
to access a shared pool of configurable computational and storage resources, providing ubiquitous,
convenient, and on demand services, large communication latency between mobile devices and remote
clouds still presents a new challenge for low-latency applications that demand 1–100 ms end-to-end
system latency [1]. To achieve this low-latency requirement, the authors of [2] proposed the idea
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of cloudlet computing similar to fog and mobile-edge computing, where cloudlets are considered as
trusted, resource-rich computer or cluster of computers. Nonetheless, cloudlets are designed to be
self-managing and function with low-context-awareness. Hence, they are most suitable for deployment
in adversarial environments [3].

The authors of [4] showed that the system performance in terms of expected latency for the
requested jobs from a single-hop cloudlet server is always better than a distant cloud server for
low-latency applications. Thus, the optimal placement of cloudlets over wireless access networks
seemed to be an important research problem to enhance the system performance. Along with the
wireless access networks, researchers started to focus on optical and fiber-wireless (FiWi) access networks
for edge-computing solutions deployment due to their wide deployment coverage, low cost per bit,
very high data transmission bandwidth, efficient network virtualization and network scalability [5].
The time-division multiplexed passive optical network (TDM-PON) has also been considered as a
front/back-haul support for wireless access network, i.e., access technologies like Radio-over-Fiber
(RoF), WiFi, LTE-A and millimeter-wave (mmWave) can be integrated with optical network units
(ONUs) for a higher user coverage [6].

A static cloudlet placement framework considers that the network is static in time, i.e., it does not
consider user mobility and virtual machine (VM) mobility into account, and identifies optimal cloudlet
locations over an existing access network infrastructure [7]. Nonetheless, most of the existing research
on optimal cloudlet placement formulated integer/mixed-integer linear/nonlinear programming
problems, which are NP-Hard problems. Hence, authors either relied on commercial solvers or
designed heuristic algorithms, e.g., we proposed a mixed-integer nonlinear programming (MINLP)
based hybrid cloudlet placement cost-optimization framework over TDM-PON based FiWi networks
in [8] that relies on commercial solvers. However, both these approaches either suffer from scalability
issues or from a strong bias arising from the particular dataset used for the framework evaluation.
Apart from the computational aspects, these works do not provide any general insight on the behavior
of the frameworks against variation in network parameters. However, these cloudlet placement
frameworks provide exact cloudlet placement locations, but an existing network infrastructure is
required as an input to these frameworks. Thus, when some network service provider intends to install
cloudlet servers while deploying green-field fibers, an estimation of the cloudlet deployment cost appears to
be really useful, but these existing cloudlet placement frameworks fail to do so, as there is no existing
network infrastructure.

To address this gap in existing literature, in this paper, we propose an analytical cost-optimization
framework for the hybrid cloudlet placement based on the assumption that the underlying access
network is homogeneous, i.e., the same split ratio of each TDM-PON and the same number of users
are served by each optical network unit (ONU), and the average distance between all ONUs and
field, remote node (RN) and central office (CO) cloudlets are, respectively, equal. This analytical
cost-optimization framework diminishes the computational complexity of the MINLP based framework
proposed in [8] to a great extent by reducing the entire volume of network to a single TDM-PON based
FiWi branch and provides a quick lower bound of cloudlet deployment cost. Note that we can directly
convert the integer variables of the MINLP formulation in [8] as continuous variables and formulate
a continuous convex optimization problem, which can provide a lower bound to the actual cloudlet
installation cost. However, at this point, we ask the question “can we find a better lower bound for
cloudlet installation cost?”, i.e., if it is possible to find a framework that can find a tighter lower bound
for the cloudlet deployment cost. In this context, we feel that directly using continuous variables to
denote cloudlet installation decisions is not very appropriate and hence propose an alternative method.
Our primary contributions in this paper are as follows:

(i) We formulate a novel constrained convex optimization problem under the network homogeneity
assumption, in which the objective function is linear, but the optimal solution is dictated by a
quasi-convex latency constraint.
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(ii) We solve this modified constrained optimization problem by using KKT conditions on the
Lagrangian functions and derive closed-form expression for the cloudlet deployment cost.

(iii) We use these closed form expressions to illustrate that this optimal solution yields a tight lower
bound for the framework proposed in [8] by making a performance comparison over an urban
deployment area against 1 ms, 10 ms, and 100 ms target latency values with an optical access
network split ratio of 1 : N, N ∈ {4, 8, 16}.

(iv) We also perform a detailed parametric analysis to observe the changes in behavior of cost
optimization framework against different network parameters like split ratio of TDM-PON,
population density and quality-of-service (QoS) latency target.

The rest of this paper is organized as follows. Section 2 provides a brief review of some recent
related works. Section 3 briefly discusses the TDM-PON based FiWi hybrid cloudlet placement
network architecture. Section 4 formulates the constrained optimization problem for optimal
cloudlet placement. Section 5 justifies the validity of the proposed analytical framework. Section 6
presents a detailed parametric analysis and explains the impacts of several network parameters on
cloudlet cost-optimization frameworks. Finally, Section 7 concludes the paper by summarizing our
primary findings.

2. Related Work

In this section, we explore some very recently published works on different aspects of cloudlet
networks. The authors of [9–11] proposed computation offloading frameworks for energy saving in
edge devices, assuming that cloudlets are already deployed over access networks. However, usually
the user distribution under a typical wireless network deployment is very complicated. In addition,
in crowded areas, cloudlets can be accessed by a large number of mobile users, whereas in sparsely
populated areas only a few users will intend to access cloudlets. Thus, optimal placement of cloudlets
over wireless access networks and placement of optimal number of VMs in cloudlets appeared to be
essential research problems to several researchers because these aspects improve the cloudlet resource
utilization significantly [12]. Note that, before the genesis of cloudlets and other edge-computing
paradigms, researchers explored various VM migration techniques to optimize the power consumption
in Network Function Virtualization (NFV) environments under a dynamic traffic scenario and became
aware of its potential benefits [13,14]. The authors of [15] proposed a linear programming solution for
computation offloading by considering the QoS requirements of mobile users while maximizing the
revenue of service providers. The authors of [7,16] proposed an edge-cloud network design framework
that first determines where to install cloudlet facilities among available sites, and then assign sets of
access points to cloudlets that supports VM orchestration as well satisfies service-level agreements.
The authors of [17–21] proposed heuristic algorithms for static network planning to optimally place
cloudlets over the existing wireless access network and followed by dynamic job request allocation to the
cloudlets. The authors of [22,23] focused on minimizing the energy consumption of the mobile devices
while computation offloading to the cloudlets over wireless channels. Several researchers like [24–29]
also took interest to design efficient dynamic resource allocation algorithms.

On the other hand, the authors of [30,31] identified that optical access networks can be useful
in the next few decades to support edge computing technologies. In [32], the authors studied
the performance of centralized and decentralized bandwidth allocation algorithms in a long-reach
optical access network to investigate the feasibility of computation offloading to edge-computing
servers and develop an analytical framework to validate against simulated results. The authors of [1]
presented the implementation of a cloudlet framework for human–machine interactive applications
with control server at the CO of a fiber-based access network. The authors of [33] presented the idea of
cloud and cloudlet empowered FiWi-heterogeneous network architecture for LTE-A and designed a
cloudlet-aware resource management algorithm that aims to reduce the offload latency and prolong
mobile-devices’ battery life. The authors of [34] designed a joint optimization algorithm of multiple
jobs scheduling and investigated lightpath provisioning to minimize average completion time in fog
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computing micro data-centers elastic optical networks. Recently, in [35,36], we provided a high-level
overview of latency-aware cloudlet placement frameworks over TDM-PON based FiWi environment.
In [37], we proposed an MINLP based cost optimization framework for cloudlet placement in the
field locations.

To the best of our knowledge, for the very first time, we proposed a cost-optimization framework
for hybrid cloudlet placement in [8], where cloudlets are allowed to be installed in the field, RN and
at CO locations subject to the capacity and latency constraints. In this work, we formulated an
MINLP based cost-minimization problem and implemented using commercial solvers that use spatial
branch-and-bound algorithms to find a global optimal solution. We applied this framework over
stochastically generated 5 km × 5 km urban, suburban, and rural areas with population densities
4000, 2500, 1500 persons/km2, respectively, with QoS latency targets 1 ms, 10 ms, and 100 ms to
find optimal cloudlet placement locations. Through this exercise, we realized that, although this
framework is capable of providing us the exact cloudlet placement locations, but it does not provide
any general insight about cost-optimal cloudlet deployment strategies, depending on the underlying
network scenario. Moreover, the solution algorithm does not scale very well with large data sets.
These fundamental shortcomings motivated us to develop the analytical cost-optimization framework
proposed in this paper. This analytical framework is based on network homogeneity assumption
and performs an average analysis with a few network parameters e.g., split-ratio, population density,
available bandwidth, and QoS latency requirements. Therefore, it can provide us a first-hand estimation
of the deployment cost and several useful insights on the cost-optimal deployment strategies for any
underlying network scenario, without any scalability issues.

3. Hybrid Cloudlet Placement Architecture

A static cloudlet placement framework considers the network status as static in time, i.e., it neither
takes user mobility nor VM mobility into account and identifies optimal cloudlet locations over an
existing access network infrastructure. This is essential to a cost-optimal network design framework
for cloudlet placement and assignment of ONUs to cloudlets [16]. In this paper, we consider the same
hybrid cloudlet placement framework over the TDM-PON based FiWi access network proposed in [8],
as shown in Figure 1. Recall that we considered tree-and-branch network topology of TDM-PON with
split-ratio 1 : N, where N ∈ {4, 8, 16}. Each ONU has an integrated wireless access point to serve
multiple edge devices by wireless connection. The cloudlets can be suitably installed either in the field,
at RN or at CO locations. Based on the assumption of network homogeneity, instead of analyzing the
entire volume of the network, we can reduce our analysis to just a single TDM-PON based FiWi branch.

Figure 1. The hybrid cloudlet placement framework with cloudlets placed in the field, RN and CO of
TDM-PON based FiWi network.

Each CO has multiple (e.g., 1, 2, . . . , M) optical line terminals consisting of line cards and optical
transceivers. We recall from [8] that ONUs can be connected to the field cloudlets via point-to-point fiber
links (brown links). In that case, a new set of optical transceivers are installed both at the ONU and
corresponding field cloudlet.

We consider the scope of installing cloudlets at RN locations along with the passive splitters. Each
RN cloudlet uses one or multiple new time-shared wavelengths for communication with ONUs in both
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uplink and downlink. In this case, a new set of optical transceivers are also required to be installed
both at the ONU and RN cloudlet.

The CO cloudlets are installed at CO and hence are furthest from the ONUs. However, ONUs can
use the spare bandwidth of the default uplink and downlink channels for communication with the CO
cloudlets and hence no additional transceivers are required to be installed at ONUs or COs. However,
in this work, we restrict our attention only to RN and CO cloudlets, as we showed in our previous
work in [8] that these are the most cost-effective schemes for most practical cloudlet deployment.

4. Optimal Cloudlet Placement Problem

In this section, we present the system model and constrained convex optimization problem
formulation to overcome the scalability issues observed with the MINLP formulation in [8]. Cloud
servers are usually over-provisioned and possess huge computational and storage resources, hence can
be assumed as M/M/∞ queuing system [21]. On the other hand, the cloudlets contain a finite number
of processors with application virtualization that uses a VM to provide an execution environment for
the offloaded job requests [38]. Due to this reason, cloudlets can simultaneously perform different
tasks and hence we consider that the cloudlet hardware is parallel processing enabled in this work [39].
From Google cluster-usage traces, it can be shown that job request arrival and their service times follow
exponential distributions, and hence can be considered as Poisson processes [40]. Note that an M/M/1
queue provides a lower-bound on processing latency as long as a single cloudlet has the aggregated
processing rate of all the processors. Therefore, to compute the average processing latency, we model the
cloudlets as M/M/1 queueing systems [20].

We consider a single TDM-PON based FiWi branch where cloudlets can be installed at RN and
CO locations, as shown in Figure 1. Table 1 briefly outlines the definitions of the required network
parameters. In this work, we consider the maximum job request arrival rate as λmax = pN (jobs/s),
where p denotes the maximum number of users each ONU can serve and N denotes the split-ratio of
each TDM-PON under network homogeneity assumption. The total transmission latency between a
cloudlet and ONU is the sum of to-and-fro data transmission latency and average polling cycle latency,
i.e., Dz =

(
2Lz
vc

+ δz
2

)
, ∀z ∈ {r, o}, where Lz denotes the average length and δz denotes the average

polling cycle latency between cloudlet at z ∈ {r, o} and ONUs, and vc denotes the velocity of light
in optical fiber. We assume that the job request packets from ONUs and job response packets from
cloudlets are highest priority packets in the network, and are processed within one polling cycle of the
TDM-PON standard considered.

The decision variables are defined as follows: xr := the fraction of total incoming workload assigned
to the RN cloudlet, xo := the fraction of total incoming workload assigned to the CO cloudlet, br :=
(binary variable) takes the value of 1 if an RN cloudlet is installed, bo := (binary variable) takes the
value of 1 if a CO cloudlet is installed, and µ := total service rate of all the processors installed at the
RN and CO cloudlets (jobs/s). A summary of all the decision variables are tabulated in Table 2 for
convenience. All these variables are allowed to be only non-negative i.e., ≥ 0. Thus, the objective
function to minimize the overall cloudlet installation expenditures is given below:

min
(

α

ϕ
µ + ξrbr + ξobo

)
, (1)

where the binary variables br and bo follow the boundary constraints xr ≤ br ≤ (xr + 0.999) and
xo ≤ bo ≤ (xo + 0.999). This ensures that a cloudlet is installed at RN and CO only when xr > 0
and xo > 0. In objective function (1), the first component indicates the total cost of installing processors
because ϕ denotes the average number of jobs a single processor can simultaneously process and α

denotes the cost of installing a single processor. As ξr and ξo denote the cost of new infrastructure
installation for cloudlets, the second and third components indicate the cloudlet installation costs at RN
and at CO locations, respectively. However, due to the presence of br and bo, the problem still remains
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a mixed-integer programming problem and cannot be treated as a convex optimization problem.
Therefore, to avoid this issue, we reformulate the problem. Instead of using br and bo in the objective
function, we use only a constant ξz that indicates cloudlet installation cost in general and the modified
objective function is:

min
(

α

ϕ
µ + ξz

)
. (2)

To ensure that all ONUs are served either by RN or CO cloudlet, we consider the constraint below:

xr + xo = 1 or, xo = 1− xr. (3)

Again, to ensure the non-negativity of the decision variables, we also consider the
following constraints:

(µ− pN) ≥ 0 and, 0 ≤ xr ≤ 1. (4)

The latency constraint that ensures that the overall system latency does not exceed DQoS is
given below:

xr

{
1

µxr − pNxr
+ Dr +

Nσul
nλBWr

+
Nσdl

nλBWr

}
(5)

+ xo

{
1

µxo − pNxo
+ Do +

Nσul
BWo − βul

+
Nσdl

BWo − βdl

}
≤ DQoS.

Table 1. Network optimization parameters.

Symbol Definition

α Cost of installing a single processor in a cloudlet

ϕ Average number of jobs a single processor can simultaneously process

ξz New infrastructure installation cost at location z ∈ {r, o}

Lz Average length between cloudlet at z ∈ {r, o} and ONUs

δz Average polling cycle latency between cloudlet at z ∈ {r, o} and ONUs

BWz
Bandwidth of the optical fiber link between cloudlets at z ∈ {r, o} and ONUs for both uplink
and downlink

nλ Number of wavelengths shared by ONUs to communicate to their corresponding RN cloudlet

Dz Propagation latency between cloudlet at z ∈ {r, o} and ONUs

DQoS Maximum value of allowed QoS latency requirement

p Maximum number of mobile users served by each ONU

N Split-ratio of the passive splitter of the TDM-PON branches

σul Average number of bits an ONU sends to cloudlet at z ∈ {r, o} for processing

σdl Average number of bits an ONU receives from cloudlet at z ∈ {r, o} after processing

βul Background load in the uplink of the considered TDM PON

βdl Background load in the downlink of the considered TDM PON

vc Velocity of light within optical fiber (2× 108 m/s)

Here, each of xr and xo are multiplied to compute the weighted average of the processing latency
of the cloudlet, the propagation latency, and the total transmission latency, i.e., the latency to offload total
bits for the job request from ONU to cloudlet, and the latency to receive total bits post-processing by
ONU from cloudlet, respectively for RN and CO cloudlets. Note that 1

µxr−pNxr
and 1

µxo−pNxo
denote

processing latency at RN and CO cloudlets, respectively. The terms Dr and Do denote propagation
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latencies between ONUs and cloudlets at RN and CO locations, respectively. In addition to this,
σul and σdl denote the average number of bits an ONU sends to cloudlet and the average number
of bits an ONU receives from cloudlet. These parameters are used to compute the total uplink and
downlink transmission latency by the expressions

{
Nσul

nλBWr
+ Nσdl

nλBWr

}
and

{
Nσul

BWo−βul
+ Nσdl

BWo−βdl

}
, where

nλ denotes the number of wavelengths ONUs share to communicate to their corresponding RN
cloudlet, BWr and BWo denote the maximum available bandwidth (both in uplink and downlink)
between ONUs and cloudlets at RN and CO, respectively, and βul and βdl denote the background load
in the uplink and downlink, respectively, of the considered TDM-PON.

Table 2. Optimization decision variables.

Variable Definition Type

br Indicates if a cloudlet is installed at RN location binary
bo Indicates if a cloudlet is installed at CO location binary
xr The fraction of total incoming workload assigned to the RN cloudlet real, continuous
xo The fraction of total incoming workload assigned to the CO cloudlet real, continuous
µ Total service rate of all the processors installed in all cloudlets (jobs/s) real, continuous

Now, using the constraint (3), moving denominator terms to numerator and rearranging all terms,
we rewrite constraint (5) as below:

2 + {(A− B)xr + (B− DQoS)}(µ− pN) ≤ 0, (6)

where

A = Dr +
Nσul

nλBWr
+

Nσdl
nλBWr

,

B = Do +
Nσul

BWo − βul
+

Nσdl
BWo − βdl

.

Therefore, the reformulated optimization problem can be written as a standard optimization problem
as follows:

P : min
µ,xr

(
α

ϕ
µ + ξz

)
subject to (µ− pN) ≥ 0,

0 ≤ xr ≤ 1,

2 + {(A− B)xr + (B− DQoS)}(µ− pN) ≤ 0.

Proposition 1. The function f (xr, µ) = 2 + {(A− B)xr + (B− DQoS)}(µ− pN) is non-convex/concave
but quasi-convex in nature.

Figure 2 shows the contours of f (xr, µ) = 0 as a function of the variables xr and µ against different
values of split-ratio N and DQoS = 1 ms. By carefully observing the contour plots, we can understand
the quasi-convex nature of the curves. A more rigorous proof is given in the Appendix A.
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Figure 2. Contour plots of f (xr, µ) = 0 against different values of split-ratio N ∈ {4, 8, 16} and DQoS = 1 ms.

Theorem 1. To find the global optimal solution of the constrained optimization problem with objective function
(2) and constraints (3)–(5), the first-order KKT conditions are necessary and sufficient.

Proof. This theorem can be proven in a straightforward manner. We observe that the objective function
(2) and the constraint (4) are linear and the Proposition 1 shows that the constraint (5) is quasi-concave.
Therefore, if there exists at least one Lagrange multiplier that satisfy the KKT conditions, then any local
optimum is the global optimum for this problem. Hence, the first-order KKT (necessary) conditions
are the sufficient conditions for optimality [41].

Therefore, we write the Lagrangian function for the objective function (2) with constraints (3)–(5)
as follows:

L(xr, µ; λ) =
α

ϕ
µ + ξz − λ1(1− xr)− λ2xr − λ3(µ− pN)

+ λ4[2 + {(A− B)xr + (B− DQoS)}(µ− pN)], (7)

and derive the first-order KKT conditions for optimality from the Lagrangian function (A1) as follows:

∂L
∂µ

=
α

ϕ
− λ3 + λ4{(A− B)xr + (B− DQoS)} = 0, (8)

∂L
∂xr

= λ1 − λ2 + λ4(A− B)(µ− pN) = 0, (9)

∂L
∂λ1

= −xr,
∂L
∂λ2

= −(1− xr),
∂L
∂λ3

= −(µ− pN), (10)

∂L
∂λ4

= 2 + {(A− B)xr + (B− DQoS)}(µ− pN) = 0. (11)

Theorem 2. The cloudlet cost optimization framework installs all cloudlets either at RN locations when A < B,
A < DQoS, or at CO locations when B < A, B < DQoS. However, when both A < DQoS and B < DQoS are
satisfied together, then the cloudlet installation location is chosen based on ξr and ξo.

Proof. From the KKT conditions (10) and (11), we observe that if A < B, A < DQoS, then xr − 1 = 0
or, xr = 1, and λ1 6= 0. This implies that xr 6= 0 and λ2 = 0. To keep the processing time finite, we
must have (µ− pN) ≥ 0, i.e., (µ− pN) 6= 0 and hence λ3 = 0. However, the latency constraint can be
tight, which implies that 2 + {(A− B)xr + (B− DQoS)}(µ− pN) = 0 and λ4 6= 0. Hence, we find the
optimal solutions as below:
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µ∗ =

[
pN +

2
DQoS − A

]
, (12)

λ∗1 =
2α(B− A)

ϕ(DQoS − A)2 , λ∗4 =
α

ϕ(DQoS − A)
. (13)

Therefore, we calculate the optimal cloudlet installation cost as follows, where all cloudlets are
installed at RN locations (x∗r = 1, x∗o = 0):

C1 =
α

ϕ

[
pN +

2
DQoS − A

]
+ ξr. (14)

Again, note that if B < A, B < DQoS, then xr − 1 6= 0 and λ1 = 0, which implies that xr = 0
and λ2 6= 0. We have (µ− pN) 6= 0 and λ3 = 0, same as before. In addition, 2 + {(A− B)xr + (B−
DQoS)}(µ− pN) = 0 and λ4 6= 0. Thus, the optimal solutions are computed as follows:

µ̄∗ =

[
pN +

2
DQoS − B

]
, (15)

λ̄∗2 =
2α(A− B)

ϕ(DQoS − B)2 , λ̄∗4 =
α

ϕ(DQoS − B)
. (16)

These values yield the following optimal cloudlet installation cost, where all cloudlets are installed
at CO locations (x∗r = 0, x∗o = 1):

C2 =
α

ϕ

[
pN +

2
DQoS − B

]
+ ξo. (17)

When both A < DQoS and B < DQoS are satisfied together, we can freely install cloudlets at either
of RN and CO locations, but both of these do not provide the cost optimal solution simultaneously,
if ξr 6= ξo (we consider ξr > ξo). Therefore, in this case, we should compare both C1 and C2 first,
and then choose to install cloudlets at RN locations if C1 < C2, or CO locations if C1 > C2.

It is interesting to note that when A = B, then 0 ≤ xr ≤ 1 holds but x∗r does not have any unique
optimal value. In this situation, we have λ1 = λ2 = λ3 = 0 and the following optimal values:

µ̂∗ =

[
pN +

2
DQoS − A

]
=

[
pN +

2
DQoS − B

]
, (18)

λ̂∗4 =
α

ϕ(DQoS − B)
=

α

ϕ(DQoS − A)
. (19)

Nonetheless, even in this situation, it is best to install cloudlets only at one location because
installing cloudlets at two locations will lead only to a higher cloudlet installation cost as follows:

C3 =
α

ϕ

[
pN +

2
DQoS − B

]
+ ξr + ξo. (20)

Clearly, the above cases show that optimal cloudlet placement framework should install cloudlets
only at either of RN and CO locations, because C3 > C1 and C3 > C2, always.

5. Framework Validation

In this section, we make a performance comparison of the analytical framework derived in
Section 3 with the complete MINLP framework proposed in [8]. To achieve this goal, we proceed
in two steps. Firstly, we stochastically generate multiple instances of network data over a circular
deployment area, i.e., ONU locations, RN locations, and CO location. We evaluate the MINLP based
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framework designed in [8] on these data and obtain an empirical average of the results. Secondly,
we derive a theoretical model for the circular network deployment area such that the circular area can
be reduced to the smallest circular wedge under the network homogeneity assumption. We apply
the suitable expressions derived in Section 3 on this circular wedge and scale up the results to obtain
similar results as obtained from the first step.

5.1. Random Dataset Generation and MINLP Evaluation

We consider a circular area of diameter 4 km and average population density of 4000 persons/km2,
similar to a typical Australian urban area [42]. As we do not have access to any real data of
ONU locations from any network service providers, we use Poisson-point process over this circular
area to generate random ONU locations, which provides almost realistic distribution of ONU
locations [43]. Each ONU can serve a maximum of 1000 users, hence for the average population
density 4000 persons/km2, we need to install 4 ONUs/km2 on an average. We consider 10G-PON
standard such that 10 Gbps data rate is available in both uplink and downlink of the access network.
In this analysis, we consider TDM-PON split-ratio 1 : N, N ∈ {4, 8, 16} and DQoS values of 1 ms,
10 ms, and 100 ms and generate multiple instances of network deployment data. For the sake of
some geometrical advantages, we consider that the CO of all TDM-PON branches are co-located at
the centre of the circular area. To evaluate the MINLP framework, we use the A Modeling Language
for Mathematical Programming (AMPL) platform and the open-source solver COUENNE package
[https://projects.coin-or.org/Couenne].

5.2. Homogeneous Circular Area for Analytical Framework

Now, we reduce the entire circular area to circular wedges by considering the cloudlet deployment
network homogeneous. With Γ ONUs/km2, a total

⌈
ΓπR2⌉ number of ONUs can exist in a circular area

of radius R and hence Ω =
⌈
ΓπR2/N

⌉
TDM-PONs of split-ratio N are sufficient to serve all the ONUs.

Based on this, we reduce the entire circular area as a combination of Ω identical circular wedges
inscribing a central angle, 2θ = 2π/Ω. For example, in Figure 3, we show a case for Γ = 4 ONUs/km2,
R = 2 km, and N = 8, there are Ω = 7 identical circular wedges with 2θ = 2π/7. Due to the network
homogeneity assumption, we can consider that the RNs are located at the centroids of the circular
wedges. The coordinates of the centroid of a circular wedge with radius R and spanned from −θ

to θ are (x̄, ȳ) =
(

2R
3θ sin θ, 0

)
[https://en.wikipedia.org/wiki/List_of_centroids], and the distance

between CO and RN is, Lcr = ( 2R
3θ sin θ) km. The average distance between ONU and RN is derived

as follows:

Lro =
1

θR2

 θ∫
−θ

x̄∫
0

(x̄− x) r dr dθ +

θ∫
−θ

R∫
x̄

(x− x̄) r dr dθ

 . (21)

Evaluating the double integrals in (21) by putting x = r cos θ and x̄ = 2R sin θ/3θ, we obtain the
final expression as follows:

Lro =
16R
27θ3 sin3 θ

(
1− 2

3θ
sin θ

)
. (22)

As we consider the tree-and-branch topology of TDM-PON architecture [44], the total length
between an ONU and CO is the sum of the distances from CO to RN and RN to ONU. Therefore,
the average distance between an ONU and CO (Lco) within the circular wedge is Lco = Lcr + Lro.
The key advantage of reducing the entire circular area to circular wedges is that we can apply the
analytical formulae derived in Section 3 to compute the average cloudlet deployment cost with a single
TDM-PON based FiWi branch and then scale up the results by multiplying with factor Ω to calculate
the total cloudlet deployment cost over the entire circular area.

https://projects.coin-or.org/Couenne
https://en.wikipedia.org/wiki/List_of_centroids
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Figure 3. An example homogeneous network with ONU locations (blue dots), RN locations (black
squares), and CO locations (pink squares) with split-ratio 1:8 over an urban population area with
4000 people/km2 (only the feeder fibers are shown).

5.3. Performance Comparison among the Frameworks

While evaluating either of the expressions for cost values C1, C2, and C3, as required, we need to
validate that our convex optimization problem formulation produces an equivalent result to that of
the original MINLP problem with objective function (1). Hence, we evaluate both the frameworks for
a single TDM-PON based FiWi branch and scale up the results for the entire network. In addition to
this, we need to show that the scaled up results are close enough to the results obtained by using the
MINLP framework on the complete dataset and hence we compare these cost values with the empirical
average of cost values obtained by evaluating the MINLP framework in [8] on the multiple instances of
randomly generated complete datasets. The same values of all the network parameters are considered
as in [8] to maintain a consistency in our analysis. The normalized cost of installing a processor is α = 1
[https://www.lenovo.com/gb/en/workstations/p-series/ThinkStation-P900/p/33TS3TPP900], the
normalized costs of installing a cloudlet at RN is ξr = 6 and at CO is ξo = 5 [https://www.lenovo.com/
gb/en/workstations/p-series/ThinkStation-P900/p/33TS3TPP900], nλ = 1 wavelength of data rate
BWr = 10 Gbps is shared among all N ONUs to communicate with RN cloudlet, the data rate of default
communication link between ONU and CO is BWo = 10 Gbps, the approximate downlink and uplink
background loads are βdl = 7 Gbps and βul = 5 Gbps, respectively [45], each ONU serves p = 1000
users, each cloudlet processor supports ϕ = 2500 VMs [16], average number of bits an ONU sends to
a cloudlet as job requests in uplink σul = 1 MB and average number of bits an ONU receives from a
cloudlet as response of the job requests in downlink σdl = 50 KB [4]. The average polling cycle latency
parameters are δr = δo = 0.5 msec [46].

In Figure 4, we present the comparison among normalized cloudlet deployment cost/100 users
over the considered circular deployment area by using the MINLP framework on the complete dataset,
by using the MINLP framework on a single TDM-PON branch and scaling up the results, and scaling
up the results from the newly proposed analytical framework. In this analysis, we consider TDM-PON
split-ratio 1 : N, N ∈ {4, 8, 16} and DQoS values of 1 ms, 10 ms, and 100 ms. The optimal cost values
obtained by using analytical framework is expected to be lower bounds to the actual MINLP framework.
The workload assignment fractions xr and xo are not present in the objective function, but only in the
latency constraint; hence, this newly designed framework puts more importance towards meeting
the latency constraint. Moreover, this analytical framework is better in terms of estimating cloudlet
deployment cost under low-latency requirement than simply converting the integral decision variables
of the framework in [8] into continuous decision variables.

https://www.lenovo.com/gb/en/workstations/p-series/ThinkStation-P900/p/33TS3TPP900
https://www.lenovo.com/gb/en/workstations/p-series/ThinkStation-P900/p/33TS3TPP900
https://www.lenovo.com/gb/en/workstations/p-series/ThinkStation-P900/p/33TS3TPP900
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Figure 4. Comparison of normalized cloudlet deployment cost/100 users with population density
4000 persons/km2 computed using the modified analytical formula designed in this paper with the
complete MINLP framework proposed in [8] and MINLP on a single TDM-PON FiWi branch against
DQoS values of 1 ms, 10 ms, and 100 ms with (a) split-ratio 1:4; (b) split-ratio 1:8; and (c) split-ratio 1:16.

6. Results and Discussion

In this section, we perform a parametric analysis and discuss some of the key insights obtained
about the behaviour of the analytical cost optimization framework against variations in values of
different network parameters.

In Figure 5, we present the workload distribution among the RN and CO cloudlets against
TDM-PON split-ratio over a circular area with diameter = 4 km, population density = 4000 people/km2,
and DQoS = 1 ms. With smaller split-ratio values, e.g., 1:4 and 1:8, the total workload can be processed
by CO cloudlets, hence xo = 1 and xr = 0. Thus, all cloudlets are installed at CO locations and none
at RN locations. However, for a higher split-ratio of 1:16, there appears a bandwidth crunch for the
ONUs to access the CO cloudlets. Therefore, under this condition, the cost optimization framework
chooses to install cloudlet at RN locations over CO locations and the same is observed from the plot
as well.

Figure 5. Workload distribution among RN and CO cloudlets against TDM-PON split ratio for a
circular area with diameter = 4 km, population density = 4000 people/km2, and DQoS = 1 ms.

In Figure 6, we show the variation of normalized cloudlet deployment cost/100 users against
TDM-PON split-ratio 1 : N, where N ∈ {4, 8, 16} with DQoS = 1 ms. We vary the population density
from 1000 to 4000 people/km2 in steps of 1000. From these plots, we observe that the normalized
cloudlet deployment cost decreases with increase in split-ratio from 1:4 to 1:8, because a lower number
of TDM-PON branches are required to handle the workload and all cloudlets are installed at same
CO locations. However, there is a slight increase in the normalized cost as the split ratio is further
increased to 1:16. This happens because the framework chooses to install all cloudlets at RN locations,
where the cost of cloudlet installation is higher than that of CO locations. We further observe that the
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normalized cost is higher for lower population density with smaller split-ratio, e.g., with split-ratio 1:4,
normalized cost for 1000 people/km2 is higher than that of 4000 people/km2. However, this behaviour
is reversed with a higher split-ratio 1:16.

Figure 6. Variation of normalized cloudlet deployment cost/100 users against TDM-PON split-ratio
1 : N for a circular area with diameter = 4 km and DQoS = 1 ms.

Figure 7 shows the variation of normalized cloudlet deployment cost/100 users against population
density of the considered circular cloudlet deployment area. We vary the TDM-PON split-ratio 1 : N
where N ∈ {4, 8, 16} and DQoS = 1 ms. We observe that the overall cloudlet installation cost increases
with increasing population density, but the normalized cost/100 users slowly decreases for a particular
split-ratio. Whenever a new TDM-PON is added, we observe a sudden jump in the normalized cost.
In general, the normalized cost is minimum with split-ratio 1:8 and maximum with split-ratio 1:4.

Figure 7. Variation of normalized cloudlet deployment cost/100 users against population density of
the cloudlet deployment circular area with diameter = 4 km and DQoS = 1 ms.

Next, Figure 8 shows the variation of normalized cloudlet deployment cost/100 users with
population density 4000 people/km2 against TDM-PON split-ratio 1 : N where N ∈ {4, 8, 16} while
varying DQoS. These plots follow similar trends as we observed in Figure 6. The normalized cloudlet
deployment cost first decreases as split-ratio increases from 1:4 to 1:8, and then the normalized
cost slightly increases again for the split-ratio 1:16. Note that the normalized costs for a stringent
QoS requirement of DQoS = 1 ms are highest and gradually continue to become lower as the QoS
requirement is relaxed to DQoS = 100 ms. This behaviour is observed due to the fact that a higher
amount of computational resources (i.e., processors) are required to meet a stringent DQoS = 1 ms than
a lenient DQoS = 100 ms.
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Figure 8. Variation of normalized cloudlet deployment cost/100 users against TDM-PON split-ratio
1 : N for a circular area with diameter = 4 km and population density = 4000 people/km2.

Finally, in Figure 9, we show a comparison of normalized cloudlet deployment cost/100 users
against DQoS = 1 ms with homogeneous and non-homogeneous network deployment. We choose the
same circular area with a diameter of 4 km and population density 4000 people/km2. To simulate
non-homogeneity, we choose a bunch of TDM-PONs and randomly vary their split-ratios such
that their mean is equal to the corresponding homogeneous split-ratio 1 : N where N ∈ {4, 8, 16}.
For example, for a homogeneous split-ratio of 1:8, we uniformly choose split-ratios of the TDM-PONs
from the interval [6, 10] such that their mean is 8, and so on. We observe from our simulated results
that the performance of the non-homogeneous framework is not worse than 5% of that with the
homogeneous framework.

Figure 9. Comparison of normalized cloudlet deployment cost/100 users with homogeneous
and non-homogeneous network over a circular area with diameter = 4 km, population density =
4000 people/km2, and DQoS = 1 ms.

7. Conclusions

In this paper, we have designed an analytical cost optimization framework that provides a
tight lower bound of the optimal deployment cost for the integer/mixed-integer programming
based cost-optimization frameworks on a hybrid cloudlet placement architecture, where cloudlets
are optimally placed either at RN or at CO locations of a TDM-PON based FiWi access network.
As we have formulated a constrained convex optimization problem which is analytically solvable
by using KKT conditions, this framework can efficiently operate on large datasets without requiring
any heuristic algorithms. This analytical framework not only resolves the scalability issues of the
MINLP based framework proposed in [8], but also provides a tight lower bound of the integer
programming based framework. We have considered multiple instances of a circular area of diameter
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4 km with population density 4000 people/km2 to evaluate the MINLP framework and the analytical
framework proposed in this paper. Thus, we have verified that the optimal costs obtained using the
analytical frameworks lie within 10% of the optimal costs obtained by using the MINLP framework.
We have also performed a parametric analysis to show the impact on cloudlet deployment cost of
various network parameters like user density, network architecture, TDM-PON split-ratio and QoS
requirements. Overall, our proposed analytical framework provides valuable guidance to network
and service operators on a good first-hand estimate of cloudlet deployment cost. Results from our
analysis also clearly point to the fact that, in the evaluation of optimal cost, the latency constraint plays
a dominant role.
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supervision, G.D. and E.W.; writing—review and editing, G.D. and E.W.

Funding: This research received no external funding.
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Appendix A. Proof of Proposition 1

Proof. We compute the first-order partial derivatives of f (xr, µ) with respect to xr and µ as follows:

∂ f
∂xr

= (A− B)(µ− pN),

∂ f
∂µ

= {(A− B)xr + (B− DQoS)}.

To analyze the convexity of the function f (xr, µ), we evaluate the Hessian matrix [41] as follows:

H =

 ∂2 f
∂x2

r

∂2 f
∂xr∂µ

∂2 f
∂µ∂xr

∂2 f
∂µ2

 =

[
0 (A− B)

(A− B) 0

]
, (A1)

det(H) = −(B− A)2.

Clearly, H is not positive semi-definite as det(H) < 0, and hence f (xr, µ) is a non-convex/concave
function [41]. Nonetheless, a function may posses local maxima and minima. Thus, we evaluate the
bordered Hessian matrix [41] for the function f (xr, µ) as follows:

HB =


0 ∂ f

∂xr

∂ f
∂µ

∂ f
∂xr

∂2 f
∂x2

r

∂2 f
∂xr∂µ

∂ f
∂µ

∂2 f
∂µ∂xr

∂2 f
∂µ2

 , (A2)

det(HB) = −2(B− A)2(µ− pN){(B− A)xr − (B− DQoS)}.

We can easily show that, when the constraint (6) holds, then det(HB) < 0. Therefore, we can
consider f (xr, µ) as a quasi-convex function, asHB is of odd-order (= 3) [41].
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