
 information

Article

Transfer Learning for Named Entity Recognition in
Financial and Biomedical Documents

Sumam Francis 1, Jordy Van Landeghem 2 and Marie-Francine Moens 1

1 Department of Computer Science, Language Intelligence & Information Retrieval Lab (LIIR),
3000 KU Leuven, Belgium

2 Contract.fit, 1000 Brussels, Belgium
* Correspondence: sumam92@gmail.com

Received: 30 May 2019; Accepted: 25 July 2019; Published: 26 July 2019
����������
�������

Abstract: Recent deep learning approaches have shown promising results for named entity
recognition (NER). A reasonable assumption for training robust deep learning models is that
a sufficient amount of high-quality annotated training data is available. However, in many real-world
scenarios, labeled training data is scarcely present. In this paper we consider two use cases: generic
entity extraction from financial and from biomedical documents. First, we have developed a character
based model for NER in financial documents and a word and character based model with attention
for NER in biomedical documents. Further, we have analyzed how transfer learning addresses the
problem of limited training data in a target domain. We demonstrate through experiments that
NER models trained on labeled data from a source domain can be used as base models and then
be fine-tuned with few labeled data for recognition of different named entity classes in a target
domain. We also witness an interest in language models to improve NER as a way of coping with
limited labeled data. The current most successful language model is BERT. Because of its success in
state-of-the-art models we integrate representations based on BERT in our biomedical NER model
along with word and character information. The results are compared with a state-of-the-art model
applied on a benchmarking biomedical corpus.

Keywords: deep learning; entity extraction; named entity recognition; transfer learning; fine-tuning;
minimum training data

1. Introduction

Lack of sufficient annotated data often limits the applicability of deep learning (DL) models to real
life problems. However, efficient transfer learning (TL) strategies help to utilize valuable knowledge
learned with sufficient data in one task (source task) and transfer it to the task of interest (target task).

In this work we focus on a generic named entity recognition (NER) system that uses the
representation learning capability of deep neural networks. NER refers to a subtask of information
extraction in which entity mentions in an unstructured text are semantically labeled into pre-defined
categories (e.g., in the sentence “Benjamin Franklin is known for inventing the lightening rod”,
“Benjamin Franklin” has to be labeled with the tag Person). In this paper NER is evaluated with two
main use cases—extraction of entity names from financial documents and from biomedical documents.

The aim of the first use case is to develop a generic NER deep learning system that is
capable of recognizing entities in business documents including invoices, business forms and emails.
Some examples of important named entities used in the financial documents are invoice sender name,
invoice number, invoice date, International Bank Account Number (IBAN), amount payable and structured
communication. The overall goal of this use case is to research and test prototypes for a self-learning
SaaS platform for simplification of data-intensive customer interactions in industries such as energy,

Information 2019, 10, 248; doi:10.3390/info10080248 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://dx.doi.org/10.3390/info10080248
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/10/8/248?type=check_update&version=2

Information 2019, 10, 248 2 of 17

telecommunications, banking or insurance. The format of business documents from different service
providers varies widely with respect to the information contained within it, the locations where it
occurs, the formatting used, terminology used, and variations in context.

The growing biomedical literature requires efficient methods of text mining and information
extraction tools that can extract structured information from the text for further analysis. The second
use case has as objective the development and application of a generic NER system that recognizes
biomedical entities like genes, proteins, chemicals, diseases and the like from biomedical text sequences.

In both cases we want to port a model learned in one domain to a target domain that is
characterized by a limited number of labeled training examples. Multiple additional challenges
apply. The difficulty posed by the documents in the financial domain is the noisy non-segmented
OCRed text which has to be used as the training data. The documents in the biomedical domain are
characterized by spelling variants of the mentioned entities.

Neural network based deep learning models have become popular for processing unstructured
(e.g., language) and semi-structured data. Deep learning is concerned with automatically learning
the representations of the inputs where patterns at different levels of detail can be recognized and
represented, a process which is referred to as representation learning. In particular, recurrent neural
networks (RNNs) are capable of learning contextualized representations of text sequences. Information
extraction from text using deep learning avoids the need for humans to formally specify knowledge,
and even avoids the need for feature engineering. Most state-of-the-art named entity recognition (NER)
systems use word level and character level representations (embeddings) to perform named entity
extraction and classification (dos Santos and Guimarães [1]).

A word or character is mapped to a continuous vector representation (embedding) that captures
the context of the word and character respectively. While word based models need accurate token-level
segmentation, character level models have the ability to perform accurate labelling of tokens or
character units without the need for a-priori word segmentation (Kann and Schütze [2]).

The aim is that the extraction system can be trained with few manually annotated training data,
especially when a trained model needs to be ported to a novel domain (e.g., another provider of
documents to be analyzed, other entity classes to be recognized).

We witness a rising interest in language models to improve NER in a transfer learning
setting. The current most successful language model is BERT (Devlin et al. [3]). We integrate
BERT representations to analyse its impact when using it along with separate character and word
representations.

The research questions posed in the paper are:

• How to train models (e.g., character based neural networks) with small sized semi-structured
labeled datasets (e.g., contracts and invoices)?

• What is the impact of transfer learning when a NER model that is trained on a source dataset
labeled with one type of entities is ported to a target dataset to be labeled with another but related
entity type and only few labeled documents in the target domain are available?

• What is the impact of using the BERT language model along with character and word character
level representations?

The major contributions presented in the paper are: (a) Development of an efficient pipeline for
entity extraction from financial documents that is efficient at runtime and easily parameterizable, and
which includes efficient segmentation, filtering of entity elements and finally labelling and extraction;
(b) Effective document segmentation by splitting a document text into meaningful and contextual
sub-segments; (c) Easy porting from models trained on one task to another task using transfer learning;
and (d) Comparison of the impact of integrating the BERT language model with the character and
word level representations. The impact of using limited training data in the target domain has been
investigated by using different percentages of target training examples.

Information 2019, 10, 248 3 of 17

2. Related Work

NER is a well studied task in natural language processing, yet it has mostly been studied in
the frame of recognition of entity types that refer to persons, organizations, locations, or dates.
Traditionally NER is seen as a sequence labeling task in which word tokens are labeled with the
corresponding named entity class (often using a BIO-format referring to respectively the Beginning,
Intermediate or Outside class token). There has been a lot of previous work on optimizing neural
architectures for sequence labeling. Collobert et al. [4] introduced one of the first task-independent
neural sequence labeling models using a convolutional neural network (CNN). They were able to
achieve good results on other sequence labelling tasks such as Part-of-Speech (POS) tagging, chunking,
and semantic role labeling (SRL) without relying on hand-engineered features. Huang et al. [5] describe
a bidirectional long short-term memory network (LSTM) model, a type of recurrent neural network
(RNN), with a conditional random field (CRF) layer, which includes hand-crafted features specialised
for the task of named entity recognition. The architecture of our baseline sequence labelling word model
for biomedical data uses a similar bidirectional LSTM (BiLSTM) and CRF with batch normalization.

Character level models are capable of capturing morpheme patterns and hence improve the
generalisation of the model on both frequent and unseen words. Kim et al. [6] have implemented
a language model with a convolutional neural network (CNN) and LSTM architecture using characters
as input while the predictions are made at the word level. We use similar neural architectures when
extracting named entities from the financial and biomedical documents. For the biomedical domain,
we chose to implement word based models and also combinations of word and character based models
firstly due to the availability of pretrained word embeddings trained on huge biomedical corpora and
general Wikipedia text which considerably mitigates the problem of out-of-vocabulary (OOV) words.
Character level models are semantically more void, yet morphologically more informed, and thus word
based and character based models are hypothesized to perform better for biomedical domain texts.

Cao and Rei [7] proposed a method for learning both word embedding and morphological
segmentation with a bidirectional RNN over characters. Ling et al. [8] have proposed a neural
architecture that replaces word embeddings with dynamically constructed character based
representations. Lample et al. [9] describe a model where the character level representation is combined
with a word embedding through concatenation. Miyamoto and Cho [10] have also described a related
method for the task of language modelling, combining character and word embeddings using gating.

Transfer learning is a machine learning technique where a model pre-trained for one task is reused
for a second related task that has less labeled training data. Transfer learning in general improves the
generalisation of the model. In this paper we apply transfer learning in two different use cases, that is,
NER in financial and biomedical documents. We study how a neural model for NER of one entity type
which is structurally or contextually similar to some other entity type can avoid the need for training
the target model from scratch. For example, we transfer knowledge from a trained model that has
learned to properly extract the entity invoice date to the extraction of a related entity expiration date.
This is a case of learning a new task where the character pattern of the new entity type is similar but
the context in which this entity occurs is different.

Model based transfer uses the similarity and relatedness between the source task and the target
task by modifying the model architectures, training algorithms, or feature representations. For example,
Ando and Zhang [11] propose a transfer learning framework that shares structural parameters across
multiple tasks, and improve the performance on various tasks including NER. Collobert et al. [4] present
a task-independent CNN and employ joint training to transfer knowledge from NER and POS tagging to
sentence chunking. Peng and Dredze [12] study transfer learning between NER and word segmentation
in Chinese based on RNN architectures. We have exploited model based transfer learning in our models
to improve the target task models by investigating different levels of freezing and fine-tuning for the
target architecture based on Yang et al. [13], Rodriguez et al. [14] and Lee et al. [15].

We witness an interest in language models to improve NER as a way of coping with limited
labeled data. The current most successful language model is BERT (Devlin et al. [3]). BERT makes use

Information 2019, 10, 248 4 of 17

of a Transformer architecture, which integrates an attention mechanism that learns contextual relations
between words (or sub-words) in a text.

BioBERT (Lee et al. [16]) provides a pre-trained biomedical language model trained with the
BERT architecture that can be used in various biomedical text mining tasks such as NER. Because of its
success in state-of-the-art models we integrate embeddings obtained with the BERT language model
in our NER models for biomedical texts.

3. Methodologies

3.1. Character Level Neural Network

The basic character level neural network (see Figure 1a) receives a sequence of characters
(c1, . . . , cT) as input, and predicts a label corresponding to each of the input characters. The characters
are either encoded as one-hot encodings or are mapped to randomly initialized character embeddings
(y1, . . . , yT). Next, the one-hot encoding or the character embedding is given as input to a bidirectional
LSTM whose forward and backward components moving in opposite directions through the text are
concatenated and thus create context-specific representations.

h f orward
t = LSTM(yt, h f orward

t−1) (1)

hbackward
t = LSTM(yt, hbackward

t+1) (2)

ht = [h f orward
t ; hbackward

t] (3)

Finally, to produce label predictions, we can use either a softmax layer or a conditional random
field layer. The softmax calculates a normalised probability distribution over all the possible labels
for each word. We can also use a CRF as the output layer, which conditions each prediction on the
previously predicted label (Lafferty et al. [17]). In this architecture, the last hidden layer is used to
predict probability scores for each character to predict the possible target labels. Finally, the Viterbi
algorithm (Sakharov and Sakharov [18]) is used to find an optimal sequence of weights. We call this
model CharacterModel. To optimise this model we minimise the categorical cross-entropy.

E = −
T

∑
t=1

log (P(yt = l|ht)) (4)

where P(yt|ht) is the probability of the label of the tth character yt being l.

3.2. Word Level Neural Network

A basic word level neural network (see Figure 1b) for sequence labeling receives a sequence of
word tokens (w1, . . . , wT) as input, and predicts a label corresponding to each of the input tokens.
The tokens are first mapped to a vector resulting in a sequence of word embeddings (x1, . . . , xT). Next,
the embeddings are given as input to a bidirectional LSTM whose forward and backward components
moving in opposite directions through the text are concatenated and thus create context-specific
representations. We call this model WordModel.

h f orward
t = LSTM(xt, h f orward

t−1) (5)

hbackward
t = LSTM(xt, hbackward

t+1) (6)

ht = [h f orward
t ; hbackward

t] (7)

Information 2019, 10, 248 5 of 17

We add an extra narrow hidden layer on top of the biLSTM, which allows the model to detect
higher-level feature combinations.

dt = tanh(Wdht) (8)

where Wd is the corresponding weight matrix.

(a) CharModel (b) WordModel (c) WordCharacter

(d) WordCharacterAttention (e) WordCharacterBERT

Figure 1. Architectures of the word, character and BERT level representation models.

Finally, to produce label predictions, we can use either a softmax layer or a CRF layer. Further the
Viterbi algorithm (Sakharov and Sakharov [18]) is used to find an optimal sequence of weights.
To optimise this model and the models described in the following two sections, we minimise the
categorical cross-entropy, i.e., the negative log-probability of the correct labels.

E = −
T

∑
t=1

log (P(yt = l|dt)) (9)

where P(yt|dt) is the probability of the label of the tth word (yt) being l.

3.3. Word and Character Level Neural Network

Sequence labeling architectures use word embeddings for capturing similarity but suffer when
handling previously unseen or rare words. By adding character level information to such models,
the model is able to infer representations for previously unseen words and obtain syntactic information
at the morpheme level. Consequently, they can identify morphological similarities between different
words. In general, each word is broken down into individual characters, these are then mapped to
a sequence of character embeddings (c1, . . . , cR), which are passed through a bidirectional LSTM.

hl, f orward
i = LSTM(ci, hl, f orward

i−1) (10)

hl,backward
i = LSTM(ci, hl,backward

i+1) (11)

We then use the last hidden vectors from each of the LSTM components, concatenate them
together and pass the result through a separate non-linear layer. We call this model WordCharacter
model (see Figure 1c).

ht = [hl, f orward
i ; hl,backward

i] (12)

Information 2019, 10, 248 6 of 17

The output is a joint word representation built from individual characters. We now have two
alternative feature representations for each word, where x(t) is an embedding learned on the word
level, and k(t) is a representation built from individual characters at the tth word of the input text.

Then according to Lample et al. [9], one possible approach is to concatenate the two vectors and
use this as the new word level representation for the sequence labeling model:

xconcat = [x; k] (13)

3.4. Word and Character Level Neural Network with Attention

This architecture combines a character level representation with a word embedding using a gating
mechanism (Rei et al. [19]), also referred to as attention. We call this model WordCharacterAttention
(see Figure 1d).

This allows the model to dynamically decide which source of information to use for each word.
Here instead of just concatenating the word and character level representation the two vectors are
added together using a weighted sum, where the weights are predicted by a two-layer network.

z = σ
(

W(3)
z tanh

(
W(1)

z x + W(2)
z k

))
(14)

where W(1), W(2) and W(3) are weight matrices for calculating z and σ is a sigmoid logistic function.
z is the weight matrix between word representation x and character representation k.

xatt = z · x + (1− z) · k (15)

3.5. Word- and Character Level Neural Network Combined with the BERT Language Model

BERT (Devlin et al. [3]) can be used to obtain pre-trained word representations based on a language
model. The BERT model that we use is BERT-Base uncased (https://github.com/google-research/bert)
which uses 12 layers of transformer encoders, 768 hidden layers and 12 attention heads. The output of
each layer given a word as input can be considered as a word embedding. One of the best performing
choices—also used in this paper—is to sum the word embedding of the last 4 layers to obtain the BERT
model embedding. To obtain the word embedding from BERT’s pre-trained model, we make use of
a public resource (https://github.com/imgarylai/bert-embedding).

In our model the neural network receives a sequence of word tokens (w1, . . . , wT) as input,
and predicts a label corresponding to each of the input tokens. The tokens are first mapped to
a vector resulting in a sequence of word embeddings (x1, . . . , xT). The tokens are also mapped to
a sequence of vectors using BERT embeddings. The character level representations of the words are also
used. The word representation, character representation and BERT representation are concatenated.
Next, the concatenated embedding is given as input to a bidirectional LSTM whose forward and
backward components moving in opposite directions through the text are concatenated and thus
create context-specific representations. We call this model WordCharacterBERT (see Figure 1e). x(t) is
an embedding learned on the word level, k(t) is a representation built from individual characters at
the tth word of the input text and z(t) is an embedding learned by the BERT model.

Then by concatenating the three vectors we obtain the new word level representation that will be
used in the sequence labeling NER model (see below):

xconcat = [x; k; z] (16)

3.6. Transfer Learning

Most deep learning models are specialized in a particular domain or even a specific task for which
they are trained. Transfer learning goes beyond specific tasks and domains. It leverages knowledge
from pre-trained models and uses the acquired knowledge to solve new problems. In task related

https://github.com/google-research/bert
https://github.com/imgarylai/bert-embedding

Information 2019, 10, 248 7 of 17

transfer learning, we use the knowledge in the form of features or weights learned from previously
trained models for training newer models for the target task which is related. If we have significantly
more labeled data for task T1, we utilize its model learned from this data and generalize this knowledge
(features, weights) for task T2 (which has significantly less labeled data). In general instead of training
a deep learning model on the target task from scratch, transfer learning allows us to utilize a network
trained on a different task and use it on a target task by adapting it. There are different transfer learning
strategies that are used in the academic community.

Let Ds = (Xs
j , Ys

j) where j = 1 to N be the training set of N samples from the source dataset and
Dt = (Xt

j , Yt
j) where j = 1 to M be the training set of M samples from the target domain. The Bi-LSTM

encodes word and character embeddings into hidden vectors H = (h1, h2, . . . , ht). The final CRF
layer decodes hidden vectors H to a label sequence y = (y1, y2, . . . , yn). Our goal is to improve
label prediction accuracy on the target domain Dt by using the knowledge learned from the source
domain Ds.

Using pre-trained models as Feature Extractors is one common strategy of using transfer learning.
Deep learning systems and models are layered architectures that learn different features at different
layers. This layered architecture allows us to utilize a pre-trained network without its final layer as
a fixed feature extractor for other tasks. Recently language models pre-trained on domain data have
been used as feature extractors for different NLP tasks (Devlin et al. [3], Lee et al. [16], Howard and
Ruder [20]). In this paper we use a pretrained BERT model for obtaining BERT token embedding
(see Figure 2c). The Bi-LSTM further encodes the concatenation of the BERT, word and character
representations into hidden vectors. The final CRF layer decodes the hidden vectors to a label sequence.

Using a pre-trained model for Fine-Tuning is another setting for transfer learning.
Erhan et al. [21] and Collobert et al. [4] have shown that initializing parameters with values of other
supervised or unsupervised models often improves model convergence. In this framework of transfer
we first train a model for a source task and use the learned parameters to initialize the model parameters
for training the target task. This strategy is applicable for both same label set as well as disparate label
set transfer. We transfer entire network parameters if there exists a label mapping between source and
target label sets, otherwise we only share model parameters up to the second last layer of the network.
The level of freezing and fine-tuning of different layers in the base model depends on the target task.
Another common setting is using both source and target domain data in a multitask setting.

For sequence labelling tasks, the two tasks can have label sets that can be mapped (similar) to each
other or very different label sets. If the two tasks have similar label sets, then we share all the model
parameters and feature representations in the neural networks, including the word and character
embeddings, the word level layer, the character level layer, and the CRF or softmax layer similar to
Giorgi and Bader [22] and Yang et al. [13].

• Transfer learning setting A (TL-A): If the two tasks make use of different label sets, then we remove
the parameter sharing in the CRF or softmax layer. So now each task learns a separate CRF or
softmax layer (see Figure 2a). The impact of freezing and fine-tuning different layers in the base
model can also be studied.

• Transfer learning setting B (TL-B): In Figure 2b, only the character and word embedding are shared,
all other parameters are fine-tuned. This can be used to study the impact of using certain types of
embeddings.

• Transfer learning setting C (TL-C): In Figure 2c we study the impact of using the BERT embeddings
along with character and word-character level representations when transferring from one task to
another. Here each task learns a separate CRF or softmax layer. All other layers are shared.

• Transfer learning setting D (TL-D): In Figure 2d we again use the BERT embedding along with
the character and word-character level representation, and only the resulting concatenated
representation at the word level is shared.

Information 2019, 10, 248 8 of 17

(a) Transfer learning setting A (b) Transfer learning setting B

(c) Transfer learning setting C (d) Transfer learning setting D

Figure 2. Transfer learning settings—The black stripped box indicates the shared parameters and the
red stripped box indicates the fine-tuned parameters for a specific task.

For fine-tuning the base model, some implementation tricks mentioned in Howard and Ruder [20] are
used. Discriminative fine-tuning ensures that instead of using the same learning rate for all layers of the
model, each layer is fine-tuned with different learning rates. This is done by first choosing the learning rate
ηl of the last layer, by fine-tuning only this last layer on the development set and then using ηl− 1 = ηl/2.6
as the learning rate for lower layers. This choice of learning rate was inspired by the paper Howard and
Ruder [20] where they choose this rate heuristically after performing several experiments for fine-tuning
the language model. We used a learning rate of ηl = 00000.1 for the last layer. For subsequent layers the
learning rate was chosen according to the learning rate scheme defined above. Gradual unfreezing is
another trick which ensures that the pre-trained model is gradually unfreezed starting from the last layer.
Rather than fine-tuning all layers at once, which can result in huge forgetting, we gradually unfreeze the
model starting from the last layer as this contains the least general knowledge. Hence we first unfreeze the
last layer and fine-tune all unfrozen layers for one epoch. We further unfreeze the next lower frozen layer
and repeat this, until all layers are fine-tuned.

4. Experiments and Discussion

4.1. Use Case 1: Financial NER Extraction

4.1.1. Dataset

The financial dataset is comprised of 3000 documents which are mainly invoices from different
service providers like insurance, telecommunications, banking and tax companies. Typical entities
of interest to be extracted are the IBAN of the beneficiary, invoice number, invoice date and due date,

Information 2019, 10, 248 9 of 17

various amounts like the total inclusive amount, total exclusive amount and total VAT amount, structured
communication, company name, company address and other related fields required to book or pay an
invoice (see Table. 1). The patterns that contribute to the recognition of the entities include the character
patterns of the entity itself and the patterns of the context of the entity.

4.1.2. Data Preprocessing

We first apply optical character recognition (OCR) to convert the documents into a textual
representation with the additional goal of preserving the original document layout as well as possible
(see Figure 3).

The character vocabulary is constrained to alpha-numeric characters and some special symbols
(such as valuta symbols).

Invoice Image OCRed Invoice Segmented Invoice Filter Output Labelling Output

Figure 3. Pipeline for NER in financial documents.

Table 1. An example of common entity formats that appear in the invoices.

Entity Example

IBAN BE01 3456 7890 1234
Invoicedate 03/04/19

Totalinclusive €56.78
Invoicenumber F12345678

Structured-communication +++170/0768/36648+++

4.1.3. Line Segmentation

The document-text line output is further processed by the document line segmentation algorithm
which segments the document into meaningful line segments (see Figure 3). We have devised
a parameterizable (e.g., minimum and maximum segment length) segmentation algorithm that exploits
the document’s layout structure.

4.1.4. Filter Network

The filter network is a binary classifier which filters out the segments having high probability
of containing the element of interest from the segmented invoices. Its neural network architecture
comprises of an input layer, 2 stacked Bidirectional LSTM layers and a fully connected layer with batch
normalization applied between the layers (see Figure 4). The line sequences are read at the character
level. The input is a one hot encoding or randomly initialized character embedding. The advantages
of using character level deep learning models include alleviating vocabulary problems, removing the
computational bottleneck at the output of our model, and being resilient to spelling/OCR mistakes
and to rare or unseen codes or words. The morphological information captured using character models
are particularly beneficial in invoices where we mainly deal with entities with near-unique patterns.

Input Layer BLSTM
BatchNorm

BLSTM
BatchNorm

FullyConnLayer Softmax

Figure 4. Architecture of the filter network.

Information 2019, 10, 248 10 of 17

At the output layer a softmax activation outputs the probability of the correct class. All segmented
text lines which have prediction probability greater than 0.5 are filtered out and passed to the next
neural network.

4.1.5. NER: Sequence Labelling

The second neural network aims at predicting the named entity class label of each character.
We have opted for the BIO-labelling scheme for encoding the target labels (see Table 2).

Table 2. An example of a BIO-tagged named entity.

Textline with Entity Example BIO-Labelling

IBAN No: BE01345678901234 OOOOOOOOOOBIIIIIIIIIIIIIII

The architecture of the sequence labelling network comprises of an input layer, 2 stacked
bidirectional LSTM layers with batch normalization applied in between (see Figure 5) and finally
a CRF (conditional random field) layer, which simulates label dependencies in the output.

Input Layer BLSTM
BatchNorm

BLSTM
BatchNorm

Softmax
CRF

Figure 5. Architecture of the NER sequence labeling.

Finally, the element of interest and its span are extracted from the invoice and tagged with the
predicted entity class on the basis of the start span and end span of the predicted BIO tags. We use
beam search decoding to find the most probable tag sequence of an entity.

4.1.6. Evaluation of the Extracted Entities

The extracted entities are compared with standardized database entries of these entities, which
follow a predefined scheme. Table 3 shows the difference between the extracted entities and their gold
database entries.

Table 3. Examples that illustrate the difference between a gold database entry and its occurrence(s) in
a document’s text.

Entity Label Gold Database Entry Document Occurrence

IBAN BE04 7123 7854 0002 be047123 7854 00 02
Communication +++518/0530/28569+++ + + + 5 1 8105 3 0 2 8 5 6 9
Invoice date 20/10/2018 20 oct ‘18 | 20 October 2018

Provided the variance in the structure and appearance of an entity in the financial documents,
string matching techniques would not suffice to properly evaluate the extractions. Hence, in our
experiments the predicted and gold financial entities were manually evaluated.

4.1.7. Experimental Setup

The first set of experiments for the financial use case was designed to check the end-to-end
performance of models for different entities in an invoice. For purpose of comparison we report results
of four types of entities. IBAN generally follows a handful of pattern variations that are often slightly
modified by OCR noise. Extraction of this element is less complex given the typical character patterns
of IBAN codes. Invoice date has predictable patterns, yet to distinguish this entity from other dates
requires context analysis. Total inclusive amount is foremost dependent on context to disambiguate with
other types of amounts but has less variance in character patterns. Invoice number is certainly the most

Information 2019, 10, 248 11 of 17

difficult entity to recognize due to its random alphanumeric patterns and is thereby easily confused
with other entities occurring in an invoice such as order number.

As mentioned above NER in the financial use case relies on character based models. The character
embedding is set to length 25 and initialized randomly. The LSTM layer size is set to 128 in each
direction for both the LSTM layers. For the filter network, the fully connected feedforward layer has
a size of 60. Parameters are optimized using Adam with learning rate of 0.0001 and sentences are
grouped into batches of size 128. Performance on the development set is measured at every epoch and
training is stopped if performance had not improved for 12 epochs. The best-performing model on the
development set is then used for evaluating the test set.

All datasets mentioned in the financial domain comprise of 3000 documents of which 60% are
used as training set, 25% as test set and 15% as development set. For transfer learning we have
used a dataset tagged with the entity class invoice date and one with the entity class expiration date,
each comprising of 3000 documents. In the transfer learning task the number of training examples
(in training and development set) for the target NER task may be reduced (see below).

4.1.8. Results

In Table 4 we report the test results of the NER as well as the results of the filter network,
which forms an important step in the pipeline.

Table 4. Results of NER in the financial use case in terms of F1.

Experiment Test Filter F1 Test NER F1

IBAN 0.99 0.98
Invoice date 0.92 0.85
Total inclusive 0.94 0.82
Invoice number 0.96 0.88

The transfer learning regards the sequence labeling of the NER task. In the transfer learning
experiments we evaluate the influence of using extraction patterns of related entities in an invoice.
Both invoice date and expiration date are related entities with respect to their character patterns while the
context in which they occur is quite different and crucial to differentiate their type.

Without transfer: In this experiment we use the target domain labeled data only. This is used as
a baseline. In Table 5, we illustrate the base model results of both invoice date and expiration date.

Table 5. Results in terms of F1 scores of the segment filtering and NER sequence labeling (Without transfer).

Experiment (Label-Type) Test Filter F1 Test NER F1

Invoice date 0.92 0.85
Expiration date 0.87 0.82

Fine-tuning the pre-trained model: The primary purpose of this experiment is to assess to what
extent transfer learning improves the performances on the target NER task. We experiment with
different target train set sizes to understand how many labeled examples of the target NER are needed
in this transfer learning task (Table 6).

Analyze transferability of different layers: In this experiment, we analyze the importance of
each parameter of the pre-trained DNN model in the transfer learning. Instead of transferring all the
parameters, we experiment with transferring different combinations of parameters. The goal is to
understand which components of the pre-trained model are the most important to transfer. The lowest
layers usually represent task-independent features whereas the topmost layers are more task-specific.

In order to understand the impact of using transfer learning, we use a pre-trained model trained
for invoice date recognition and fine-tune it when extracting the expiration date in the target domain.
The different levels of freezing used are:

Information 2019, 10, 248 12 of 17

1. Lastlayer-Finetuning: Fine-tuning only the last layer weights, i.e., only the CRF or softmax layer is
fine-tuned while all the previous layers weights are kept fixed or frozen.

2. SecondBiLSTM-Finetuning: Fine-tuning all weights until the second BiLSTM layer representations
including the CRF layer. The previous layers weights are kept fixed or frozen.

Table 6. Invoice date to expiration date: F1 score of recognition of expiration date in the test set by
transfer learning from a base model trained with invoice date labels. Results at different levels of freezing
trained with different percentages of labeled target data are presented.

Setting Model Fine-Tuning 100% 75% 50% 25% 10%

Without transfer Filter 0.87 0.86 0.85 0.83 0.81

With transfer (TL-A) Filter Lastlayer-Finetuning 0.88 0.87 0.86 0.85 0.85
With transfer (TL-B) Filter SecondBiLSTM-Finetuning 0.88 0.87 0.86 0.85 0.85

Without transfer NER 0.82 0.81 0.80 0.79 0.77

With transfer (TL-A) NER Lastlayer-Finetuning 0.86 0.85 0.84 0.83 0.80
With transfer (TL-B) NER SecondBiLSTM-Finetuning 0.87 0.85 0.84 0.83 0.80

.

Similarly in Table 7 we study the impact of using transfer learning from a pre-trained expiration
date model and fine-tune it using invoice date labels. This is to see if both entity types are able to transfer
knowledge from and to.

Table 7. Expiration date to invoice date: F1 score of recognition of invoice date in the test set by transfer
learning from base model trained with expiration date labels. Results at different levels of freezing
trained with different percentages of labeled target data are presented.

Setting Model Fine-Tuning 100% 75% 50% 25% 10%

Without transfer Filter 0.92 0.91 0.89 0.87 0.84

With transfer (TL-A) Filter Lastlayer-Finetuning 0.92 0.91 0.90 0.89 0.88
With transfer (TL-B) Filter SecondBiLSTM-Finetuning 0.93 0.91 0.90 0.89 0.88

Without transfer NER 0.85 0.85 0.82 0.81 0.79

With transfer (TL-A) NER Lastlayer-Finetuning 0.88 0.88 0.87 0.86 0.85
With transfer (TL-B) NER SecondBiLSTM-Finetuning 0.89 0.88 0.87 0.86 0.86

.

As can be seen from Tables 6 and 7, transfer learning improves the F1-scores compared to training
only with the labeled target dataset without transfer. Even when the number of training samples
used for the target dataset decreases, the F1-scores remain considerably high. This implies that the
representations learned from the source dataset and task are efficiently transferred and exploited for
performing well in the target domain.

4.2. Use Case 2: Biomedical NER

4.2.1. Dataset

In the biomedical use case we rely on two main benchmarking datasets—BC2GM (Smith et al. [23])
and BioNLP09 (Kim et al. [24]). The BioCreative II Gene Mention (BC2GM) corpus consists of
20,000 sentences from biomedical publication abstracts and is annotated for mentions of the names
of genes and related entities using a single named entity class GENE. The different named entity
tags used in the dataset are B-GENE, I-GENE and O tag. The BioNLP 2009 GENIA shared task set
corpora comprises of 10,000 sentences and is annotated for mentions of the names of proteins and
related entities that appear in the biomedical literature using a single named entity class PROTEIN.
The different named entity tags used in the dataset are B-PROTEIN, I-PROTEIN and O tag.

Information 2019, 10, 248 13 of 17

These datasets are already tokenized in words. Both datasets are publicly available and can be
downloaded from a public resource (https://github.com/cambridgeltl/MTL-Bioinformatics2016).

4.2.2. Data Preprocessing

All digits are replaced with the character ‘0’. Any word that occurs only once in the training
data is replaced by the generic OOV (out of vocabulary) token when computing the word embedding,
but is still used in the character level components. The word embeddings are initialised with publicly
available pre-trained vectors, created using word2vec (Mikolov et al. [25]), and then fine-tuned during
model training. For the biomedical datasets we use 200-dimensional vectors trained on PubMed.
The embedding for characters are set to length 50 and initialized randomly.

4.2.3. Experimental Setup

For NER in biomedical documents, we have used four models as base models, which are described
in detail in Section 3.

• WordModel where we build word level representations only based on traditional word2vec
embeddings.

• WordCharacter where we build word level representations by concatenating traditional word2vec
embeddings and character embeddings.

• WordCharacterAttention where we build word level representations by concatenating traditional
word2vec embeddings and character embeddings in addition to using attention which acts as
a gating mechanism.

• WordCharacterBERT where we build word level representations by concatenating traditional
word2vec embeddings, character embeddings and BERT pretrained embeddings.

The LSTM layer size was set to 200 in each direction for both word and character level layers.
The hidden layer has size 50. CRF was used as the output layer for all the experiments. Parameters are
optimized using Adam with default learning rate of 0.0001 and sentences are grouped into batches of
size 64. Performance on the development set is measured at every epoch and training is stopped if
performance had not improved for 15 epochs. The best-performing model on the development set is
then used for evaluating the test set.

We use the BERT-base uncased model with 12 transformer blocks, a hidden layer size of 768 and
12 attention heads. The embedding vector size is thus 768.

4.2.4. Results

Without transfer: In this experiment we use the target domain labeled data only. This is used
as a baseline. In Table 8, we illustrate the base model results of GENE NER and PROTEIN NER.
We report the macro-averaged and micro-averaged F1 scores for the WordModel, WordCharacter
model, WordCharacterAttention model and the WordCharacterBERT model.

The results are reported on two datasets, BioNLP09 (labeled with the PROTEIN tag in BIO format)
and BC2GM (labeled with the GENE tag in BIO format).

As can be seen from the results character based representations and the BERT language model
improve the NER.

Impact of BERT model embedding representations: In these experiments we compare the
improvement of using the embedding obtained with the BERT language model by integrating it
with word and character representations. We compare the obtained embeddings with traditional
word2vec and character representations. We train the base model considering the following settings
(see Table 9):

• Word representation (WordModel): The model uses only the traditional word2vec embeddings.
• BERT representation (BERTModel): The model uses only the BERT embeddings.

https://github.com/cambridgeltl/MTL-Bioinformatics2016

Information 2019, 10, 248 14 of 17

• BERT with character representation (BERTCharacter): The model builds word level representation
based on concatenation of the BERT embedding and the character embedding.

• BERT with character and word representation (WordCharacterBERT): The model builds word level
representations based on the concatenation of BERT embedding, the word2vec embedding and
the character embedding representation.

Table 8. Without transfer: Micro- and macro-averaged F1 scores for NER in BioNLP09 and BC2GM.

Dataset(Entity) Model Micro F1 Macro F1

PROTEIN (BioNLP09) WordModel 0.80 0.81
PROTEIN (BioNLP09) WordCharacter 0.81 0.82
PROTEIN (BioNLP09) WordCharacterAttention 0.81 0.82
PROTEIN (BioNLP09) WordCharacterBERT 0.83 0.85

GENE (BC2GM) WordModel 0.76 0.77
GENE (BC2GM) WordCharacter 0.79 0.80
GENE (BC2GM) WordCharacterAttention 0.80 0.81
GENE (BC2GM) WordCharacterBERT 0.82 0.84

Table 9. Impact of BERT embedding: Comparison of micro- and macro-averaged F1 scores obtained
on the BC2GM dataset.

Dataset(Entity) Model Micro F1 Macro F1

GENE (BC2GM) Word representation 0.76 0.77
GENE (BC2GM) BERT representation 0.81 0.82
GENE (BC2GM) BERT with Character representation 0.82 0.83
GENE (BC2GM) BERT with Character and Word representation 0.82 0.84
GENE (BC2GM) BIOBERT(trained with Wiki,books and Pubmed) 0.83 0.84

As can be seen from Table 9, word level representations based on the concatenation of
the BERT, the word2vec and the character embeddings improve the F1-score of NER on the
BC2GM dataset. The results also show that integrating BERT embeddings with the character
representation alone (BERTCharacter model) or a combination of BERT embeddings with character
and word embeddings (WordCharacterBERT) improves the F1-score compared to only using the BERT
embeddings (BERTModel). BioBERT (Lee et al. [16]) yields slightly better F1 scores compared to our
BERT combined with character information and BERT combined with character and word information.
However, BioBERT is pretrained using the BERT model with huge biomedical corpus, books and
Wikipedia texts. In our models we however do not use any pretraining on large biomedical corpora
but use only the BC2GM dataset for training and the BERT embeddings for fine-tuning.

Fine-tuning the pre-trained model: In order to understand the impact of the transfer learning
model, we use the best pre-trained base models from the source dataset and fine-tune it using the
target dataset. The different levels of freezing the parameters are: a. Lastlayer-Finetuning: Fine-tuning
only last layer; b. SecondBiLSTM-Finetuning: Fine-tuning till the second BiLSTM layer.

Analyse transferability of different layers: To identify the influence of the number of labeled
examples needed in the target dataset we use different percentages of these when training as indicated
in Table 10.

From Table 10, it can be seen that for the WordCharacterAttention model, our transfer learning
approach improves the performance compared to the without-transfer setting when dealing with
a limited number of labelled training examples. The improvement by transfer learning is substantial
when the target labelled training data is small (for example, when training with 25% and 10% of the
labelled examples). Also when comparing the TL-A and TL-B transfer learning settings, the TL-A
setting performs better. This can be explained by the fact that TL-A shares more model parameters
compared to TL-B. The effect of transfer learning is more evident when the target training set size is

Information 2019, 10, 248 15 of 17

small, with the improvements diminishing gradually or not seen when the target training set obtains
its full size.

Table 10. GENE tag(BC2GM) to PROTEIN (BioNLP09): Transfer learning results for different levels
of freezing at different ratios of target training data. All scores reported are micro-F1 scores.

Setting Model Fine-Tuning 100% 75% 50% 25% 10%

Without transfer WordCharacterAttention 0.82 0.80 0.76 0.69 0.50

With transfer (TL-A) WordCharacterAttention Lastlayer-Finetuning 0.81 0.81 0.77 0.73 0.54
With transfer (TL-B) WordCharacterAttention SecondBiLSTM-Finetuning 0.80 0.79 0.74 0.70 0.52

With BERTWordChar WordCharacterBERT Bert-Finetuning 0.83 0.82 0.80 0.77 0.73
With transfer (TL-C) WordCharacterBERT Lastlayer-Finetuning 0.81 0.80 0.78 0.79 0.67
With transfer(TL-D) WordCharacterBERT SecondBiLSTM-Finetuning 0.80 0.80 0.77 0.79 0.68

With the WordCharacterBERT model, we have used the BERT embedding from the BERT-base
uncased model and concatenated it with the word and character level representations. The model
is then fine-tuned on the PROTEINS dataset. This approach improves the F1 score compared to not
using any transfer. The largest improvement is observed when only 10% of the target training dataset
is used (from 0.50 (Without transfer) to 0.73 (With BERTWordChar)). Similarly with transfer settings
TL-C and TL-D, transfer learning is especially beneficial for target datasets with a small number of
training labels (for example when using 50%, 25% and 10% of the target labelled examples).

We can thus conclude that the representations learned from the source dataset are effectively
transferred and learned by the target dataset. With transfer learning, fewer training examples are
sufficient to achieve considerable performance for the sequence labelling task evaluated. The impact
of transfer learning is more pronounced when target labelled data is minimum, say 10% or 25%,
and improvement diminishes as the percentage of target labelled examples increases. This impact is
negligible or not seen when the number of labelled target training data increases. The results show that
transfer learning indeed helps in mitigating the problems of the availability of few labelled training
data by means of reusing the learned representations.

5. Conclusions

We have proposed a number of deep learning models for named entity recognition that rely on
character based models. The models were evaluated with two use cases: entity extraction in financial
and in biomedical documents. We have built several variant models that integrate word embeddings,
attention mechanisms and the BERT language model. In our work we have especially focused on transfer
learning by pretraining a model for a certain NER task and than fine-tuning the learned model for another
NER task for which there are few labeled training data. The results have shown the effectiveness of
transfer learning, for which different methods for fine-tuning the model were proposed.

Author Contributions: Conceptualization, S.F., J.V.L. and M-F.M.; data curation, S.F. and J.V.L.; methodology,
S.F.; investigation, S.F. and J.V.L ; writing—original draft preparation, S.F.; writing—review and editing, S.F., J.V.L.
and M-F.M.; visualization, S.F.; supervision, project administration and funding acquisition, M-F.M.

Funding: The research in collaboration with the company Contract.fit was sponsored by VLAIO (Flanders
Innovation & Entrepreneurship) under contract number HBC.2017.0264, and another part was financed by the
SBO project ACCUMULATE (IWT-SBO-Nr. 150056).

Conflicts of Interest: The authors declare no conflict of interest.

Information 2019, 10, 248 16 of 17

References

1. Dos Santos, C.N.; Guimarães, V. Boosting named entity recognition with neural character embeddings.
In Proceedings of the Fifth Named Entity Workshop (NEWS@ACL 2015), Beijing, China, 31 July 2015;
pp. 25–33.

2. Kann, K.; Schütze, H. Single-model encoder-decoder with explicit morphological representation for
reinflection. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(ACL), Berlin, Germany, 7–12 August 2016.

3. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for
language understanding. arXiv 2018, arXiv:1810.04805.

4. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing
(almost) from scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537.

5. Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF models for sequence tagging. arXiv 2015,
arXiv:1508.01991.

6. Kim, Y.; Jernite, Y.; Sontag, D.; Rush, A.M. Character-aware neural language models. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.

7. Cao, K.; Rei, M. A joint model for word embedding and word morphology. arXiv 2016, arXiv:1606.02601.
8. Ling, W.; Luís, T.; Marujo, L.; Astudillo, R.F.; Amir, S.; Dyer, C.; Black, A.W.; Trancoso, I. Finding

function in form: Compositional character models for open vocabulary word representation. arXiv 2015,
arXiv:1508.02096.

9. Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami, K.; Dyer, C. Neural architectures for named entity
recognition. arXiv 2016, arXiv:1603.01360.

10. Miyamoto, Y.; Cho, K. Gated word-character recurrent language model. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, TX, USA,
1–4 November 2016; pp. 1992–1997.

11. Ando, R.K.; Zhang, T. A framework for learning predictive structures from multiple tasks and unlabeled
data. J. Mach. Learn. Res. 2005, 6, 1817–1853.

12. Peng, N.; Dredze, M. Multi-task multi-domain representation learning for sequence tagging. arXiv 2016,
arXiv:1608.02689.

13. Yang, Z.; Salakhutdinov, R.; Cohen, W.W. Transfer learning for sequence tagging with hierarchical recurrent
networks. arXiv 2017, arXiv:1703.06345.

14. Rodriguez, J.D.; Caldwell, A.; Liu, A. Transfer learning for entity recognition of novel classes. In Proceedings
of the 27th International Conference on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018;
pp. 1974–1985.

15. Lee, J.Y.; Dernoncourt, F.; Szolovits, P. Transfer learning for named-entity recognition with neural networks.
arXiv 2017, arXiv:1705.06273.

16. Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language
representation model for biomedical text mining. arXiv 2019, arXiv:1901.08746.

17. Lafferty, J.D.; McCallum, A.; Pereira, F.C.N. Conditional Random Fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of the Eighteenth International Conference on Machine Learning
(ICML), Williamstown, MA, USA, 28 June–1 July 2001; pp. 282–289.

18. Sakharov, A.; Sakharov, T. The Viterbi algorithm for subsets of stochastic context-free languages. Inf. Process.
Lett. 2018, 135, 68–72. [CrossRef]

19. Rei, M.; Crichton, G.K.O.; Pyysalo, S. Attending to characters in neural sequence labeling models.
In Proceedings of the 26th International Conference on Computational Linguistics (COLING), Osaka, Japan,
11–16 December 2016; pp. 309–318.

20. Howard, J.; Ruder, S. Universal Language Model fine-tuning for text classification. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics, ACL, Melbourne, Australia,
15–20 July 2018; pp. 328–339.

21. Erhan, D.; Manzagol, P.; Bengio, Y.; Bengio, S.; Vincent, P. The difficulty of training deep architectures and
the effect of unsupervised pre-training. In Proceedings of the Twelfth International Conference on Artificial
Intelligence and Statistics (AISTATS), Clearwater, FL, USA, 16–18 April 2009; pp. 153–160.

http://dx.doi.org/10.1016/j.ipl.2018.03.005

Information 2019, 10, 248 17 of 17

22. Giorgi, J.M.; Bader, G.D. Transfer learning for biomedical named entity recognition with neural networks.
Bioinformatics 2018, 34, 4087–4094. [CrossRef] [PubMed]

23. Smith, L.; Tanabe, L.K.; nee Ando, R.J.; Kuo, C.J.; Chung, I.F.; Hsu, C.N.; Lin, Y.S.; Klinger, R.; Friedrich, C.M.;
Ganchev, K.; et al. Overview of BioCreative II gene mention recognition. Genome Biol. 2008, 9, S2. [CrossRef]
[PubMed]

24. Kim, J.D.; Ohta, T.; Pyysalo, S.; Kano, Y.; Tsujii, J. Extracting bio-molecular events from literature:
The BIONLP’09 shared task. Comput. Intell. 2011, 27, 513–540. [CrossRef]

25. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.
arXiv 2013, arXiv:1301.3781.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/bioinformatics/bty449
http://www.ncbi.nlm.nih.gov/pubmed/29868832
http://dx.doi.org/10.1186/gb-2008-9-s2-s2
http://www.ncbi.nlm.nih.gov/pubmed/18834493
http://dx.doi.org/10.1111/j.1467-8640.2011.00398.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Methodologies
	Character Level Neural Network
	Word Level Neural Network
	Word and Character Level Neural Network
	Word and Character Level Neural Network with Attention
	Word- and Character Level Neural Network Combined with the BERT Language Model
	Transfer Learning

	Experiments and Discussion
	Use Case 1: Financial NER Extraction
	Dataset
	Data Preprocessing
	Line Segmentation
	Filter Network
	NER: Sequence Labelling
	Evaluation of the Extracted Entities
	Experimental Setup
	Results

	Use Case 2: Biomedical NER
	Dataset
	Data Preprocessing
	Experimental Setup
	Results

	Conclusions
	References

