
Hyperspectral Remote Sensing of Vegetation:  
Knowledge Gain and Knowledge Gap After 40 years of Research
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“More Data (e.g., spectral, spatial, temporal, radiometric) is good. 
Better understanding of data for application of interest is better. 

However, current knowledge gap in understanding data and it’s uncertainty is far greater than we want to admit”
- A Thought for the lecture.
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Hyperspectral Remote Sensing of Vegetation                           
Importance of Hyperspectral Sensors (Imaging Spectroscopy) in Study of Vegetation

More specifically…………..hyperspectral Remote Sensing, originally 
used for detecting and mapping minerals, is increasingly needed for 
to characterize, model, classify, and map agricultural crops and , , y, p g p
natural vegetation, specifically in study of: 

(a)Species composition (e.g., chromolenea odorata vs. imperata cylindrica); 
(b)V t ti t ( b )(b)Vegetation or crop type (e.g., soybeans vs. corn);
(c)Biophysical properties (e.g., LAI, biomass, yield, density);
(d)Biochemical properties (e.g, Anthrocyanins, Carotenoids, Chlorophyll); 
(e)Disease and stress (e.g., insect infestation, drought), ( ) ( g , , g ),
(f)Nutrients (e.g., Nitrogen), 
(g)Moisture (e.g., leaf moisture), 
(h)Light use efficiency,
(i)Net primary productivity and so on(i)Net primary productivity and so on.

……….in order to increase accuracies and reduce uncertainties in these 
parameters……..
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Hyperspectral Remote Sensing of Vegetation                            
Spectral Wavelengths and their Importance in the Study of Vegetation Biochemical properties

Reflectance spectra of leaves from a senesced birch (Betula), 
ornamental beech (Fagus) and healthy and fully senesced 
maple (AcerLf, Acerlit) illustrating Carotenoid (Car), 

The reflectance spectra with characteristic 
absorption features associated with plant 
biochemical constitutents for live and dry grass 
(Ad t d f Hill [13]) Anthocyanin (Anth), Chlorophyll (Chl), Water and Ligno-

cellulose absorptions.
(Adapted from Hill [13]).
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Hyperspectral Remote Sensing of Vegetation                           
Definition of Hyperspectral Data

A. consists of hundreds or thousands of narrow-wavebands (as 
narrow as 1; but generally less than 5 nm) along the 
electromagnetic spectrum; g p ;

B. it is important to have narrowbands that are contiguous for strict 
definition of  hyperspectral data; and not so much the number of 
bands alone (Qi et al. in Chapter 3, Goetz and Shippert).

………….Hyperspectral Data is fast emerging to provide practical 
solutions in characterizing, quantifying, modeling, and mapping 

t l t ti d i lt lnatural vegetation and agricultural crops. 
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The advantage of airborne, ground-based, and truck-mounted sensors are that they 

Hyperspectral Remote Sensing of Vegetation                           
Truck-mounted Hyperspectral sensors

enable relatively cloud free acquisitions that can be acquired on demand anywhere; over 
the years they have also allowed careful study of spectra in controlled environments to 
advance the genre. 

Truck-mounted Hyperspectral Data Acquisition example

U.S. Geological Survey
U.S. Department of Interior  
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There are some twenty spaceborne hyperspectral 

Hyperspectral Remote Sensing of Vegetation                           
Spaceborne Hyperspectral Imaging Sensors: Some Characteristics 

sensors

The advantages of spaceborne systems are their 
capability to acquire data: (a) continuously, (b) 
consistently, and (c) over the entire globe.  A number y, ( ) g
of system design challenges of hyperspectral data 
are discussed in Chapter 3 by Qi et al. Challenges 
include cloud cover and large data volumes. 

Th 4 f h l b i iThe 4 near future hyperspectral spaceborne missions: 
1. PRISMA (Italy’s ASI’s), 
2. EnMAP (Germany’s DLR’s), and 
3. HISUI (Japanese JAXA);
4. HyspIRI (USA’s NASA).4. HyspIRI (USA s NASA). 
will all provide 30 m spatial resolution hyperspectral
images with a 30 km swath width, which may enable a 
provision of high temporal resolution, multi-angular 
hyperspectral observations over the same targets for 
the hyperspectral BRDF characterization of surfacethe hyperspectral BRDF characterization of surface. 

The multi-angular hyperspectral observation capability 
may be one of next important steps in the field of 
hyperspectral remote sensing.

Existing hyperspectral spaceborne missions: 
1. Hyperion (USA’s NASA), 
2. PROBA (Europe’s ESA;’s), and 

U.S. Geological Survey
U.S. Department of Interior  
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Hyperspectral Remote Sensing of Vegetation                           
Earth and Planetary Hyperspectral Remote Sensing Instruments

See chapter 27 Vaughan et al

U.S. Geological Survey
U.S. Department of Interior  

See chapter 27, Vaughan et al.



Satellite/Sensor spatial resolution spectral bands data points

Comparison of Hyperspectral Data with Data from Other Advanced Sensors        
Hyperspectral, Hyperspatial, and Advanced Multi-spectral Data

Satellite/Sensor spatial resolution spectral bands data points  
or pixels (meters) (#) per hectare

Earth Observing-1
Hyperion 30 196 (400-2500 nm) 11.1
ALI 10 m (P), 30 m (M) 1, 9 100, 11.1

IKONOS 2 1 m (P), 4 m (M) 4 10000, 625
SpaceImaging 

QUICKBIRD 0.61 m (P), 2.44 m (M) 4 16393, 4098QU C 0 6 ( ), ( ) 6393, 098
Digital Globe 

Terra: Earth Observing System (EOS)
ASTER 15 m, 30 m, 90 m 4,6,5 44.4,11.1,1.26

(VNIR,SWIR,TIR)( )
MODIS 250-1000 m 36 0.16, 0.01

Landsat-7 ETM+ 15 m (P), 30 m (M) 7 44.4,11.1

Landsat-4, 5 TM 30 m (M) 7 11.1

SPOT-1,2,3, 4,5 HRV 2.5 m. 5m, 10 m (P/M), 20 m (M) 4
1600,400,100,25

IRS-1C LISS 5 m (P), 23.5 m (M) 3 400, 18.1
IRS-1D LISS 5 m (P) 23 5 m (M) 3 400 18 1IRS 1D LISS 5 m (P), 23.5 m (M) 3 400, 18.1

U.S. Geological Survey
U.S. Department of Interior  



Hyperion Data from EO-1 (e.g., in Rainforests of Cameroon)               
Hyperspectral Data Cube Providing Near-continuous data of 100’s of Wavebands

3-D cube of 
Hyperion 

3-D cube of 
Hyperion 

data for 
Cameroon 
rainforests: 
196 bands

data for 
Cameroon 
rainforests: 
196 bands

Top-layer: 
FCC(RGB): 

Top-layer: 
FCC(RGB): 

890 nm, 680 
nm, and 550 
nm

890 nm, 680 
nm, and 550 
nm
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Hyperion Narrow-Band Data from EO-1 Vs. ETM+ Broad-band Data         
Hyperspectral Data Provides Numerous Ways of Looking at Data

Hyperion:843, 680, ETM+:4,3,2 Hyperion: 680, 547, Hyperion:905, 680, 
547 486 547

Hyperion:905, 962, 
680

Hyperion:1245, 680,  
547

Hyperion:1642, 905, 
680

Hyperion:904,680,1245

U.S. Geological Survey
U.S. Department of Interior  
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Comparison of Hyperspectral Data with Data from Other Advanced Sensors        
Hyperspectral, Hyperspatial, and Advanced Multi-spectral Data
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Hyperspectral Data Characteristics          
Spect al Wa elengths and thei Impo tance inSpectral Wavelengths and their Importance in 

Vegetation Studies                       
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Hyperspectral Remote Sensing of Vegetation                            
Typical Hyperspectral Signatures of Certain Land Components

See chapter 9, Numata et al.

Fraction images of a pasture property in the Amazon derived from EO-1 Hyperion imagery. Four 
endmembers: (a) nonphotosynthetic vegetation (NPV); (b) green vegetation (GV); (c) Soil; and (d) Shade.

U.S. Geological Survey
U.S. Department of Interior  

p ,



Hyperspectral Data on Tropical Forests
Factors Influencing Spectral Variation over Tropical Forests 

1. Biochemistry (e.g., plant pigments, water, and structural carbohydrates): 
Leaf reflectance in the visible spectrum is dominated by absorption features 
created by plant pigments, such as:

hl h ll ( hl ) b i 410 430 d 600 690chlorophyll a (chl-a): absorps in 410-430 nm and 600-690 nm; 
chlorophyll b (chl-b): absorps in 450-470 nm;
carotenoids (e.g., β-carotene and lutein): peak absorption in wavebands 
<500 nm; and;
anthocyanins. 
Lignin, cellulose, protein, Nitrogen: relatively low reflectance and 
strong absorption in SWIR bands by water that masks other absorption 
featuresfeatures 

……………However, dry leaves do not have strong water absorption and reveal 
overlapping absorptions by carbon compounds, such as lignin and cellulose, 

Note: see chapter 18, Clark et al.

and other plant biochemicals, including protein nitrogen,starch, and sugars.

U.S. Geological Survey
U.S. Department of Interior  
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Hyperspectral Data on Tropical Forests
Factors Influencing Spectral Variation over Tropical Forests 

2. Structure or biophysical (e.g., leaf thickness and air spaces): of leaves, and 
the scaling of these spectral properties due to volumetric scattering of photons 
in the canopy; 

3. Nonphotosynthetic tissues (e.g., bark, flowers, and seeds); and 

4. Other photosynthetic canopy organisms (e.g., vines, epiphytes, and p y py g ( g , , p p y ,
epiphylls) can mix in the photon signal and vary depending on a complex 
interplay of species, structure, phenology, and site differences, 

currently none of which are well understood……………………………..currently, none of which are well understood.

Note: see chapter 18, Clark et al.

U.S. Geological Survey
U.S. Department of Interior  
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Hyperspectral Data on Tropical Forests
Individual Tree Crown Delineation: Illustrated for 2 species 

"Fractional abundance of green vegetation (green) 
, non-photosynthetic vegetation (red) and 
photometric shade (blue) from a spectral mixture 
analysis.  

Note: see chapter 18, Clark et al.

Individual tree crowns delineated with visual 
interpretation: Dipteryx panamensis (DIPA) and 
Hyeronima alchorneoides (HYAL)."

U.S. Geological Survey
U.S. Department of Interior  
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African savannas 
d R i f t

Hyperspectral Data on Vegetation from                                
A Forest-Margin Benchmark Area

and Rainforests: 
Wide range of 
vegetation 
including forest 
and savanna 
vegetation and 
agricultural crops 
studies using 
Hyperion and 
SpectroradiometerSpectroradiometer 
data.

U.S. Geological Survey
U.S. Department of Interior  



M fl t f Ch l d t d I t li d i

Hyperspectral Data of Two Dominant Weeds
Chromolaena Odorata in African Rainforests vs. Imperata Cylindrica in African Savannas

Mean reflectance of Chromolaena odorata and Imperata cylindrica
Nigeria-Benin 2000

Chromolaena odorata (n=67) Imperata cylindrica (n=45)
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Hyperspectral Data Gathered for the Following Rainforest Vegetation
using Hyperion EO-1 Data and Field-based Measurements of Biophysical Characteristics

R hi lDegraded
Primary forests

D d d

Raphia palm 
lowland

Musanga 
regrowth

Secondary forests
Degraded 
primary forests

Slash-and-burn

Forest 
Fragmentation 
along roads

Degraded 
permanently 
flooded swamp 
forest

Permanently 
flooded swamp 
forest

Slash-and-burn 
agriculture

2-yr regrowth; 
Chromolaena 
Odorata 50-yr regrowth Cocoa plantations
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football field

Hyperspectral Remote Sensing of Vegetation                            
Mega file Data Cube (MFDC) of Hyperion Sensor onboard EO-1 

e g MFDC of African Rainforests in Cameroon
Hyperion: VNIR reflectance

(Mean spectral plots of landuse/landcover types)
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Hyperspectral Data Gathered for the Following Rainforest Vegetation    

using Hyperion EO-1 Data

U.S. Geological Survey
U.S. Department of Interior  



Hyperspectral Data Gathered for the Following Rainforest Vegetation    

using Hyperion EO-1 Data
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Hyperspectral Data of Vegetation Species and Agricultural Crops
Illustrations for Numerous Vegetation Species from African Savannas

U.S. Geological Survey
U.S. Department of Interior  



Hyperspectral Data on Vegetation from                                  
A Desert-Margin Benchmark Area

Desert-margin: 
Agricultural 
cropland 
vegetation 
characteristics 
studied usingstudied using 
Hand-held 
Spectroradiom
eter 
Hyperspectral 
D tData

About 50 km by 50
Forest-margin: Rainforest 
vegetation characteristics About 50 km by 50 

km (part of Landsat-5 
TM Path: 174, Row: 
35)

ICARDA research farms within

vegetation characteristics 
studied using Hyperion 
Spaceborne Hyperspectral 
Data

ICARDA research farms within 
the study area draped over 10-
m DEM from Russian  TK-350 
Camera system

U.S. Geological Survey
U.S. Department of Interior  



Wheat Crop Versus Barley Crop Versus Fallow Farm
Hyperspectral narrow-band Data for an Erectophile (65 degrees) canopy Structure  

0 4

0.5

wheat (64)

b l (44)

peak NIR reflectance around 
910 nanometers.

erectophile (65 degrees) structure results in steep slopes 
in NIR reflectance from 740 nm to 940 nm

0.3

0.4

ec
ta

nc
e 

fa
ct

or

barley (44)

fallow (9)

higher reflectance of barley throughout visible spectrum 
as a result of pigmentation Barley greenish

moisture sensitive and biomass related 
trough centered around 980 

t

in NIR reflectance from 740-nm to 940-nm

0.1

0.2

re
fle

as a result of pigmentation. Barley greenish 
brown/seafoam color compared to deep green of wheat.

absorption maxima around
680 nanometers

nanometers

0
300 400 500 600 700 800 900 1000

wavelength (nanometers)

680 nanometers

wheatBarleyBarley

U.S. Geological Survey
U.S. Department of Interior  



0.7 0.8

Hyperspectral Remote Sensing of Vegetation                            
Spectral Wavelengths and their Importance in the Study of Vegetation Structure
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Hyperspectral Remote Sensing of Vegetation                            
Spectral Wavelengths and their Importance in the Study of Vegetation over Time

Typical reflectance 
spectra in agro-
ecosystem surfacesecosystem surfaces 
(upper), and 
seasonal changes of 
spectra in a paddy 
i fi ld (l )rice field (lower).

U.S. Geological Survey
U.S. Department of Interior  



Hyperspectral Remote Sensing of Vegetation                            
Spectral Wavelengths and their Importance in the Study of Vegetation Stress

See chapter 23

U.S. Geological Survey
U.S. Department of Interior  

See chapter 23



Hyperspectral Remote Sensing of Vegetation                            
Spectral Wavelengths and their Importance in the Study of Vegetation in different Growth Stages

(a) Cotton (critical) (b) Soybeans (early) (c) Potato (early)

(a) Cotton (flowering/senescing) (b) Soybeans (critical) (c) Potato (mid-vegetative)( ) ( g g) ( ) y ( ) ( ) ( g )

Data was Gathered at Various Growth Stages

U.S. Geological Survey
U.S. Department of Interior  
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Hyperspectral Remote Sensing of Vegetation                            
Spectral Wavelengths and their Importance in the Study of Vegetation in different Growth Stages
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Hughes Phenomenon         
(or Curse of High Dimensionality of Data) and(or Curse of High Dimensionality of Data) and 

overcoming data redundancy through Data Mining 

U.S. Geological Survey
U.S. Department of Interior  



Hyperspectral Data (Imaging Spectroscopy data)                        
Not a Panacea!

For example, hyperspectral systems collect large 
volumes of data in a short time. Issues include:

data storage volume;
data storage rate;
downlink or transmission bandwidth;
computing bottle neck in data analysis; and
new algorithms for data utilization (e g atmosphericnew algorithms for data utilization (e.g., atmospheric 
correction more complicated).

U.S. Geological Survey
U.S. Department of Interior  



Data Mining Methods and Approaches in Vegetation Studies
Lambda by Lambda R-square Contour Plots: Identifying Least Redundant Bands

Highly redundant: 
bands centered at 
680 nm and 690 nm

Significantly

Distinctly 
different: 
bands 
centered atLambda vs. Lambda CorrelationSignificantly 

different: bands 
centered at 680 
nm and 890 nm

centered at 
920 nm 
and 2050 
nm

Lambda vs. Lambda Correlation 
plot for African rainforest 
Vegetation



Data Mining Methods and Approaches in Vegetation Studies    
Feature selection\extraction and Information Extraction

Feature selection is necessary in any  data mining effort. Feature 
selection reduces the dimensionality of data by selecting only a 
subset of measured features (predictor variables). Feature (p )
selection methods recommendation based on:

(a)Information Content (e.g., Selection based on Theoretical 
Knowledge, Band Variance, Information Entropy), 

(b)Projection-Based methods (e.g., Principal Component Analysis 
or PCA, Independent Component Analysis or ICA), 

( )Di M ( Di t b d )(c)Divergence Measures (e.g., Distance-based measures), 
(d)Similarity Measures (e.g., Correlation coefficient, Spectral 

Derivative Analysis), and 
(e)Other Methods (e g wavelet Decomposition Method)(e)Other Methods (e.g., wavelet Decomposition Method). 

Note: see chapter 4

U.S. Geological Survey
U.S. Department of Interior  



Data Mining Methods and Approaches in Vegetation Studies    
Principal Component Analysis: Identifying Most useful Bands

Principal component analysis for crop species

PCA PCA PCA PCA PCA
5 
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Methods of                           
Modeling Vegetation Characteristics usingModeling Vegetation Characteristics using           

Hyperspectral Vegetation Indices (HVIs) 
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Hyperspectral Data (Imaging Spectroscopy data)                        
Hyperspectral Vegetation Indices (HVIs)

Unique Features and Strengths of HVIs
1. Eliminates redundant bands

removes highly correlated bandsremoves highly correlated bands
2. Physically meaningful HVIs

e.g., Photochemical reflective index (PRI) as proxy for light use efficiency (LUE)
3.  Significant improvement over broadband indices

e.g., reducing saturation of broadbands, providing greater sensitivity (e.g., an 
index involving NIR reflective maxima @ 900 nm and red absorption maxima 
@680 nm

4.  New indices not sampled by broadbandsp y
e.g., water-based indices (e.g., involving 970 nm or 1240 nm along with a 
nonabsorption band)

5. multi-linear indices
indices involving more than 2 bandsindices involving more than 2 bands 

U.S. Geological Survey
U.S. Department of Interior  



Methods of Modeling Vegetation Characteristics using Hyperspectral Indices
Hyperspectral Two-band Vegetation Indices (TBVIs)  = 12246 unique indices for 157 

useful Hyperion bands of data
(Rj-Ri)

HTBVIij= ------
(Rj+Ri)

Hyperion: 
A. acquired over 400-2500 nm in 220 narrow-bands each of 10-nm wide bands. Of these there are 196 bands that are 
calibrated. These are: (i) bands 8 (427.55 nm) to 57 (925.85 nm) in the visible and near-infrared; and (ii) bands 79 (932.72 nm)
to band 224 (2395 53 nm) in the short wave infraredto band 224 (2395.53 nm) in the short wave infrared. 
B. However, there was significant noise in the data over the 1206–1437 nm, 1790– 1992 nm, and 2365–2396 nm spectral 
ranges. When the Hyperion bands in this region were dropped, 157 useful bands remained.

Spectroradiometer: 
A. acquired over 400-2500 nm in 2100 narrow-bands each of 1-nm wide. However, 1-nm wide data were aggregated to 10-nm 
wide to coincide with Hyperion bands.
B. However, there was significant noise in the data over the 1350-1440 nm, 1790-1990 nm, and 2360-2500 nm spectral ranges. 
was seriously affected by atmospheric absorption and noise. The remaining good noise free data were in 400-1350 nm, and 
1440-1790 nm, 1990-2360 nm. 

……..So, for both Hyperion and Spectroradiometer we had 157 useful bands, each of 10-nm wide, over the same spectral , yp p , , p
range.

where, i,j = 1, N, with N=number of narrow-bands= 157 (each band of 1 nm-wide spread over 400 nm to 2500 nm), 
R=reflectance of narrow-bands. 

Model algorithm: two band NDVI algorithm in Statistical Analysis System (SAS).  Computations are 
f d f ll ibl bi ti f λ ( l th 1 157 b d ) d λ ( l th 2 157performed for all possible combinations of  λ 1 (wavelength 1 = 157 bands) and λ 2 (wavelength 2 = 157 

bands)- a total of 24,649 possible indices. It will suffice to calculate Narrow-waveband NDVI's on one 
side (either above or below) the diagonal of the 157 by 157 matrix as values on either side of the 
diagonal are the transpose of  one another. 



Methods of Modeling Vegetation Characteristics using Hyperspectral Indices
Lambda vs. Lambda R-square contour plot on non-linear biophysical quantity (e.g., 

biomass) vs. HTBVI models

Illustrated for 2 crops here
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Methods of Modeling Vegetation Characteristics using Hyperspectral Indices
Non-linear biophysical quantities (e.g., biomass, LAI) vs.:(a)Broadband models (top two), & 

(b)Narrowband HTBVI models (bottom two)
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Developing Allometric Equations 
in African Rainforests

Dry weight vs. dbhy g

y = 0.0763x2.566            (eq. 4)
R2 = 0.92
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Methods of Modeling Vegetation Characteristics using Hyperspectral Indices
Lambda vs. Lambda R-square contour plot on non-linear biophysical quantity (e.g., 

biomass) vs. HTBVI models

Waveband 
combinations with 
greatest R2 values 
Greater  are 
ranked…….bandwid
ths can also be

<
ths can also be 
determined.
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Rainforest Vegetation Studies: biomass, tree height, land cover, species 
in African Rainforests

Tree heightdbh

Fallows biomass

g

Road network and 
logging

LULC
Digital photographs
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Methods of Modeling Vegetation Characteristics using Hyperspectral Indices
Hyperspectral Multi-band Vegetation Indices (HMBVIs) 

N

HMBVIi = ΣaijRj
J=1J=1

where, OMBVI = crop variable i,  R = reflectance in bands j (j= 1 to N with N=157; N is number of 
narrow wavebands);  a = the coefficient for reflectance in band j for i th variable.

Model algorithm: MAXR procedure of  SAS (SAS, 1997) is used in this study. The MAXR method 
begins by finding the variable (Rj) producing the highest coefficient of determination (R2) value. Then 
another variable, the one that yields the greatest increase in R2 value, is added…………….and so 
on so we will get the best 1 variable model best 2 variable model and so on to best n variableon…….so we will get the best 1-variable model, best 2-variable model, and so on to best n-variable 
model………………..when there is no significant increase in R2-value when an additional variable is 
added, the model can stop.
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Methods of Modeling Vegetation Characteristics using Hyperspectral Indices
Predicted biomass derived using MBVI’s involving various narrowbands in African Rainforests

Note: Increase in R2 values beyond 11 
bands is negligibleNote: Increase in R2 values 
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Methods of Modeling Vegetation Characteristics using Hyperspectral Indices
Hyperspectral Derivative Greenness Vegetation Indices  (DGVIs)

First Order Hyperspectral Derivative Greenness Vegetation Index
(HDGVI) (Elvidge and Chen, 1995): These indices are integrated across the (a) chlorophyll
red edge:.626-795 nm, (b) Red-edge more appropriately 690-740 nm……and other
wavelengthswavelengths.

λn (ρ′(λi )- (ρ′(λj )
DGVI1 = Σ⎯⎯⎯⎯⎯⎯⎯⎯

λ Δλλ1 ΔλI
Where, I and j are band numbers,
λ = center of wavelength,
λ1 = 0.626 μm,λ1 0 6 6 μ ,
λn = 0.795 μm,
ρ′ = first derivative reflectance.

Note: HDGVIs are near-continuous narrow-band spectra integrated over certain wavelengths 
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Methods of Modeling Vegetation Characteristics using Hyperspectral Indices
Hyperspectral Derivative Greenness Vegetation Indices  (DGVIs) vs. Forest Biomass

DGVI vs. Dry Biomass of Fallows

8)

y = 0.0713e9.5734x

R2 = 0 8331
6

8
s (

kg
/m

2)

R = 0.8331

2

4

bi
om

as
s

0
0.0 0.1 0.2 0.3 0.4 0.5 0.6

D
ry

 

DGVI9 (428nm-905nm)

U.S. Geological Survey
U.S. Department of Interior  



Hyperspectral Data (Imaging Spectroscopy data)                        
HVIs: Biophysical, Biochemical, Pigment, Water, Lignin and cellulose, and Physiology

Major Hyperspectral
Vegetation IndicesVegetation Indices, 
Including Relevant 
Formulas and Key 
Citations

Note: see chapter 14, Roberts et al.
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Hyperspectral Data (Imaging Spectroscopy data)                        
HVIs: Biophysical, Biochemical, Pigment, Water, Lignin and cellulose, and Physiology

Spectral index Characteristics & functions Definition Reference
Multiple bioparameters:
LI, Lepidium Index To be sensitive to the uniformly bright reflectance 

displayed by Lepidium  in the visible range.
R630/R586 [20]

NDVI, Normalized Difference 
Vegetation Index

Respond to change in the amount of green biomass 
and more efficiently in vegetation with low to

(RNIR-RR)/(RNIR+RR)  [74]
Vegetation Index and more efficiently in vegetation with low to 

moderate density.
PSND, Pigment-Specific 
Normalized Difference

Estimate LAI and carotenoids (Cars) at leaf or 
canopy level

(R800-R470)/(R800+R470) [74]

SR, Simple Ratio Same as NDVI RNIR/RR [76,77]
Pigments:

E ti t hl h ll (Chl ) t t i th i [78]Chlgreen, Chlorophyll Index Using 
Green Reflectance

Estimate chlorophylls (Chls) content in anthocyanin-
free leaves if NIR is set

(R760-800/R540-560)-1 [78]

Chlred-edge, Chlorophyll Index 
Using Red Edge Reflectance

Estimate Chls content in anthocyanin-free leaves if 
NIR is set

(R760-800/R690-720)-1 [78]

LCI, Leaf Chlorophyll Index Estimate Chl content in higher plants, sensitive to 
variation in reflectance caused by Chl absorption

(R850-R710)/(R850+R680) [79]

mND680, Modified Normalized 
Difference

Quantify Chl content and sensitive to low content at 
leaf level.

(R800-R680)/(R800+R680-2R445) [80]

mND705, Modified Normalized 
Difference

Quantify Chl content and sensitive to low content at 
leaf level. mND705 performance better than mND680

(R750-R705)/(R750+R705-2R445) [80,81]

SR M difi d Si l R ti Quantify Chl content and sensitive to low content at (R R )/(R R ) [80]

Note: see chapter 19, Pu et al.

mSR705, Modified Simple Ratio Quantify Chl content and sensitive to low content at 
leaf level.

(R750-R445)/(R705-R445) [80]

U.S. Geological Survey
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Hyperspectral Data (Imaging Spectroscopy data)                        
HVIs: Biophysical, Biochemical, Pigment, Water, Lignin and cellulose, and Physiology

S M difi d Si l R ti Q tif Chl t t d iti t l t t t (R R )/(R R ) [80]mSR705, Modified Simple Ratio Quantify Chl content and sensitive to low content at 
leaf level.

(R750-R445)/(R705-R445) [80]

NPCI, Normalized Pigment 
Chlorophyll ratio Index

Assess Cars/Chl ratio at leaf level (R680-R430)/(R680+R430) [82]

PBI, Plant Biochemical Index Retrieve leaf total Chl and nitrogen concentrations 
from satellite hyperspectral data

R810/R560 [83]

PRI, Photochemical / Physiological 
Reflectance Index

Estimate Car pigment contents in foliage (R531-R570)/(R531+R570) [84]

PI2, Pigment index 2 Estimate pigment content in foliage R695/R760 [85]
RGR, Red:Green Ratio Estimate anthocyanin content with a green and a 

red band
R683/R510 [80,86]

SGR, Summed Green Reflectance Quantify Chl content Sum of reflectances from 500 to [81]SGR, Q y
599 nm

[ ]

Floliar chemistry:
CAI, Cellulose Absorption Index Cellulose & lignin absorption features, discriminates 

plant litter from soils
0.5(R2020+R2220)-R2100 [87]

NDLI, Normalized Difference 
Li i I d

Quantify variation of canopy lignin concentration in 
ti h b t ti

[log(1/R1754)-log(1/R1680)] / [88]
Lignin Index native shrub vegetation [log(1/R1754)+log(1/R1680)]
NDWI, ND Water Index Improving the accuracy in retrieving the vegetation 

water content at both leaf and canopy levels
(R860-R1240)/(R860+R1240) [89,90]

RVIhyp, Hyperspectral Ratio VI Quantify LAI and water content at canopy level. R1088/R1148 [91]

WI, Water Index Quantify relative water content at leaf level R900/R970 [92]

Note: see chapter 19, Pu et al.
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Hyperspectral Remote Sensing of Vegetation                           
Study of Pigments: chlorophyll

Note: see chapter 6; Gitelson et al

e.g., Reflectance spectra of beech leaves…red-edge (700-740 nm) one of the best.

U.S. Geological Survey
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Hyperspectral Remote Sensing of Vegetation                           
Study of Pigments: carotenoids/chlorophyll

Yellow leaf

Dark green leaf

Note: see chapter 6; Gitelson et al

e.g., Reflectance spectra of chestnut leaves…difference reflectance of (680-500 nm)/750 nm  
quantitative measurement of plant senescence

U.S. Geological Survey
U.S. Department of Interior  
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Methods of                           
Classifying Vegetation Classes or categoriesClassifying Vegetation Classes or categories 
Increased Accuracies over Broadband Data
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Methods of Classifying Vegetation Classes or Categories    
Using hyperspectral narrowband data

1. Multivariate and Partial Least Square Regression,  
2. Discriminant analysis 
3 unsupervised classification (e g Clustering)3. unsupervised classification (e.g., Clustering), 
4. supervised approaches
A. Spectral-angle mapping or SAM, 
B M i lik lih d l ifi ti MLCB. Maximum likelihood classification or MLC, 
C. Artificial Neural Network or ANN, 
D. Support Vector Machines or SVM,

Excellent for full 
spectral pp ,

4. Spectral Matching Technique (SMT)  

All these methods have merit; it remains for the

analysis…..but needs 
good spectral library

………All these methods have merit; it remains for the 
user to apply them to the situation of interest. 
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Methods of Classifying Vegetation Classes or Categories
Discriminant Model or Classification Criterion (DM) to Test                

How Well 12 different Vegetation are Discriminated using different Combinations of Broadbands vs. Narrowbands?

a. IKONOS
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Concluding Thoughts I                 
Hyperspectral (imaging Spectroscopy)Hyperspectral (imaging Spectroscopy) 
Knowledge Gain in Study of Vegetation
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Hyperspectral Remote Sensing of Vegetation                                   
Knowledge Gain and Knowledge Gap After 40 years of Research

1 Hyperspectral narrowbands when compared with broadbands data1. Hyperspectral narrowbands when compared with broadbands data 
can significantly improve in:
1.1. Discriminating\Separating vegetation and crop types and their species;
1.2. Explaining greater variability in modeling vegetation and crop        p g g y g g p
biophysical, yield, and biochemical characteristics; 
1.3. Increasing accuracies (reducing errors and uncertainties) in 
vegetation\land cover classification; and
1 4 Enabling the study of specific biophysical and biochemical properties1.4. Enabling the study of specific biophysical and biochemical properties 
from specific targeted portion of the spectrum.

2. About 33 narrowbands, in 400-2500 nm, provide optimal information2. About 33 narrowbands, in 400 2500 nm, provide optimal information 
in vegetation studies. These waveband centers are identified in this 
study. A nominal 3 to 5 nm wide bandwidth is recommended for all 
wavebands;

3. Advances in methods and approaches of hyperspectral data  
analysis in vegetation studies.
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Knowledge Gain in using Hyperspectral Narrowband Data in Study of Vegetation    

1.1a. Discriminating\Separating Vegetation Types
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Methods of Separating Vegetation Classes or Categories
Hyperion Narrowbands in Separating Vegetation\Crop Types (e.g., Crops in Brazil)

Note: see chapter 17

Relationships between red and near infrared (NIR)
Hyperion bands for the studied crop types. The triangle is
discussed in the text.

Variation in NIR-1/red and SWIR-1/green reflectance
ratios for the crop types under study.

U.S. Geological Survey
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Knowledge Gain in using Hyperspectral Narrowband Data in Study of Vegetation
1.2a. Improved biophysical and biochemical models of Vegetation
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variables such as biomass, 
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Knowledge Gain in using Hyperspectral Narrowband Data in Study of Vegetation
1.3a. Improved Classification Accuracies (and reduced errors and uncertainties)

Note: Overall Accuracies and Khat Increase by about 30 % using 20 narrow-bands compared  6 non-thermal TM broad-bands in 
classifying 12  classes

Overall accuracy (%) = -0.0224x2 + 1.5996x + 66.606
R2 = 0.9688
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these wavebands in Table 28.1 help 
provide significantly improved 
accuracies (10-30 %) in classifying 
vegetation types or species types 
compared to broadband data;
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Knowledge Gain in using Hyperspectral Narrowband Data in Study of Vegetation
1.3b. Improved Classification Accuracies (and reduced errors and uncertainties)
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Knowledge Gain in using Hyperspectral Narrowband Data in Study of Vegetation
1.2b. Improved biophysical and biochemical models of Vegetation
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Concluding Thoughts II               
Hyperspectral (imaging Spectroscopy)Hyperspectral (imaging Spectroscopy) 

Potential Products in Study of Vegetation
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Hyperspectral (Imaging Spectroscopy) Products 
6. Spectral Signature Data Bank of Vegetation Species (e.g., P. Africana)
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Hyperspectral (Imaging Spectroscopy) Products  
5a. Specific Targeted Portion of the Spectrum to Study Specific Biophysical and Biochemical Property

Specific structural p
indices

Specific 
biochemical indices

Specific 
physiological 
indices
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Hyperspectral (Imaging Spectroscopy) Products  
2. Generating Broadbands (e.g., Landsat, IKONOS) from Narrowbands (e.g., HyspIRI)
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Hyperspectral (Imaging Spectroscopy) Products  
5b. Specific Targeted Portion of the Spectrum to Study Specific Biophysical and Biochemical Property

It is also important to know what 
specific wavebands are most 
suitable to study particular 
biophysical and/or biochemical 
properties. As examples, plantproperties. As examples, plant 
moisture sensitivity is best studied 
using a narrowband (5 nm wide or 
less) centered at 970 nm, while 
plant stress assessments are best 
made using a red-edge band 
centered at 720 nm (or an first 
order derivative index derived by 
integrating spectra over 700-740 
nm range), and biophysical 
variables are best retrieved using a 
red band centered at 687 nm Thesered band centered at 687 nm. These 
bands are, often, used along with a 
reference band to produce an 
effective index such as a two-band 
normalized difference vegetation 
index involving a near infrared 

Gitelson et al.

g
(NIR) reference band centered at 
890 nm and a red band centered at 
687 nm. 
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Knowledge Gain in using Hyperspectral Narrowband Data in Study of Vegetation
2.1a. Thirty-three (33) Optimal Bands in Study of Vegetation

A. Blue bands
1 405 Nitrogen, Senescing
2 450 Chlorophyll, carotenoids, senescing 
3 490 Carotenoid, Light use efficiency (LUE), Stress in vegetation 

B. Green bands
4 515 Pigments (Carotenoid, Chlorophyll, anthocyanins), Nitrogen, Vigor Note 1: Overcomes data4 515 Pigments (Carotenoid, Chlorophyll, anthocyanins), Nitrogen, Vigor 
5 531 Light use efficiency (LUE), Xanophyll cycle, Stress in vegetation, pest and disease 
6 550 Anthocyanins, Chlorophyll, LAI, Nitrogen, light use efficiency
7 570 Pigments (Anthrocyanins, Chlorophyll), Nitrogen

C. Red bands
8 650 Pi t it

Note 2: for each band, a 
bandwidth of 3 nm will be ideal, 

Note 1: Overcomes data 
redundancy and yet retains 
optimal solution. 

8 650 Pigment, nitrogen
9 687 Biophysical quantities, chlorophyll, solar induced chlorophyll Floroscense

D. Red‐edge bands
10 705 Stress in vegetation detected in red-edge, stress, drought
11 720 Stress in vegetation detected in red-edge, stress, drought

5 nm maximum to capture the 
best characteristics of 
vegetation.

12 700-740 Chlorophyll, senescing, stress, drought

E. Near infrared (NIR) bands
13 760 Biomass, LAI, Solar-induced passive emissions
14 855 Biophysical\biochemical quantities, Heavy metal stress
15 970 Water absorption band15 970 Water absorption band
16 1045 Biophysical and biochemical quantities

Note:
* = wavebands were selected based on research and discussions in the chapters;
** = when there were close wavebands (e.g., 960 nm, 970 nm), only one waveband (e.g., 970 nm) was selected based on overwhelming eveidence as reported in various chapters. This would avoid redundancy.
*** = a nominal 5 nm waveband width can be considered optimal for obtaining best results with above wavebands as band centers. So, for 970 nm waveband center, we can have a band of range of 968‐972 nm.
**** = The above wavebands can be considered as optimal for studying vehetation. Adding more waveband will only add to redundancy. Vegetation indices can be computed using above wavebands.
***** = 33 wavebands lead to a matrix of 33 x 33 = 1089 two band vehetation indices (TBVIs) Given that the indices above the diagonal and below diagonal replicate and indices along diagonal are redundant there are 52***** = 33 wavebands lead to a matrix of 33 x 33 = 1089 two band vehetation indices (TBVIs). Given that the indices above the diagonal and below diagonal replicate and indices along diagonal are redundant, there are 52
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Knowledge Gain in using Hyperspectral Narrowband Data in Study of Vegetation
2.1b. Thirty-three (336) Optimal Bands in Study of Vegetation

E F i f d (FNIR) b dE. Far near infrared (FNIR) bands
17 1100 Biophysical quantities
18 1180 Water absorption band
19 1245 Water sensitivity

F Early short wave infrared (ESWIR) bandsF. Early short-wave infrared (ESWIR) bands
20 1450 Water absorption band
21 1548 Lignin, cellulose
22 1620 Lignin, cellulose
23 1650 Heavy metal stress, Moisture sensitivity
24 1690 Lignin cellulose sugar starch protein

Note 1: Overcomes 
data redundancy and 
yet retains optimal 
solution. 

Note 2: for each band, a 
bandwidth of 3 nm will 
be ideal, 5 nm 
maximum to capture 

24 1690 Lignin, cellulose, sugar, starch, protein
25 1760 Water absorption band, senescence, lignin, cellulose

G. Far short-wave infrared (FSWIR) bands
26 1950 Water absorption band
27 2025 Litter (plant litter), lignin, cellulose p

the best characteristics 
of vegetation.

(p ), g ,
28 2050 Water absorption band
29 2133 Litter (plant litter), lignin, cellulose
30 2145 Water absorption band
31 2173 Water absorption band
32 2205 Litter, lignin, cellulose, sugar, startch, protein; Heavy metal stressg g p y
33 2295 Stress and soil iron content
Note:
* = wavebands were selected based on research and discussions in the chapters;
** = when there were close wavebands (e.g., 960 nm, 970 nm), only one waveband (e.g., 970 nm) was selected based on overwhelming eveidence as reported in various chapters. This would avoid redundancy.
*** = a nominal 5 nm waveband width can be considered optimal for obtaining best results with above wavebands as band centers. So, for 970 nm waveband center, we can have a band of range of 968‐972 nm.
**** = The above wavebands can be considered as optimal for studying vehetation. Adding more waveband will only add to redundancy. Vegetation indices can be computed using above wavebands.
***** = 33 wavebands lead to a matrix of 33 x 33 = 1089 two band vehetation indices (TBVIs) Given that the indices above the diagonal and below diagonal replicate and indices along diagonal are redundant there are 52***** = 33 wavebands lead to a matrix of 33 x 33 = 1089 two band vehetation indices (TBVIs). Given that the indices above the diagonal and below diagonal replicate and indices along diagonal are redundant, there are 52
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Hyperspectral Data on Tropical Forests
Advances in Combining Hyperspectral and LIDAR over Tropical Forests 

H t l LIDAR for
canopy structure including 

height, 
crown shape, 
leaf area, 

Hyperspectral for
canopy  

biochemistry 

biomass, and 
basal area

Hyperspectral + LIDAR for
characterize parameters such as

height

Note: see chapter 20, Thomas et al.

canopy cover
leaf area
canopy chlorophyll content, and 
canopy water content
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Publications                          
Hyperspectral Remote Sensing of Vegetation
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