Edge-connectivity augmentation of graphs over symmetric parity families

Zoltán Szigeti

Laboratoire G-SCOP
INP Grenoble, France

8 April 2009
Outline

1. Edge-connectivity
2. T-cuts
3. Symmetric parity families
Outline

1. Edge-connectivity
 1. Definitions
 2. Cut equivalent trees
 3. Edge-connectivity augmentation

2. T-cuts

3. Symmetric parity families
1. Edge-connectivity
 1. Definitions
 2. Cut equivalent trees
 3. Edge-connectivity augmentation

2. T-cuts
 1. Definitions
 2. Minimum T-cut
 3. Augmentation of minimum T-cut

3. Symmetric parity families
Outline

1. Edge-connectivity
 1. Definitions
 2. Cut equivalent trees
 3. Edge-connectivity augmentation

2. T-cuts
 1. Definitions
 2. Minimum T-cut
 3. Augmentation of minimum T-cut

3. Symmetric parity families
 1. Definition, Examples
 2. Minimum cut over a symmetric parity family
 3. Augmentation of minimum cut over a symmetric parity family
Global edge-connectivity

Given a graph $G = (V, E)$ and an integer k, G is called k-edge-connected if each cut contains at least k edges.
Definitions

Global edge-connectivity

Given a graph $G = (V, E)$ and an integer k, G is called \textit{k-edge-connected} if each cut contains at least k edges.

Local edge-connectivity

Given a graph $G = (V, E)$ and $u, v \in V$, the \textit{local edge-connectivity} $\lambda_G(u, v)$ is defined as the minimum cardinality of a cut separating u and v.
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and $c : E' \rightarrow \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,
2. if e achieves this minimum, then a minimum cut of G separating u and v is given by the two connected components of $H - e$.
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and $c : E' \to \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then a minimum cut of G separating u and v is given by the two connected components of $H - e$.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and $c : E' \rightarrow \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then a minimum cut of G separating u and v is given by the two connected components of $H - e$.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and $c : E' \rightarrow \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then a minimum cut of G separating u and v is given by the two connected components of $H - e$.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and $c : E' \to \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then a minimum cut of G separating u and v is given by the two connected components of $H - e$.

Graph $G = (V, E)$
Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and $c : E' \to \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then a minimum cut of G separating u and v is given by the two connected components of $H - e$.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and $c : E' \rightarrow \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,
2. if e achieves this minimum, then a minimum cut of G separating u and v is given by the two connected components of $H - e$.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and $c : E' \rightarrow \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then a minimum cut of G separating u and v is given by the two connected components of $H - e$.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and $c : E' \rightarrow \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then a minimum cut of G separating u and v is given by the two connected components of $H - e$.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and $c : E' \rightarrow \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then a minimum cut of G separating u and v is given by the two connected components of $H - e$.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and $c : E' \rightarrow \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then a minimum cut of G separating u and v is given by the two connected components of $H - e$.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and $c : E' \to \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then a minimum cut of G separating u and v is given by the two connected components of $H - e$.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)

Graph $G, k = 4$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)

Graph $G, k = 4$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)

Graph G, $k = 4$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)

Graph $G, k = 4$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)

Graph G, $k = 4$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomialsly solvable (Cai, Sun)

Opt $\geq \lceil \frac{5}{2} \rceil = 3
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)

Graph $G + F$ is 4-edge-connected and $|F| = 3$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)

$$\text{Opt} = \left\lceil \frac{1}{2} \text{maximum deficiency of a subpartition of } V \right\rceil$$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)
General method

Frank’s algorithm

1. **Minimal extension,**
 - (i) Add a new vertex s,
 - (ii) Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
 - (iii) If the degree of s is odd, then add an arbitrary edge incident to s.

2. **Complete splitting off.**

$$G = (V, E)$$

$$G' \text{ k-e-c in } V$$

$$G'' \text{ k-e-c}$$
Frank’s algorithm

1. **Minimal extension,**
 - (i) Add a new vertex \(s \),
 - (ii) Add a minimum number of new edges incident to \(s \) to satisfy the edge-connectivity requirements,
 - (iii) If the degree of \(s \) is odd, then add an arbitrary edge incident to \(s \).

2. **Complete splitting off.**

\[G = (V, E) \]
\[G' \text{ k-e-c in } V \]
\[G'' \text{ k-e-c} \]
Frank’s algorithm

1. Minimal extension,
 (i) Add a new vertex \(s \),
 (ii) Add a minimum number of new edges incident to \(s \) to satisfy the edge-connectivity requirements,
 (iii) If the degree of \(s \) is odd, then add an arbitrary edge incident to \(s \).

2. Complete splitting off.
General method

Frank’s algorithm

1. Minimal extension,
 (i) Add a new vertex s,
 (ii) Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
 (iii) If the degree of s is odd, then add an arbitrary edge incident to s.

2. Complete splitting off.

$G = (V, E)$

$G' \ k\text{-e-c in } V$

$G'' \ k\text{-e-c}$
General method

Frank’s algorithm

1. Minimal extension,
 (i) Add a new vertex s,
 (ii) Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
 (iii) If the degree of s is odd, then add an arbitrary edge incident to s.

2. Complete splitting off.

$G = (V, E)$

$G' \text{ k-e-c in } V$

$G'' \text{ k-e-c}$
Definition

A function p on 2^V is called **skew-supermodular** if at least one of following inequalities hold for all $X, Y \subseteq V$:

\[
p(X) + p(Y) \leq p(X \cap Y) + p(X \cup Y),
\]

\[
p(X) + p(Y) \leq p(X - Y) + p(Y - X).
\]
Minimal extension

Definition

A function p on 2^V is called skew-supersmodular if at least one of following inequalities hold for all $X, Y \subseteq V$:

$$p(X) + p(Y) \leq p(X \cap Y) + p(X \cup Y),$$
$$p(X) + p(Y) \leq p(X - Y) + p(Y - X).$$

Theorem (Frank)

Let $p : 2^V \rightarrow \mathbb{Z} \cup \{-\infty\}$ be a symmetric skew-supersmodular function.

1. The minimum number of edges in an extension ($d(X) \geq p(X)$ for all $X \subseteq V$) is equal to the maximum p-value of a subpartition of V.
2. An optimal extension can be found in polynomial time in the special cases mentioned in this talk.
Definition

A function \(p \) on \(2^V \) is called skew-supermodular if at least one of following inequalities hold for all \(X, Y \subseteq V \):

\[
\begin{align*}
p(X) + p(Y) & \leq p(X \cap Y) + p(X \cup Y), \\
p(X) + p(Y) & \leq p(X - Y) + p(Y - X).
\end{align*}
\]

Theorem (Frank)

Let \(p : 2^V \to \mathbb{Z} \cup \{-\infty\} \) be a symmetric skew-supermodular function.

1. The minimum number of edges in an extension \((d(X) \geq p(X) \text{ for all } X \subseteq V) \) is equal to the maximum \(p \)-value of a subpartition of \(V \).
2. An optimal extension can be found in polynomial time in the special cases mentioned in this talk.
Definition

A function p on 2^V is called **skew-supermodular** if at least one of the following inequalities hold for all $X, Y \subseteq V$:

$$p(X) + p(Y) \leq p(X \cap Y) + p(X \cup Y),$$

$$p(X) + p(Y) \leq p(X - Y) + p(Y - X).$$

Theorem (Frank)

Let $p : 2^V \to \mathbb{Z} \cup \{-\infty\}$ be a symmetric skew-supermodular function.

1. **The minimum number of edges in an extension** ($d(X) \geq p(X)$ for all $X \subseteq V$) **is equal to the maximum p-value of a subpartition of V**.

2. **An optimal extension can be found in polynomial time in the special cases mentioned in this talk.**
Minimal extension

Definition

A function p on 2^V is called **skew-supermodular** if at least one of following inequalities hold for all $X, Y \subseteq V$:

\[
p(X) + p(Y) \leq p(X \cap Y) + p(X \cup Y),
\]

\[
p(X) + p(Y) \leq p(X - Y) + p(Y - X).
\]

Theorem (Frank)

Let $p : 2^V \to \mathbb{Z} \cup \{-\infty\}$ be a symmetric skew-supermodular function.

1. The minimum number of edges in an extension ($d(X) \geq p(X)$ for all $X \subseteq V$) is equal to the maximum p-value of a subpartition of V.

2. An optimal extension can be found in polynomial time in the special cases mentioned in this talk.

For global edge-connectivity augmentation $p(X) := k - d_G(X)$.

Z. Szigeti (G-SCOP, Grenoble)
Complete splitting off

Definitions

\[G' \xrightarrow{\text{Splitting off}} G_{uv} \xrightarrow{\text{Complete Splitting off}} G'' \]

\[G' \xrightarrow{\text{Splitting off}} G_{uv} \]

Z. Szigeti (G-SCOP, Grenoble)
Complete splitting off

Definitions

Theorem (Mader)

Let $G' = (V + s, E)$ be a graph so that $d(s)$ is even and no cut edge is incident to s.

1. Then there exists a complete splitting off at s that preserves the local edge-connectivity between all pairs of vertices in V.
2. Such a complete splitting off can be found in polynomial time.
Theorem (Mader)

Let $G' = (V + s, E)$ be a graph so that $d(s)$ is even and no cut edge is incident to s.

1. Then there exists a complete splitting off at s that preserves the local edge-connectivity between all pairs of vertices in V.
2. Such a complete splitting off can be found in polynomial time.
Complete splitting off

Definitions

\[G' \quad G'_{uv} \quad G' \quad G'' \]

Theorem (Mader)

Let \(G' = (V + s, E) \) be a graph so that \(d(s) \) is even and no cut edge is incident to \(s \).

1. Then there exists a complete splitting off at \(s \) that preserves the local edge-connectivity between all pairs of vertices in \(V \).
2. Such a complete splitting off can be found in polynomial time.
Negative Result
A graph H covers a function $p : 2^{V(H)} \to \mathbb{Z} \cup \{-\infty\}$ if each cut $\delta_H(X)$ contains at least $p(X)$ edges.
Definition

A graph H covers a function $p : 2^{V(H)} \rightarrow \mathbb{Z} \cup \{-\infty\}$ if each cut $\delta_H(X)$ contains at least $p(X)$ edges.

Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph

Instance: $p : 2^V \rightarrow \mathbb{Z}$ symmetric skew-supermodular, $\gamma \in \mathbb{Z}^+$.

Question: Does there exist a graph on V with at most γ edges that covers p?
Negative Result

Definition

A graph H covers a function $p : 2^V(H) \rightarrow \mathbb{Z} \cup \{-\infty\}$ if each cut $\delta_H(X)$ contains at least $p(X)$ edges.

Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph

Instance: $p : 2^V \rightarrow \mathbb{Z}$ symmetric skew-supermodular, $\gamma \in \mathbb{Z}^+$.
Question: Does there exist a graph on V with at most γ edges that covers p?

Theorem (Z. Király, Z. Nutov)

The above problem is NP-complete.
Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called T-cut if X is T-odd.
3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:

(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.
Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.

2. A cut $\delta(X)$ is called T-cut if X is T-odd.

3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:

(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.
Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called T-cut if X is T-odd.
3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:

(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.
T-cut, T-join

Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called T-cut if X is T-odd.
3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:

(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.
Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called \textit{T-odd} if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called \textit{T-cut} if X is \textit{T-odd}.
3. A subset F of E is called \textit{T-join} if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:

(a) $T = \{u, v\}$: a (u, v)-path is a \textit{T-join}.
(b) $T = V$: a perfect matching is a \textit{T-join}.
Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.

2. A cut $\delta(X)$ is called T-cut if X is T-odd.

3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:

(a) $T = \{u, v\}$: a (u, v)-path is a T-join.

(b) $T = V$: a perfect matching is a T-join.
Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called T-cut if X is T-odd.
3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:

(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.
Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called T-cut if X is T-odd.
3. A subset F of E is called T-join if $T = \{ v \in V : d_F(v) \text{ is odd} \}$.

Examples:
(a) $T = \{ u, v \}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.

Properties

1. If X, Y are T-odd, then either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are T-odd.
2. A T-join and a T-cut always have an edge in common.
T-cut, T-join

Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called T-cut if X is T-odd.
3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:
(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.

Properties

1. If X, Y are T-odd, then either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are T-odd.
2. A T-join and a T-cut always have an edge in common.
Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called T-cut if X is T-odd.
3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:

(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.

Properties

1. If X, Y are T-odd, then either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are T-odd.
2. A T-join and a T-cut always have an edge in common.
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join can be found in polynomial time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join can be found in polynomial time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
Theorem (Edmonds-Johnson)

A minimum T-join can be found in polynomial time using
1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
Theorem (Edmonds-Johnson)

A minimum T-join can be found in polynomial time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join can be found in polynomial time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join can be found in polynomial time using

1. *shortest paths algorithm (Dijkstra)* and
2. *minimum weight perfect matching algorithm (Edmonds)*.

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join can be found in polynomial time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join can be found in polynomial time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join can be found in polynomial time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join can be found in polynomial time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and minimum T-join
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut can be found in polynomial time using a cut equivalent tree H and:

1. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
2. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
3. taking the cut defined by the two connected components of $H - e^*$.

Graph G and vertex set T
How to find a minimum \(T \)-cut?

Theorem (Padberg-Rao)

A minimum \(T \)-cut can be found in polynomial time using a cut equivalent tree \(H \) and:

1. **using a cut equivalent tree \(H \) and**
2. **taking the set \(J(H) \) edges \(e \) of \(H \) for which the two connected components of \(H - e \) are \(T \)-odd,**
3. **taking the minimum value \(c(e^*) \) of an edge of \(J(H) \),**
4. **taking the cut defined by the two connected components of \(H - e^* \).**

Graph \(G \) and vertex set \(T \)

Cut equivalent tree \(H \)
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut can be found in polynomial time

1. using a cut equivalent tree H and
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut defined by the two connected components of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut can be found in polynomial time

1. using a cut equivalent tree H and
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut defined by the two connected components of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut can be found in polynomial time

1. using a cut equivalent tree H and
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut defined by the two connected components of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut can be found in polynomial time

1. using a cut equivalent tree H and
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut defined by the two connected components of $H - e^*$.

![Graph G and vertex set T](image1)

![Cut equivalent tree H](image2)
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut can be found in polynomial time

1. using a cut equivalent tree H and
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut defined by the two connected components of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut can be found in polynomial time

1. using a cut equivalent tree H and
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut defined by the two connected components of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut can be found in polynomial time

1. using a cut equivalent tree H and
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut defined by the two connected components of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H and edge set $J(H)$
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut can be found in polynomial time

1. using a cut equivalent tree H and
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut defined by the two connected components of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut can be found in polynomial time

1. using a cut equivalent tree H and
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut defined by the two connected components of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut can be found in polynomial time

1. **using a cut equivalent tree** H and
2. **taking the set** $J(H)$ **edges** e of H **for which the two connected components of** $H - e$ **are** T-odd,
3. **taking the minimum value** $c(e^*)$ **of an edge of** $J(H)$,
4. **taking the cut defined by the two connected components of** $H - e^*$.

Minimum T-cut in G

Cut equivalent tree H
Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$.
Proof

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$.

Proof : $J(H)$ is a T-join so there exists $xy \in J(H) \cap \delta_H(X)$ and $\lambda_G(x, y) = c(xy) \geq c(e^*)$.
Proof

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$.

Proof: $J(H)$ is a T-join so there exists $xy \in J(H) \cap \delta_H(X)$ and $\lambda_G(x, y) = c(xy) \geq c(e^*)$.

Correctness of Padberg-Rao’s algorithm

Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^*. By the lemma, there exist $x \in X, y \notin X$ such that

$$c(e^*) = d(Y) \geq d(X) \geq \lambda_G(x, y) \geq c(e^*).$$
How to augment a minimum T-cut?

Theorem (Z.Sz.)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum p-value of a subpartition of } V \rceil$. An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p(X) := k - d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
 - (i) $k - d_G(X)$ satisfies both inequalities,
 - (ii) X, Y are T-odd \implies either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are T-odd.

2. works because for all T-odd sets, $d_{G'}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \leq d_{G''}(X)$.
How to augment a minimum \(T\)-cut?

Theorem (Z.Sz.)

Given a connected graph \(G = (V, E)\), \(T \subseteq V\) and \(k \in \mathbb{Z}\), the minimum number of edges whose addition results in a graph so that each \(T\)-cut is of size at least \(k\) is equal to \(\lceil \frac{1}{2} \text{ maximum } p\text{-value of a subpartition of } V \rceil\). An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because \(p(X) := k - d_G(X)\) if \(X\) is \(T\)-odd and \(-\infty\) otherwise is symmetric skew-supermodular

 (i) \(k - d_G(X)\) satisfies both inequalities,
 (ii) \(X, Y\) are \(T\)-odd \(\implies\) either \(X \cap Y, X \cup Y\) or \(X - Y, Y - X\) are \(T\)-odd.

2. works because for all \(T\)-odd sets, \(d_{G'}(X) \geq k\) and, by the above lemma, \(k \leq \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \leq d_{G''}(X)\).
How to augment a minimum T-cut?

Theorem (Z.Sz.)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum } p\text{-value of a subpartition of } V \rceil$. An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p(X) := k - d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular

 (i) $k - d_G(X)$ satisfies both inequalities,
 (ii) X, Y are T-odd \implies either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are T-odd.

2. works because for all T-odd sets, $d_{G'}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \leq d_{G''}(X)$.
How to augment a minimum T-cut?

Theorem (Z.Sz.)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum p-value of a subpartition of } V \rceil$. An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p(X) := k - d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular

 (i) $k - d_G(X)$ satisfies both inequalities,
 (ii) X, Y are T-odd \implies either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are T-odd.

2. works because for all T-odd sets, $d_G'(X) \geq k$ and, by the above lemma, $k \leq \lambda_G'(x, y) = \lambda_G''(x, y) \leq d_G''(X)$.
How to augment a minimum T-cut?

Theorem (Z.Sz.)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{maximum p-value of a subpartition of } V \rceil$. An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p(X) := k - d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
 - (i) $k - d_G(X)$ satisfies both inequalities,
 - (ii) X, Y are T-odd \implies either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are T-odd.

2. works because for all T-odd sets, $d_{G'}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \leq d_{G''}(X)$.
How to augment a minimum T-cut?

Theorem (Z.Sz.)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum } p\text{-value of a subpartition of } V \rceil$. An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p(X) := k - d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular

 (i) $k - d_G(X)$ satisfies both inequalities,
 (ii) X, Y are T-odd \implies either $X \cap Y$, $X \cup Y$ or $X - Y$, $Y - X$ are T-odd.

2. works because for all T-odd sets, $d_{G'}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \leq d_{G''}(X)$.
How to augment a minimum T-cut?

Theorem (Z.Sz.)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{maximum p-value of a subpartition of } V \rceil$. An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p(X) := k - d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular

 (i) $k - d_G(X)$ satisfies both inequalities,
 (ii) X, Y are T-odd \implies either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are T-odd.

2. works because for all T-odd sets, $d_G'(X) \geq k$ and, by the above lemma, $k \leq \lambda_G'(x, y) = \lambda_G''(x, y) \leq d_G''(X)$.
Theorem (Z.Sz.)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum p-value of a subpartition of } V \rceil$. An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Graph G, vertex set T and $k = 4$
How to augment a minimum T-cut?

Theorem (Z. Sz.)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\left\lceil \frac{1}{2} \right. \text{maximum p-value of a subpartition of } V \right\rceil$. An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Minimum T-cut in $G + F$ is 4
Definition: symmetric parity family

A family \mathcal{F} of subsets of V is called symmetric parity family if

1. $\emptyset, V \notin \mathcal{F}$,
2. if $A \in \mathcal{F}$, then $V - A \in \mathcal{F}$,
3. if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.
Definition: symmetric parity family

A family \mathcal{F} of subsets of V is called **symmetric parity family** if

1. $\emptyset, V \notin \mathcal{F}$,
2. if $A \in \mathcal{F}$, then $V - A \in \mathcal{F}$,
3. if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.
Definition: symmetric parity family

A family F of subsets of V is called symmetric parity family if

1. $\emptyset, V \notin F$,
2. if $A \in F$, then $V - A \in F$,
3. if $A, B \notin F$ and $A \cap B = \emptyset$, then $A \cup B \notin F$.
Definition: symmetric parity family

A family F of subsets of V is called symmetric parity family if

1. $\emptyset, V \notin F$,
2. if $A \in F$, then $V - A \in F$,
3. if $A, B \notin F$ and $A \cap B = \emptyset$, then $A \cup B \notin F$.

Z. Szigeti (G-SCOP, Grenoble)
Definition: symmetric parity family

A family \mathcal{F} of subsets of V is called symmetric parity family if

1. $\emptyset, V \notin \mathcal{F}$,
2. if $A \in \mathcal{F}$, then $V - A \in \mathcal{F}$,
3. if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

The most important examples are:

1. $\mathcal{F} := 2^V - \{\emptyset, V\}$
2. $\mathcal{F} := \{X \subset V : X \text{ is } T\text{-odd}\}$ where $T \subseteq V$ with $|T|$ even.
Definition: symmetric parity family

A family \mathcal{F} of subsets of V is called **symmetric parity family** if

1. $\emptyset, V \notin \mathcal{F},$
2. if $A \in \mathcal{F}$, then $V - A \in \mathcal{F},$
3. if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

The most important examples are:

1. $\mathcal{F} := 2^V - \{\emptyset, V\}$
2. $\mathcal{F} := \{X \subset V : X \text{ is } T\text{-odd} \}$ where $T \subseteq V$ with $|T|$ even.
Definition: symmetric parity family

A family \mathcal{F} of subsets of V is called symmetric parity family if

1. $\emptyset, V \notin \mathcal{F}$,
2. if $A \in \mathcal{F}$, then $V - A \in \mathcal{F}$,
3. if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

The most important examples are:

1. $\mathcal{F} := 2^V - \{\emptyset, V\}$
2. $\mathcal{F} := \{X \subset V : X$ is T-odd$\}$ where $T \subseteq V$ with $|T|$ even.
How to find a minimum \mathcal{F}-cut?

Theorem (Goemans-Ramakrishnan)

Given a connected graph G and a symmetric parity family \mathcal{F}, a minimum \mathcal{F}-cut, that is a minimum cut over \mathcal{F}, can be found in polynomial time using a cut equivalent tree H and:

1. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are in \mathcal{F},
2. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
3. taking the cut defined by the two connected components of $H - e^*$.

Z. Szigeti (G-SCOP, Grenoble)
How to find a minimum \mathcal{F}-cut?

Theorem (Goemans-Ramakrishnan)

Given a connected graph G and a symmetric parity family \mathcal{F}, a minimum \mathcal{F}-cut, that is a minimum cut over \mathcal{F}, can be found in polynomial time using a cut equivalent tree H and:

1. **using a cut equivalent tree H and**
2. **taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are in \mathcal{F},**
3. **taking the minimum value $c(e^*)$ of an edge of $J(H)$,**
4. **taking the cut defined by the two connected components of $H - e^*$.**
Proof

Lemma

For any $X \in \mathcal{F}$ there exist $x \in X$, $y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$.
Proof

Lemma

For any $X \in \mathcal{F}$ there exist $x \in X$, $y \notin X$ such that $\lambda_{G}(x, y) \geq c(e^*)$.

Proof: Exercise: there exists an edge $xy \in \delta_{J(H)}(X)$.

Z. Szigeti (G-SCOP, Grenoble)
Proof

Lemma

For any \(X \in \mathcal{F} \) there exist \(x \in X, y \notin X \) such that \(\lambda_G(x, y) \geq c(e^*) \).

Proof: Exercise: there exists an edge \(xy \in \delta_{J(H)}(X) \).

Correctness of Goemans-Ramakrishnan’s algorithm

The same proof works as for Padberg-Rao’s algorithm.
How to augment a minimum \mathcal{F}-cut?

Theorem (Z.Sz.)

Given a connected graph G, a symmetric parity family \mathcal{F} and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each \mathcal{F}-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum } p\text{-value of a subpartition of } V \rceil$. An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p(X) := k - d_G(X)$ if $X \in \mathcal{F}$ and $-\infty$ otherwise is symmetric skew-supermodular

 (i) $k - d_G(X)$ satisfies both inequalities,
 (ii) If $X, Y \in \mathcal{F}$, then either $X \cap Y, X \cup Y \in \mathcal{F}$ or $X - Y, Y - X \in \mathcal{F}$.

2. works because for all $X \in \mathcal{F}$, $d_{G'}(X) \geq k$ and, by the above lemma,

 $k \leq \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \leq d_{G''}(X)$.

Conclusion

1. Special cases:
 1. Global edge-connectivity augmentation (Watanabe, Nakamura)
 2. Minimum T-cut augmentation

2. A new polynomial special case of the NP-complete problem
 Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph
Special cases:
1. Global edge-connectivity augmentation (Watanabe, Nakamura)
2. Minimum T-cut augmentation

2. A new polynomial special case of the NP-complete problem

 Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph
Special cases:
1. Global edge-connectivity augmentation (Watanabe, Nakamura)
2. Minimum T-cut augmentation

A new polynomial special case of the NP-complete problem

Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph
Conclusion

1. Special cases:
 1. Global edge-connectivity augmentation (Watanabe, Nakamura)
 2. Minimum T-cut augmentation

2. A new polynomial special case of the NP-complete problem
 Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph