CONTENTS

INVITED SPEAKERS

KEYNOTE SPEAKERS

BIOINSPIRED ROBOTICS AND VISION WITH HUMANOID ROBOTS
José Santos-Victor

HUMAN - Robot Cooperation Techniques in Surgery
Alicia Casals

MAKING MICROROBOTS MOVE
Bradley Nelson

DYNAMIC MODELING OF ROBOTS USING RECURSIVE NEWTON-EULER TECHNIQUES
Wissama Khalil

EMOTIVE DRIVER ADVISORY SYSTEM
Oleg Gusikhin

FINGERTIP FORCE MEASUREMENT BY IMAGING THE FINGERNAIL
John Hollerbach

ROBOTICS AND AUTOMATION

FULL PAPERS

POSITION ESTIMATION OF MOBILE ROBOTS CONSIDERING CHARACTERISTIC TERRAIN PROPERTIES
Michael Brunner, Dirk Schulz and Armin B. Cremers

SELECTION OF DIFFERENT PATHS FOR DOUBLY NONHOLONOMIC MOBILE MANIPULATORS
Alicja Mazur and Elżbieta Roszkowska

ON REAL-TIME WHOLE-BODY HUMAN TO HUMANOID MOTION TRANSFER
Francisco-Javier Montecillo-Puente, Manish N. Sreenivasa and Jean-Paul Laumond

FREQUENCY EXTRACTION BASED ON ADAPTIVE FOURIER SERIES - Application to Robotic Yoyo
Tadej Petrič, Andrej Gams and Leon Žlajpah

BILATERAL TELEOPERATION FOR FORCE SENSORLESS 1-DOF ROBOTS
Stefan Lichiardopol, Nathan van de Wouw and Henk Nijmeijer

GRASPING WITH VISION DESCRIPTORS AND MOTOR PRIMITIVES
Oliver Kroemer, Renaud Detry, Justus Piater and Jan Peters

REMOTE CONTROL OF A MOBILE ROBOT SUBJECT TO A COMMUNICATION DELAY
A. Alvarez-Aguirre, H. Nijmeijer, T. Oguchi and K. Kojima

PERFORMANCE OF HIGH-LEVEL AND LOW-LEVEL CONTROL FOR COORDINATION OF MOBILE ROBOTS
Sisdarmanto Adinandra, Jurjen Caarls, Dragan Kostić and Hendrik Nijmeijer
A HIGHLY INTEGRATED LOW PRESSURE FLUID SERVO-VALVE FOR APPLICATIONS IN WEARABLE ROBOTIC SYSTEMS
Michele Folgheraiter, Mathias Jordan, Luis M. Vaca Benitez, Felix Grimminger, Steffen Schmidt, Jan Albiez and Frank Kirchner

COLLECTIVE LEARNING OF CONCEPTS USING A ROBOT TEAM
Ana Cristina Palacios-García, Angélica Muñoz-Meléndez and Eduardo F. Morales

DYNAMIC MODELING AND PNEUMATIC SWITCHING CONTROL OF A SUBMERSIBLE DROGUE
Y. Han, R. A. de Callafon, J. Cortés and J. Jaffe

VISUAL-BASED DETECTION AND TRACKING OF DYNAMIC OBSTACLES FROM A MOBILE ROBOT
Dora Laz Almanza-Ojeda, Michel Devy and Ariane Herbulot

SHORT PAPERS

AUTONOMOUS MANEUVERS OF A FARM VEHICLE WITH A TRAILED IMPLEMENT IN HEADLAND
Christophe Cariou, Roland Lenain, Michel Berducat and Benoit Thuilot

AUTOMATED 2D MEASURING OF INTERIORS USING A MOBILE PLATFORM
Alexander Fietz, Sebastian M. Jackisch, Benjamin A. Visel and Dieter Frietsch

AUTOMATIC CALIBRATION OF A MOTION CAPTURE SYSTEM BASED ON INERTIAL SENSORS FOR TELE-MANIPULATION
Jörg Hoffmann, Bernd Brüggemann and Björn Krüger

LEGS DETECTION USING A LASER RANGE FINDER FOR HUMAN ROBOT INTERACTION
Flávio Garcia Pereira, Raquel Frizera Vassallo and Evandro Ottoni Teatini Salles

FORMATION CONTROL BETWEEN A HUMAN AND A MOBILE ROBOT BASED ON STEREO VISION
Flávio Garcia Pereira, Marino Frank Cypriano and Raquel Frizera Vassallo

NAVIGATION AND FORMATION CONTROL EMPLOYING COMPLEMENTARY VIRTUAL LEADERS FOR COMPLEX MANEUVERS
Martin Saska, Vojtěch Vonásek and Libor Přeučil

SMA CONTROL FOR BIO-MIMETIC FISH LOCOMOTION
Claudio Rossi, Antonio Barrientos and William Coral Cuellar

EJS+EJSRL: A FREE JAVA TOOL FOR ADVANCED ROBOTICS SIMULATION AND COMPUTER VISION PROCESSING
Carlos A. Jara, Francisco A. Candelas, Jorge Pomares, Pablo Gil and Fernando Torres

FORMATION CONTROL OF MULTI-ROBOTS VIA SLIDING-MODE TECHNIQUE
Razvan Solea, Daniela Cernega, Adrian Filipescu and Adriana Serbencu

KINEMATIC IDENTIFICATION OF PARALLEL MECHANISMS BY A DIVIDE AND CONQUER STRATEGY
Sebastián Durango, David Restrepo, Oscar Ruiz, John Restrepo-Giraldo and Sofiane Achiche

A CASTOR WHEEL CONTROLLER FOR DIFFERENTIAL DRIVE WHEELCHAIRS
Bernd Gersdorf and Shi Hui

XIV
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTRIBUTED OPTIMIZATION BY WEIGHTED ONTOLOGIES IN MOBILE ROBOT</td>
<td>180</td>
</tr>
<tr>
<td>SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>Lucia Vacariu, George Fodor, Gheorghe Lazea and Octavian Cret</td>
<td></td>
</tr>
<tr>
<td>OFFROAD NAVIGATION USING ADAPTABLE MOTION PATTERNS</td>
<td>186</td>
</tr>
<tr>
<td>Frank Hoeller, Timo Röhling and Dirk Schulz</td>
<td></td>
</tr>
<tr>
<td>EVALUATION OF FEEDBACK AND FEEDFORWARD LINEARIZATION STRATEGIES FOR</td>
<td>192</td>
</tr>
<tr>
<td>AN ARTICULATED ROBOT</td>
<td></td>
</tr>
<tr>
<td>Roland Riepl, Hubert Gattringer and Hartmut Bremer</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENTS WITH A CONTINUUM ROBOT STRUCTURE</td>
<td>198</td>
</tr>
<tr>
<td>Dorian Cojocaru, Sorin Dumitru, Florin Manta, Giuseppe Boccolato and</td>
<td></td>
</tr>
<tr>
<td>Ion Manea</td>
<td></td>
</tr>
<tr>
<td>A ROBUST MOSAICING METHOD FOR ROBOTIC ASSISTED MINIMALLY INVASIVE</td>
<td>206</td>
</tr>
<tr>
<td>SURGERY</td>
<td></td>
</tr>
<tr>
<td>Mingxing Hu, David J. Hawkes, Graeme P. Penney, Daniel Rueckert,</td>
<td></td>
</tr>
<tr>
<td>Philip J. Edwards, Fernado Bello, Michael Figl and Roberto Casula</td>
<td></td>
</tr>
<tr>
<td>ROBOT SKILL SYNTHESIS THROUGH HUMAN VISUO-MOTOR LEARNING - Humanoid</td>
<td>212</td>
</tr>
<tr>
<td>Robot Static-stable Reaching and In-place Stepping</td>
<td></td>
</tr>
<tr>
<td>Jan Babič, Blaž Hajdinjak and Erhan Oztop</td>
<td></td>
</tr>
<tr>
<td>DYNAMIC MODELING OF A MOMENT EXCHANGE UNICYCLE ROBOT</td>
<td>216</td>
</tr>
<tr>
<td>S. Langius and R. A. de Callafon</td>
<td></td>
</tr>
<tr>
<td>MULTI-SCALE COLLABORATIVE SEARCHING THROUGH SWARMING</td>
<td>222</td>
</tr>
<tr>
<td>Wangyi Liu, Yasser E. Taima, Martin B. Short and Andrea L. Bertozzi</td>
<td></td>
</tr>
<tr>
<td>LOCALIZATION IN AN AUTONOMOUS UNDERWATER MULTI-ROBOT SYSTEM</td>
<td>232</td>
</tr>
<tr>
<td>DESIGNED FOR COASTAL AREA MONITORING</td>
<td></td>
</tr>
<tr>
<td>Zhongliang Hu, Eemeli Aro, Taapni Stipa, Mika Vainio and Aarne Halme</td>
<td></td>
</tr>
<tr>
<td>PARTICLE SWARM OPTIMIZATION USED FOR THE MOBILE ROBOT TRAJECTORY</td>
<td>240</td>
</tr>
<tr>
<td>TRACKING CONTROL</td>
<td></td>
</tr>
<tr>
<td>Adrian Emanoil Serbencu, Adriana Serbencu and Daniela Cristina Cernega</td>
<td></td>
</tr>
<tr>
<td>EFFICIENT LOCOMOTION ON NON-WHEELED SNAKE-LIKE ROBOTS</td>
<td>246</td>
</tr>
<tr>
<td>Julián Colorado, Antonio Barrientos, Claudio Rossi, Mario Garzón,</td>
<td></td>
</tr>
<tr>
<td>María Galán and Jaime del Cerro</td>
<td></td>
</tr>
<tr>
<td>DECENTRALISED ACTIVE CONTROLLER</td>
<td>252</td>
</tr>
<tr>
<td>Chiheb Ameur Abid and Belhassen Zouari</td>
<td></td>
</tr>
<tr>
<td>A CONSTRAINED FINITE TIME OPTIMAL CONTROLLER FOR THE DIVING AND</td>
<td>260</td>
</tr>
<tr>
<td>STEERING PROBLEM OF AN AUTONOMOUS UNDERWATER VEHICLE</td>
<td></td>
</tr>
<tr>
<td>George Nikolakopoulos, Nikolaos J. Roussos and Kostas Alexis</td>
<td></td>
</tr>
<tr>
<td>A NEW PREDICTOR/CORRECTOR PAIR TO ESTIMATE THE VISUAL FEATURES</td>
<td>268</td>
</tr>
<tr>
<td>DEPTH DURING A VISION-BASED NAVIGATION TASK IN AN UNKNOWN ENVIRONMENT</td>
<td></td>
</tr>
<tr>
<td>- A Solution for Improving the Visual Features Reconstruction During</td>
<td></td>
</tr>
<tr>
<td>an Occlusion</td>
<td></td>
</tr>
<tr>
<td>A. Durand Petiteville, M. Courdesses and V. Cadenat</td>
<td></td>
</tr>
<tr>
<td>NORMAL FLAT FORMS FOR A CLASS OF 0-FLAT AFFINE DYNAMICAL SYSTEMS AND</td>
<td>275</td>
</tr>
<tr>
<td>ITS APPLICATION TO NONHOLONOMIC SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>S. Bououden, D. Boutat and F. Abdessemed</td>
<td></td>
</tr>
</tbody>
</table>
BEARING-ONLY SAM USING A MINIMAL INVERSE DEPTH PARAMETRIZATION - Application to Omnidirectional SLAM
Cyril Joly and Patrick Rives

A FLEXIBLE ROBOTICS AND AUTOMATION SYSTEM - Parallel Visual Processing, Realtime Actuator Control and Task Automation for Limp Object Handling
Thomas Müller, Binh An Tran and Alois Knoll

BIOMIMETIC CONTROL ALGORITHM FOR THE BALANCE AND LOCOMOTION OF WALKING SYSTEMS
Nicu George Bizdoacă, Anca Petrişor, Hani Hamdan and Khalid Al Mutib

ROBUST 6D POSE DETERMINATION IN COMPLEX ENVIRONMENTS FOR ONE HUNDRED CLASSES
Thilo Grundmann, Robert Eidenberger, Martin Schneider and Michael Fiegert

MINDLAB, A WEB-ACCESSIBLE LABORATORY FOR ADAPTIVE E-EDUCATIONAL ROBOT TELEOPERATION
P. Di Giamberardino, M. Spanò Cuomo and M. Temperini

INTEGRATING CONTEXT INTO INTENT RECOGNITION SYSTEMS
Richard Kelley, Christopher King, Amol Ambardekar, Monica Nicolescu, Mircea Nicolescu and Alireza Tavakkoli

HAND PROSTHESIS CONTROL - Software Tool for EMG Signal Analysis
Tomasz Suchodolski and Andrzej Wolczowski

REGISTRATION OF INDOOR 3D RANGE IMAGES USING VIRTUAL 2D SCANS
Marco Langerwisch and Bernardo Wagner

POSTERS

OBSTACLES AVOIDANCE IN THE FRAME WORK OF PYTHAGOREAN HODOGRAPH BASED PATH PLANNING.
M. A. Shah, A. Tsourdos, P. M. G. Silson, D. James and N. Aouf

MOBILE ROBOT OBSTACLE DETECTION USING AN OVERLAPPED ULTRASONIC SENSOR RING
Sungbok Kim, Jaehee Jang and Hyun Bin Kim

SALT AND PEPPER NOISE DETECTION BASED ON NON-LOCAL MEANS
Carlos Junez-Ferreira, Fernando Velasco-Avalos and Nelio Pastor-Gomez

PLANNING STACKING OPERATIONS WITH AN UNKNOWN NUMBER OF OBJECTS
Lluis Trilla and Guillem Alenyà

MOTION GENERATION FOR A HUMANOID ROBOT WITH INLINE-SKATE
Nir Ziv, Yong Kwun Lee and Gaetano Ciaravella

TOWARDS HUMAN INSPIRED SEMANTIC SLAM
Dominik Maximilían Ramík, Christophe Sabourin and Kourosh Madani

HOMOTHETIC APPROXIMATIONS FOR STOCHASTIC PN
Dimitri Lefebvre

FDI WITH NEURAL AND NEUROFUZZY APPROACHES - Application to Damadics
Y. Kourd, N. Guersi and D. Lefebvre
CONSENSUS PROBLEM OF MULTI-AGENT SYSTEMS WITH MARKOVIAN COMMUNICATION FAILURE
Yuebing Hu, James Lam and Jinling Liang 373

MANIPULATOR-DEPLOYED SYSTEMS FOR SURFACE DECONTAMINATION IN NUCLEAR FACILITIES
Jan Bremmer, Sascha Gentes and Nadine Gabor 377

DESIGN AND EXPERIMENTAL VERIFICATION OF POWER-ASSISTED SMART DOOR SYSTEM FOR PASSENGER VEHICLE
Kum-Gil Sung, Min-kyu Park and Byoungsoo Lee 382

IMPACT OF DIFFERENT BIT RATES ON PERFORMANCE CHARACTERISTICS OF INDUSTRIAL WLAN SOLUTIONS
André Schimschar and Lutz Rauchhaupt 387

SIMULTANEOUS LEARNING OF PERCEPTIONS AND ACTIONS IN AUTONOMOUS ROBOTS
Pablo Quintía, Roberto Iglesias, Miguel Rodríguez and Carlos V. Regueiro 395

GEOMETRIC FORMATIONS FOR A TEAM OF MOBILE ROBOTS - Odometric-based Maintenance Method for Heterogeneous Teams of Robots
Patricio Nebot and Enric Cervera 399

PRIORITY SELECTION FOR MULTI-ROBOTS
S. H. Ji, S. M. Lee and W. H. Shon 403

DEVELOPMENT OF LIGHTWEIGHT DUAL ARM ROBOT BY USING HOLLOW SHAFT SERVO ASSEMBLY
Min-kyu Park, Seok-jo Go and Young-jin Lee 409

STATIC BALANCE FOR RESCUE ROBOT NAVIGATION - Translation Motion Discretization Issue within Random Step Environment
Evgeni Magid and Takashi Tsubouchi 415

VISUAL MAP BUILDING AND LOCALIZATION WITH AN APPEARANCE-BASED APPROACH - Comparisons of Techniques to Extract Information of Panoramic Images
Francisco Amorós, Luis Payá, Óscar Reinoso, Lorenzo Fernández and Jose Mª Marín 423

SELF DEPLOYED ROBOTIC NETWORK FOR LONG RANGE SEMIAUTOMATIC OPERATION - Robotics Network for Distance Data Connection, Areal Signal Connection Coverage or Areal Data Acquisition
Tomas Solarski, David Vala and Jiri Koziorek 427

ROBOT SOCCER STRATEGY – BIOMIMETIC APPROACH
Nicu George Bizdoacă, Daniela Coman, Hani Hamdan and Khalid Al Mutib 433

TOWARDS OBJECT-ORIENTED SOFTWARE DEVELOPMENT FOR INDUSTRIAL ROBOTS - Facilitating the Use of Industrial Robots by Modern Software Engineering
Alwin Hoffmann, Andreas Angerer, Andreas Schierl, Michael Vistein and Wolfgang Reif 437

DYNAMICAL INVARIANTS FOR CPG CONTROL IN AUTONOMOUS ROBOTS
Fernando Herrero-Carrón, Francisco de Borja Rodríguez and Pablo Varona 441

LASER BASED TELEROBOTIC CONTROL FOR ASSISTING PERSONS WITH DISABILITIES PERFORM ACTIVITIES OF DAILY LIVING
Karan Khokar, Redwan Alqasemi and Rajiv Dubey 446

AUTHOR INDEX 451
Keywords: Modelling, Robotics simulation, Virtual reality.

Abstract: This paper presents a free Java software platform which enables users to easily create advanced robotic applications together with image processing. This novel tool is composed of two layers: 1) Easy Java Simulations (EJS), an open-source tool which provides support for creating applications with a full 2D/3D interactive graphical interface, and 2) EjsRL, a high-level Java library specifically designed for EJS which provides a complete functional framework for modeling of arbitrary serial-link manipulators and computer vision algorithms. The combination of both components sets up a software architecture which contains a high number of functionalities in the same platform to develop complex simulations in robotics and computer vision fields.

1 INTRODUCTION

Robotics and Computer Vision (R&CV) systems have highly complex behaviours. For this reason, throughout the last two decades there has been a strong development of simulation tools devoted to R&CV systems. Some of these tools have been designed for professional applications, while others for educational and research purposes. In the field of industrial Robotics, several graphical software environments as for example Easy-ROB3D (Easy-ROB3D, 2004), have been created in the form of stand-alone business packages for well defined problems. These are powerful tools, but some of them lack of resources in some aspects for higher education. Otherwise, numerous open-source tools such as GraspIt (Pelossoft et. al, 2004), RoboMosp (Jaramillo et al., 2006) and Microsoft Robotics Studio (Jackson, 2007), overcome these deficiencies. Other open-source tools are in the form of toolboxes such as SimMechanics (SMC) (Babuska, 2005), RobotiCad (RBC) (Falconi and Melchiorri, 2008) and Robotics Toolbox for Matlab (Corke, 1996). With regard to Computer Vision tools, several libraries have been developed for education and research, such as the Open Computer Vision Library (OpenCV, 2001) and VXL (VXL, 2001), developed in C++ language, and Java Advanced Imaging (JAI, 2004), written in Java.

However, the majority of the above commented tools are independent software platforms which have been developed in a separated way. This feature represents a drawback when time comes to develop complex models which combine R&CV systems. Perhaps, only Robotics/Vision Matlab toolboxes provide a set of functions suitable for synthesis and simulation which can be programmed under the same environment. Nevertheless, both toolboxes do not provide a user-friendly graphical interface support for both creating a personalized application and building 3D virtual environments. Thus, educators and researches have to spend time and effort searching the suitable libraries and they must have programming skills to develop the application.

The approach presented in this paper is a new tool called EJS+EjsRL, which provides a complete functional framework for modeling and simulation of R&CV systems, all embedded in the same toolbox. In addition, this software platform gives full 2D and 3D graphical support both for creating user interfaces and complex robotic environments with computer vision algorithms in an easy and simplified way. The main novel feature of this approach is that its software architecture contains a higher number of functionalities in the same platform than the existing software applications for that purpose (see table 1). Most of these functionalities are included as high-level tools, with the advantage of allowing users to easily create R&CV applications with a minimum of programming. The tool presented contains several
features for Robotics such as kinematics, programming, dynamics, world modeling, importation of 3D model files, etc. and a higher number of Computer Vision algorithms than the JAI.

Table 1: Feature comparison with other toolboxes.

<table>
<thead>
<tr>
<th>Feature</th>
<th>SMC</th>
<th>RBC</th>
<th>Matlab toolbox</th>
<th>EJS+EjsRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematics</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Dynamics</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Programming</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Importation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRML/OBJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>World Modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Vision</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Another meaningful problem is the platform dependency. Some C++ tools are not portable for all the operating systems. EJS+EjsRL is based on Java, a well-known programming language which is platform independent.

The remainder of this paper is organized as follows: section 2 describes the overall software architecture of the platform. Section 3 shows a complete application design. Section 4 shows other advanced features of the system. Section 5 shows the simulation capabilities of EJS+EjsRL by means of several test cases. Finally, some conclusions are discussed in section 6.

2 SYSTEM DESCRIPTION

2.1 Components

There are two main blocks that represent the functional core of this software platform: an object-oriented Java library (EjsRL) which allows users to model both arbitrary serial-link robots and computer vision algorithms, and Easy Java Simulations (EJS), powerful software for developing simulations. The combination of both tools (EJS+EjsRL) permits to easily and quickly create R&CV simulations.

EJS is a freeware, open-source tool developed in Java, specifically created for the creation of interactive dynamic simulations with higher graphical support (Esquembre, 2004). EJS has been designed for people who do not need complex programming skills. In order to develop a simulation, the user only provides the most relevant core of the algorithm and EJS automatically generates all the Java code needed to create a complete interactive application. There are a lot of applications which have been developed with EJS for research and teaching activities (Jara et al., 2008; Jara et al., 2009).

EjsRL is a Java library specifically designed for EJS which provides a complete functional framework that enables it to model and design advanced R&CV applications. All the components belonging to this software layer have been structured and organized in an object-oriented form. Figure 1 shows a simplified class diagram of EjsRL, specifying the most important packages and classes. For a complete description of all the classes, readers can visit the web page: http://www.aurova.ua.es/rcv.

2.2 Software Architecture

The software design is based on a hierarchical coordination between EJS and EjsRL. Each of them is divided into systems which must interchange data in order to develop R&CV simulations (figure 2).

A specific simulation within the EJS’ environment must include the definition of the model and the definition of the view or graphical interface (figure 2). In order to describe the model, users must write the differential equations that establish how these variables change in time. For this last step, EJS offers two options. The first is a built-in editor of Ordinary Differential Equations (ODEs) in which users write the system equations in a similar way to how they would write on a blackboard. Users can choose different standard algorithms to numerically solve them (Euler, Runge-Kutta, etc.). The second facility is a connection with Matlab/Simulink that lets users to model systems with the help of these tools (Sanchez et al., 2005) (see section 5). In relation to the view, EJS provides a set of standard Java Swing, Java 2D and Java 3D components to build the interface in a simple drag-and-drop way. In addition, VRML and OBJ external graphic files can be imported to the view. These
3 DESIGN OF A ROBOTICS APPLICATION

3.1 Creating the Robot Arm and its Workspace

The first step in order to create a robotic simulation is to execute EJS and to insert the library EjsRL as external resource (figure 3). In this way, all the methods and classes of EjsRL can be used within EJS’ environment. Secondly, it is necessary to create a specific robot in the model part. This action implicates to define the variables and to program a robot of 6 rotational DOF.

For creating an arbitrary robot arm object, users only have to know its Denavit-Hartenberg parameters, its physical features and the type of joints. With these data, a Java object variable defined in the EJS’ environment has to be initialized using the robot’s constructor of the Robotics module of EjsRL. Figure 4 shows the Java code which must be inserted in the model of EJS’ environment and the necessary variables to program a robot of 6 rotational DOF.

After programming the robot object, the next step is to develop the interface or view for the final user. As stated, EJS provides a set of components to build the interface in a simple drag-and-drop way. In the case of a robotic simulation, the interface can be composed by the 3D solid links of the robot and its workspace, and other standard components to control the application (panels, buttons, sliders, plots, etc.). Figure 5 shows the construction of the interface for the example proposed. The component drawingPanel3D is the 3D environment where the robot and its workspace will be displayed. Here, it is defined each one of the 3D links of the robot by means of the VRML component, which allows to import models from existent VRML files. As mentioned, all the interface components of EJS have certain properties which are used for the simulation. Figure 5 shows the properties of the VRML component (Position and Size, Visibility and Interaction and Graphical Aspect). The position and transform fields will be used to move the robot since they will be connected with the model variables which define the robot. Figure 5 also shows a dialog.
where some sliders controls \((q_1\ldots q_6)\) have been added from the view components. These sliders are connected with the \(q\) variable of the robot model (see figure 4).

\[\text{Move Joints}\]

\(\text{VRML Components}\)

3D Solid

VRML File

Figure 5: Interface construction of a Robotics application.

3.2 Kinematics and Path Planning Simulation

The implementation of the forward kinematics can be easily programmed and simulated with EJS+EjsRL. Figure 6 shows the Java code to resolve the forward kinematics of the robot proposed. The joint values are got from the interface Move Joints for updating the \(\text{DHParams}\) array of the model. Afterwards, the homogeneous transformations of each link are computed using the method \(\text{FKinematics}\) of the Robotics module of EjsRL. Finally, these matrix objects \((A_{01}\ldots A_{06})\) are inserted in the property \(\text{Transform}\) (figure 5) of the VRML components in order to move them according this kinematics algorithm.

public void forwardKinematics () {
 //Update the current values of the joints
 \(\text{DHParams}[0] = q[0] + \pi/2;\)
 \(\text{DHParams}[1] = q[1]-\pi/2;\)
 \(\text{DHParams}[2] = q[2]+\pi;\)
 \(\text{DHParams}[3] = q[3];\)
 \(\text{DHParams}[4] = q[4];\)
 \(\text{DHParams}[5] = q[5];\)
 //Compute the forward kinematics
 \(A_{01} = \text{robot.FKinematics(}\text{DHParams}[0],1);\)
 \(A_{02} = \text{robot.FKinematics(}\text{DHParams}[1],2);\)
 \(A_{03} = \text{robot.FKinematics(}\text{DHParams}[2],3);\)
 \(A_{04} = \text{robot.FKinematics(}\text{DHParams}[3],4);\)
 \(A_{05} = \text{robot.FKinematics(}\text{DHParams}[4],5);\)
 \(A_{06} = \text{robot.FKinematics(}\text{DHParams}[5],6);\)
}

Figure 6: Java code for the forward kinematics of a 6 rotational DOF robot.

EjsRL contains some methods to solve the inverse kinematics problem. Figure 7 shows an example for solving this based on the Jacobian operator. The method \(\text{IKinematics}\) receives the position and orientation of the end effector (Matrix \(T\)) and the current joint values of the robot (array \(q_{\text{current}}\)) as input parameters. Finally, the robot is moved to the suitable position using the forward kinematics method described before.

public void inverseKinematics () {
 //Current values of vector q
 double[] \(q_{\text{current}} = [q[0],q[1],q[2],q[3],q[4],q[5]];\)
 //Position and orientation of the end effector (X, Y, Z, X°, Y°, Z°)
 Matrix \(T = \text{new Matrix}(4,4);\)
 \(T.set(0,3,X); T.set(1,3,Y); T.set(2,3,Z); T.set(3,3,1.0); //Position\)
 \(T.setMatrix(0,2,0,2,\text{Maths.transRPYtoR}(\text{Roll, Pitch, Yaw})); //Orientation\)
 //Call to the inverse kinematics algorithm
 Solution sol = robot.IKinematics(T,q_{\text{current}});
 if(sol!=null){
 q[0] = sol.getElemSolution(0); q[1] = sol.getElemSolution(1);
 q[2] = sol.getElemSolution(2); q[3] = sol.getElemSolution(3);
 q[4] = sol.getElemSolution(4); q[5] = sol.getElemSolution(5);
 //Move the robot with the updated q values
 forwardKinematics();
 }
}

Figure 7: Java code for the inverse kinematics problem.

With regard to trajectory planning, EJS+EjsRL allows users to easily perform the simulation of many path planning algorithms for n-axis robot arms. The ODEs editor implemented in EJS is employed to generate the position, velocity and acceleration values. The Robotics classes of EjsRL contain a path planning module which computes the acceleration parameters of several trajectories from their imposed constrains. Thus, two steps are only necessary to create a planning algorithm for a n-axis robot manipulator:

- To write the equations of the basic motion of a multi-body system. Figure 8 shows these equations in the ODEs editor of EJS. These equations compute the sequence values of the position \((q)\) and velocity \((V_{\text{Plan}})\) of all the robot joints from the acceleration of the trajectory \((A_{\text{Plan}})\);

- To compute the acceleration of the path planning algorithm proposed using one of the functions provided by the Robotics package. The trajectory planning module returns the acceleration parameters of several kinds of trajectories which can be used in the motion equations;

Figure 8: ODEs of basic robot motion.
There are a lot of methods implemented in the Robotics module: splines, cubic interpolators, synchronous, asynchronous and linear trajectories, and the 4-3-4 polynomial path planning algorithm. Figure 9 shows the Java code to program this last interpolator in order to determine the acceleration array for the differential equations.

The generated joint values are automatically given to the kinematics model to simulate the robot movement (method _play). In addition, EJS plot controls can be used to visualize the trajectory variables (figure 9).

3.3 Dynamics Features

The Robotics module of EjsRL implements numerical methods to solve the forward and inverse dynamics problems (Newton-Euler and Walker-Orin, respectively). Figure 10 shows an example which obtains the inverse dynamics with an external force. Mass, inertias and friction properties must be known in order to solve this algorithm. The array variables V_{Plan} and A_{Plan} belong to the velocity and acceleration of the path planning previously computed.

The control action and the interaction matrix τ are returned as an array variable. These point features can be seen in the window “Virtual Image” of the figure 12.

3.4 Using Computer Vision Features

The Computer Vision classes of EjsRL provide a complete library for the development of image processing algorithms within EJS’ environment. There are approximately fifty different functions implemented in this module, ranging from basic operations (format conversion, image adjustment, histogram, etc.) to image feature extraction (point and edge features). As example, authors implement a computer vision algorithm in the virtual robotic environment previously created. The aim is to perform an Eye-In-Hand (EIH) vision based control using four corner features in the control loop.

First of all, it is necessary to obtain a view projection from the end effector of the robot. For that end, EJS has an option which allows users to create a virtual camera in the 3D robotic environment. Figure 12 shows the appearance of the interface developed where the window “Virtual Camera” shows the projection of the EIH virtual camera. Secondly, this projection must be processed in order to extract the corner features of the object. Figure 11 shows the Java code which computes corner detection in the virtual camera’s image (this code can also be used for real images). Initially, the image of the virtual camera control is obtained (variable v_{camera}) and the image objects are created. Afterwards, the processing algorithm is defined by means of the ImageFunction interface. Finally, the image is processed (processImg method), the point features are detected using one of the implemented algorithms, for example the SUSAN method (Smith and Brady, 1997), and these are returned as an array variable. These point features can be seen in the window “Virtual Image” of the figure 12.

```java
public ArrayList Corner_Detection(){
    ImageFunction f1 = new FColorToGray();
    ImageFunction f2 = new FSusan();
    ImageObject initialImage = new ImageObject(vcamera.getImage());
    ImageObject result_Image = new ImageObject();
    result_Image = f2.processImg(f1.processImg(initialImage));
    ArrayList pointsSusan = ((FSusan)f2).getPoints();
    return pointsSusan;
}
```

Figure 10: Programming the inverse dynamics with an external force.
classical 2D visual servoing task, according to the following expressions:

\[v_c = -\lambda \hat{L}_v (s - s^*) \]
\[\dot{L}_v = \begin{bmatrix} -1/Z_i & 0 & x_i/Z_i & x_iy_i & -(1+x_i^2) & y_i \\ 0 & -1/Z_i & y_i/Z_i & 1+y_i^2 & -x_iy_i & -x_i \end{bmatrix} \]
\[\hat{L}_v = \begin{bmatrix} \dot{L}_{s1} & \dot{L}_{s2} & \dot{L}_{s3} & \dot{L}_{s4} \end{bmatrix} \]

where \(s \) are the current visual features, \(s^* \) are the desired visual features, and \(\lambda \) is the proportional controller; \((x_i, y_i)\) are the point coordinates of each feature; and \(Z_i \) is the current distance from the camera to the each feature. The evolution of both velocity module and point features are showed in figure 12, which validate the correct convergence of the visual servo task.

4 ADVANCED FEATURES

EJS has a connection with Matlab/Simulink which lets users specify and solve their models with the help of these tools (Sanchez et al., 2005). Next, authors show a decoupled control of a 3 rotational DOF robot where the electrical model is computed by a Simulink diagram and the 3D graphical interface is developed using EJS+EjsRL. Figure 13 shows the appearance of the application.

In the upper part of this figure, it can be seen the simulation of the robot with its respective plot controls, which show the input and the output values. Simulink diagram is set up by the PID control of each DOF, the power amplifier stage and the engine blocks with the model of a DC motor. The torque values are transferred to the forward dynamics method of EjsRL to compute the acceleration for the path planning algorithm. Feedback variables \(q \) and \(v \) are values obtained directly from the path planning and connected with the Simulink blocks.

5 EXPERIMENTAL EXAMPLES

5.1 A Virtual and Remote Laboratory

Authors have developed with EJS+EjsRL a virtual and remote laboratory for training in Robotics. This
system, called RobUALab.ejs (Jara et al., 2008), allows users to simulate path planning algorithms in a virtual robotic environment, as well as execute remote commands in a real robotic plant.

Programming classes of EjsRL (figure 1, package “Programming”) enable users to develop Java routines in a robotic simulation. Figure 14 shows a programming experiment which consists of doing pick-and-place operations of virtual objects located in the conveyor belt using synchronous trajectories (parameter “Syn” in the method moveJ).

```java
void main () {
  double [] onBeltJ={27, 84.25, 20.30, -9.73, -61};
  double [] beltJ={27, 98 ,5.82, -9, -61};
  double [] onTableJ={80.10, 52.54, 31, 11.8, 90};
  double [] tableJ={80.11, 59.48, 42.3, -6.43, 90};
  double [] homeJ={0,0,0,0,90};
  double [] time1={3.0};
  double [] time2={1.0};
  int dataObject; double plus = 10.0;

  DECLARATION OF THE VARIABLES
  posJ onBelt = new posJ(onBeltJ);
  posJ belt = new posJ(beltJ);
  posJ onTable = new posJ(onTableJ);
  posJ table = new posJ(tableJ);
  posJ home = new posJ(homeJ);

  CREATION OF THE OBJECTS posJ
  for(int i=0; i<dataObject; i++) {
    belt();
    moveJ("Syn",onBelt,1,time1);
    open();
    moveJ("Syn",belt,0,time2);
    close();
    moveJ("Syn",onBelt,1,time2);
    moveJ("Syn",home,1,time1);
    moveJ("Syn",onTable,1,time1);
    table.setV alue(table.getV alue(0)+plus*i, 0);
    moveJ("Syn",table,1,time2);
    open();
    moveJ("Syn",onTable,0,time2);
    close();
  }
  moveJ("Syn",home,1,time1);
}
```

Figure 14: States of the virtual robot during the execution of the programming experiment.

5.2 A Multi-robot System

EjsRL allows users the instantiation of different robot objects. Thus, it is possible to developed multi-robot simulations in an easy way. As example, a multi-robotic system composed by a PA-10 robot of 7 rotational DOF and a 3 rotational DOF robot (RRR) is presented here. This last serial robot is attached to a link of the upper part of the PA-10 (figure 15). In addition, the robot RRR has a virtual camera at the end as an EIH configuration. Figure 15 shows the interface of the application developed: on the left, the 3D virtual environment of the workspace; on the right, the virtual projection of the EIH camera located at RRR.

6 CONCLUSIONS

In this paper, a free Java-based software platform for the creation of advanced R&CV applications has been presented. EJS+EJSRL is a suitable tool to develop research and educational simulations in R&CV systems. The paper has showed several high-level applications which illustrate a part of the possibilities of EJS+EJSRL. More information can be obtained from http://www.aurova.ua.es/rcv, where readers can also execute a lot of test examples.

ACKNOWLEDGEMENTS

The work presented in this paper is supported by the Spanish Ministry of Education and Science (MEC) through the research project DPI2008-02647.

REFERENCES

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdessemed, F.</td>
<td>275</td>
</tr>
<tr>
<td>Abid, C.</td>
<td>252</td>
</tr>
<tr>
<td>Achiche, S.</td>
<td>167</td>
</tr>
<tr>
<td>Adinandra, S.</td>
<td>63</td>
</tr>
<tr>
<td>Albiez, J.</td>
<td>72</td>
</tr>
<tr>
<td>Alenyà, G.</td>
<td>348</td>
</tr>
<tr>
<td>Alexis, K.</td>
<td>260</td>
</tr>
<tr>
<td>Almanza-Ojeda, D.</td>
<td>98</td>
</tr>
<tr>
<td>Alqasemi, R.</td>
<td>446</td>
</tr>
<tr>
<td>Alvarez-Aguirre, A.</td>
<td>55</td>
</tr>
<tr>
<td>Ambrekar, A.</td>
<td>315</td>
</tr>
<tr>
<td>Amorós, F.</td>
<td>423</td>
</tr>
<tr>
<td>Angerer, A.</td>
<td>437</td>
</tr>
<tr>
<td>Aouf, N.</td>
<td>335</td>
</tr>
<tr>
<td>Aro, E.</td>
<td>232</td>
</tr>
<tr>
<td>Babič, J.</td>
<td>212</td>
</tr>
<tr>
<td>Barrientos, A.</td>
<td>147</td>
</tr>
<tr>
<td>Bello, F.</td>
<td>206</td>
</tr>
<tr>
<td>Benitez, L.</td>
<td>72</td>
</tr>
<tr>
<td>Berducat, M.</td>
<td>109</td>
</tr>
<tr>
<td>Bertozzi, A.</td>
<td>222</td>
</tr>
<tr>
<td>Bízdoacă, N.</td>
<td>295</td>
</tr>
<tr>
<td>Boccolato, G.</td>
<td>198</td>
</tr>
<tr>
<td>Bououden, S.</td>
<td>275</td>
</tr>
<tr>
<td>Boutat, D.</td>
<td>275</td>
</tr>
<tr>
<td>Bremer, H.</td>
<td>192</td>
</tr>
<tr>
<td>Bremmer, J.</td>
<td>377</td>
</tr>
<tr>
<td>Brüggemann, B.</td>
<td>121</td>
</tr>
<tr>
<td>Brunner, M.</td>
<td>5</td>
</tr>
<tr>
<td>Caarls, J.</td>
<td>63</td>
</tr>
<tr>
<td>Cadenat, V.</td>
<td>268</td>
</tr>
<tr>
<td>Callafon, R.</td>
<td>89</td>
</tr>
<tr>
<td>Candelas, F.</td>
<td>153</td>
</tr>
<tr>
<td>Cariou, C.</td>
<td>109</td>
</tr>
<tr>
<td>Casula, R.</td>
<td>206</td>
</tr>
<tr>
<td>Cernega, D.</td>
<td>161</td>
</tr>
<tr>
<td>Cerro, J.</td>
<td>246</td>
</tr>
<tr>
<td>Cervera, E.</td>
<td>399</td>
</tr>
<tr>
<td>Ciaravella, G.</td>
<td>354</td>
</tr>
<tr>
<td>Cojocaru, D.</td>
<td>198</td>
</tr>
<tr>
<td>Colorado, J.</td>
<td>246</td>
</tr>
<tr>
<td>Coman, D.</td>
<td>433</td>
</tr>
<tr>
<td>Cortés, J.</td>
<td>89</td>
</tr>
<tr>
<td>Courdesses, M.</td>
<td>268</td>
</tr>
<tr>
<td>Cremers, A.</td>
<td>5</td>
</tr>
<tr>
<td>Cret, O.</td>
<td>180</td>
</tr>
<tr>
<td>Cuellar, W.</td>
<td>147</td>
</tr>
<tr>
<td>Cuomo, M.</td>
<td>309</td>
</tr>
<tr>
<td>Cypriano, M.</td>
<td>135</td>
</tr>
<tr>
<td>Detry, R.</td>
<td>47</td>
</tr>
<tr>
<td>Devy, M.</td>
<td>98</td>
</tr>
<tr>
<td>Dubey, R.</td>
<td>446</td>
</tr>
<tr>
<td>Dumitră, S.</td>
<td>198</td>
</tr>
<tr>
<td>Durango, S.</td>
<td>167</td>
</tr>
<tr>
<td>Edwards, P.</td>
<td>206</td>
</tr>
<tr>
<td>Eidenberger, R.</td>
<td>301</td>
</tr>
<tr>
<td>Fernández, L.</td>
<td>423</td>
</tr>
<tr>
<td>Fiegert, M.</td>
<td>301</td>
</tr>
<tr>
<td>Fietz, A.</td>
<td>115</td>
</tr>
<tr>
<td>Figl, M.</td>
<td>206</td>
</tr>
<tr>
<td>Filipescu, A.</td>
<td>161</td>
</tr>
<tr>
<td>Fodor, G.</td>
<td>180</td>
</tr>
<tr>
<td>Folgheraiter, M.</td>
<td>72</td>
</tr>
<tr>
<td>Fritsch, D.</td>
<td>115</td>
</tr>
<tr>
<td>Gabor, N.</td>
<td>377</td>
</tr>
<tr>
<td>Galán, M.</td>
<td>246</td>
</tr>
<tr>
<td>Gams, A.</td>
<td>32</td>
</tr>
<tr>
<td>Garzón, M.</td>
<td>246</td>
</tr>
<tr>
<td>Gattringer, H.</td>
<td>192</td>
</tr>
<tr>
<td>Gentes, S.</td>
<td>377</td>
</tr>
<tr>
<td>Gersdorf, B.</td>
<td>174</td>
</tr>
<tr>
<td>Giambardino, P.</td>
<td>309</td>
</tr>
<tr>
<td>Gil, P.</td>
<td>153</td>
</tr>
<tr>
<td>Go, S.</td>
<td>409</td>
</tr>
<tr>
<td>Grimminger, F.</td>
<td>72</td>
</tr>
<tr>
<td>Grundmann, T.</td>
<td>301</td>
</tr>
<tr>
<td>Guersi, N.</td>
<td>368</td>
</tr>
<tr>
<td>Hajdjinjak, B.</td>
<td>212</td>
</tr>
<tr>
<td>Halme, A.</td>
<td>232</td>
</tr>
<tr>
<td>Hamdan, H.</td>
<td>295</td>
</tr>
<tr>
<td>Han, Y.</td>
<td>89</td>
</tr>
<tr>
<td>Hawkes, D.</td>
<td>206</td>
</tr>
<tr>
<td>Herbulot, A.</td>
<td>98</td>
</tr>
<tr>
<td>Herrero-Carrón, F.</td>
<td>441</td>
</tr>
<tr>
<td>Hoeller, F.</td>
<td>186</td>
</tr>
<tr>
<td>Hoffmann, A.</td>
<td>437</td>
</tr>
<tr>
<td>Hoffmann, J.</td>
<td>121</td>
</tr>
<tr>
<td>Hu, M.</td>
<td>206</td>
</tr>
<tr>
<td>Hu, Y.</td>
<td>373</td>
</tr>
<tr>
<td>Hu, Z.</td>
<td>232</td>
</tr>
</tbody>
</table>
AUTHOR INDEX (CONT.)

Hui, S. 174
Iglesias, R. 395
Jackisch, S. 115
Jaffe, J. 89
James, D. 335
Jang, J. 340
Jara, C. 153
Ji, S. ... 403
Joly, C. 281
Jordan, M. 72
Junez-Ferreira, C. 344
Kelley, R. 315
Khokar, K. 446
Kim, H. 340
Kim, S. 340
King, C. 315
Kirchner, F. 72
Knoll, A. 289
Kojima, K. 55
Kostić, D. 63
Kourd, Y. 368
Koziorek, J. 427
Kroemer, O. 47
Krüger, B. 121
Lam, J. 373
Langerwisch, M. 327
Langius, S. 216
Laumond, J. 22
Lazea, G. 180
Lee, B. 382
Lee, S. 403
Lee, Y. 354, 409
Lefebvre, D. 364, 368
Lenain, R. 109
Liang, J. 373
Lichiardopol, S. 39
Liu, W. 222
Madani, K. 360
Magid, E. 415
Manea, I. 198
Manta, F. 198
Marín, J. 423
Mazur, A. 15
Montecillo-Puente, F. 22
Morales, E. 79
Müller, T. 289
Muñoz-Meléndez, A. 79
Mutib, K. 295, 433
Nebot, P. 399
Nicolescu, M. 315
Nijmeijer, H. 39, 55, 63
Nikolakopoulos, G. 260
Oguchi, T. 55
Oztop, E. 212
Palacios-García, A. 79
Park, M. 382, 409
Pastor-Gomez, N. 344
Payá, L. 423
Penney, G. 206
Pereira, F. 129, 135
Peters, J. 47
Petiteville, A. 268
Petrič, T. 32
Petrošor, A. 295
Piater, J. 47
Pomares, J. 153
Přeučil, L. 141
Quintía, P. 395
Ramík, D. 360
Rauchhaupt, L. 387
Regueiro, C. 395
Reif, W. 437
Reinoso, Ó 423
Restrepo, D. 167
Restrepo-Giraldo, J. 167
Riepl, R. 192
Rives, P. 281
Rodríguez, F. 441
Rodríguez, M. 395
Röhling, T. 186
Rossi, C. 147, 246
Roszkowska, E. 15
Roussos, N. 260
Rueckert, D. 206
Ruiz, O. 167
Sabourin, C. 360
Salles, E. 129
Saska, M. 141
Schierl, A. 437
Schimschar, A. 387
AUTHOR INDEX (CONT.)

Schmidt, S. 72
Schneider, M. 301
Schulz, D. 5, 186
Serbencu, A. 161, 240
Shah, M. 335
Shon, W. 403
Short, M. 222
Silson, P. 335
Solarski, T. 427
Solea, R. 161
Sreenivasa, M. 22
Stipa, T. 232
Suchodolski, T. 321
Sung, K. 382
Taima, Y. 222
Tavakkoli, A. 315
Temperini, M. 309
Thuilot, B. 109
Torres, F. 153
Tran, B. 289
Trilla, L. 348
Tsourdos, A. 335
Tsubouchi, T. 415
Vacariu, L. 180
Vainio, M. 232
Vala, D. 427
Varona, P. 441
Vassallo, R. 129, 135
Velasco-Avalos, F. 344
Visel, B. 115
Vistein, M. 437
Vonásek, V. 141
Wagner, B. 327
Wolczowski, A. 321
Wouw, N. 39
Ziv, N. 354
Žlajpah, L. 32
Zouari, B. 252

453