THE CONJECTURES OF ALON-TARSI AND ROTA
IN DIMENSION PRIME MINUS ONE

DAVID G. GLYNN

Abstract. A formula for Glynn’s hyperdeterminant \(\det_p \) (\(p \) prime) of a square matrix shows that the number of ways to decompose any integral doubly stochastic matrix with row and column sums \(p - 1 \) into \(p - 1 \) permutation matrices with even product, minus the number of ways with odd product, is \(1 \) (mod \(p \)). It follows that the number of even Latin squares of order \(p - 1 \) is not equal to the number of odd Latin squares of that order. Thus Rota’s basis conjecture is true for a vector space of dimension \(p - 1 \) over any field of characteristic zero or \(p \), and all other characteristics except possibly a finite number. It is also shown where there is a mistake a published proof that claimed to multiply the known dimensions by powers of two, and also that the number of even Latin squares is greater than the number of odd Latin squares. Now 26 is the smallest unknown case where Rota’s basis conjecture for vector spaces of even dimension over a field is unsolved.

1. Rota’s Basis Conjecture

Rota’s basis conjecture for matroids is the following; see [14]:

Conjecture 1.1. Consider any matroid \(N \) of rank \(n \). Let \(A = (a_{ij}) \) be an \(n \times n \) matrix, such that every element \(a_{ij} \) is a point of \(N \) (an element of rank one), and each row of \(A \) is a basis of \(N \). Then the elements in each row of \(A \) can be permuted so that in the resulting \(n \times n \) matrix every column also forms a basis for \(N \).

This has been verified for \(n \leq 3 \); see [5]. It is also true for linear matroids of rank \(p + 1 \) (\(p \) prime) over fields of all characteristics, except possibly a finite number of prime characteristics; see [8]. There has been a great deal of recent interest in this conjecture as verified by the following papers: [1, 3, 5, 6, 8, 9, 10, 11, 15, 16, 17, 18, 19].

Now let us state the conjecture due to Alon-Tarsi. It is equivalent to another of Huang-White; see [15]:

Conjecture 1.2. The number of Latin squares of a given even order of even parity is not equal to the number of Latin squares of that order of odd parity.

The definitions for the parities are well-known but we repeat them in Section 2, using a non-standard explanation. From [12, 14, 16], if the Alon-Tarsi conjecture is true for a certain even \(n \), then Rota’s basis conjecture for fields of characteristic 0 and dimension \(n \) is true, and this holds also for fields of almost all prime characteristics.

Date: 20 January 2010.

Key words and phrases. basis conjecture, doubly stochastic matrix, Latin square, permutation, hyperdeterminant, Cayley, Rota, vector space

2010 Mathematics Subject Classification. 05B15, 05B20, 05B75, 05C20, 11A41, 15A03, 15A15, 15A72, 15B51, 51E20.
In [19] there are some results which state that if the Alon-Tarsi conjecture is true for even \(m \) then it is true for all \(m.2^i, i \geq 0 \), and if an extended Alon-Tarsi conjecture is true for odd \(m \) (where the Latin squares are assumed to have a constant diagonal) and also Alon-Tarsi is true for even \(m + 1 \), then Alon-Tarsi is true for \(m.2^i, i > 0 \). However, there is a misunderstanding on page 38, in Section 3 after equation (10), involving the numerical difference \(2n + 1 - i_j \) and the set-theoretic complement \(I_{2n} - J_j \). The first is not necessarily in the second if \(i_j \) is in \(J_j \). So the main results of that paper come into doubt. This has been acknowledged by the author in a personal communication. There are still some redeeming points in the paper which repay reading, including an explanation of more properties of Cayley’s hyperdeterminant \(\det_0 \), first defined in [4].

The next section explains a method to calculate the various invariant parities of a Latin square of even order. The final section shows that the Alon-Tarsi conjecture is true for Latin squares of orders prime minus one, thus implying Rota’s basis conjecture for linear matroids of these dimensions over fields of almost all characteristics.

2. Latin Squares

Consider a Latin square \(L = (l_{ij}) \) of even order \(m \), having symbols from the set \(M := \{1, \ldots, m\} \). See [7] for the definitions. It has various invariant parities, that don’t change under permutations of the rows, permutations of the columns, and renaming the elements of the square i.e. isotopies.

A way to obtain these parities is as follows. From \(L \) construct an orthogonal array, which is an \(m^2 \times 3 \) array \(H \) with elements from \(M \), with the rows of \(H \) being in bijective correspondence with the \(m^2 \) positions in \(L \). In a row of \(H \) put \(i,j,k \) if the corresponding position of \(L \) has \(l_{i,j} = k \). Since \(L \) is a Latin square, every pair of columns, \((a,b) \) of \(H \) are similar: the rows of the corresponding \(m^2 \times 2 \) submatrix are all distinct, and make up all the pairs in \(M \times M \).

Given a pair of distinct columns \((a,b) \) of \(H \), define an associated parity in \(\mathbb{Z}_2 \):

\[
\rho(a,b) := \sum_{1 \leq i < j \leq m^2} \delta(h_{i,a} - h_{j,a}) S(h_{i,b} - h_{j,b}) \pmod{2},
\]

where \(S \) is the Heaviside unit step function defined by

\[
S(x) := \begin{cases}
0, & x \leq 0 \\
1, & x > 0
\end{cases},
\]

and where \(\delta \) is its “derivative” Dirac unit impulse function defined by

\[
\delta(x) := \begin{cases}
0, & x \neq 0 \\
1, & x = 0
\end{cases}.
\]

A directed graph \(G(H) \) is defined having three vertices in correspondence with the columns of \(H \), such that if \((a,b) \) is an ordered pair of columns of \(H \), there is a directed edge from \(a \) to \(b \) in \(G \) if and only if \(\rho(a,b) = 1 \).

Whilst \(G(H) \) depends upon the ordering of the rows of \(H \), there are only \(2^3 = 8 \) possible directed graphs that come from the same Latin square, related by complementing the set of out-edges from a subset of the three vertices.

We can define the various parities of the Latin square and see how they are related. Let the columns (in order) of \(H \) be \(a, b, c \): the elements in the first column \(a \) of \(H \)
correspond to the rows of L, the elements in the second column b of H to the columns of L, and the elements in the third column c of H to the symbols in L.

The row, column, or symbol parity of L is even if there are an even number of edges going out from a, b, c in $G(H)$ respectively, and odd otherwise. Use the notation rowpar(L), colpar(L), sympar(L) respectively for these parities.

Another method to find these parities is to find the signs of the products of the permutations in the rows, columns and symbols respectively in L. However, the above method generalises to orthogonal arrays of even order with larger numbers of columns.

A result of Richard Wilson is:

Theorem 2.1. The total number of directed edges in the graph G of the Latin square L of order m is even if $m \equiv 0 \pmod{4}$, while it is odd if $m \equiv 2 \pmod{4}$, i.e. for the Latin square rowpar(L) + colpar(L) + sympar(L) $\equiv m/2 \pmod{2}$.

Proof. There is a proof in [15] which is numerical, but fairly opaque. Here is another proof. First, the number E of directed edges modulo two in G is $\sum_{a \neq b} \rho(a, b)$ over the six pairs (a, b) of distinct columns of the orthogonal array H. To count this it is perhaps easiest to associate with H a $\left(\begin{array}{c} q \\ 2 \end{array}\right)$ × 3 array K, where the rows of K correspond to unordered pairs of rows of H, and the columns of K are in correspondence with the columns of H. In a given row r of K corresponding to rows i and j of H, $i < j$, consider a given column c. Put a symbol s into $k_{r,c}$ if $h_{i,c} = h_{j,c}$, i.e. $\delta(h_{i,c} - h_{j,c}) = 1$. Otherwise, if $h_{i,c} < h_{j,c}$, i.e. $S(h_{i,c} - h_{j,c}) = 0$, put $k_{r,c} = d$, and lastly, if $h_{i,c} > h_{j,c}$, i.e. $S(h_{i,c} - h_{j,c}) = 1$, put $k_{r,c} = u$. Note that s stands for “same”, d for “down”, and u for “up”. Hence E is the number of times (modulo two) that s and u appear in the same row of K. We have to count the number of rows with s, u, d appearing in some order, since any other possible rows have an even number of s, u unordered pairs. However, now we can count the u, d unordered pairs in each row (modulo two as always). This is the same as counting E, since rows without an s such as u, u, u or u, d, u and so on, also have an even number of u, d unordered pairs. (There are no rows such as s, s, u.) But we can count the u, d unordered pairs in the rows for each unordered pair of columns of K as follows. Consider the “standard” pair of columns of H with the lexicographic order: this contains $1, \ldots, 1, 2, \ldots, 2, \ldots, m, \ldots, m$ in the first column, and $1, 2, \ldots, m, 1, 2, \ldots, m, \ldots, 1, 2, \ldots, m$ in the second column. It is easy to see that the two columns of K have no u’s in the first column, and so no rows of type u, d, but there are $\left(\begin{array}{c} m \\ 2 \end{array}\right)^2$ rows which are d, u. If we transpose two rows of H and consider any two columns, a pair u, d in the corresponding single row of K is transformed to a pair d, u, and vice-versa. So the total number of unordered pairs u, d in any two columns of K is an invariant, independent of the ordering of the rows of H. It is always $\left(\begin{array}{c} m \\ 2 \end{array}\right)^2$. Since there are three unordered pairs of columns of H or K, this shows that $E \equiv 3\left(\begin{array}{c} m \\ 2 \end{array}\right)^2 \pmod{2}$, which is $m/2 \pmod{2}$, since m is even.

By using complementations of the out-edges at various vertices of G it is seen there are two basic kinds of Latin square when $m \equiv 2 \pmod{4}$, with invariant graphs G being a cyclic tournament or an acyclic tournament. When $m \equiv 0 \pmod{4}$, there are also two basic types: corresponding to the empty graph, or the simple graph with one undirected edge (two superposed directed edges). However, this partitioning of the Latin squares
into two types is not the same as given by the parity, \(\text{par}(L)\), of the Latin square \(L\); see [15].

Definition 2.2. \(\text{par}(L) \equiv \text{rowpar}(L) + \text{colpar}(L) \pmod{2}\). A Latin square of even order \(m\) is said to be even if \(\text{par}(L) \equiv 0 \pmod{2}\), and it is said to be odd if \(\text{par}(L) \equiv 1 \pmod{2}\).

From Theorem 2.1 we have the following:

Corollary 2.3. For any Latin square of even order \(m\),

\[
\text{par}(L) \equiv \text{sympar}(L) + m/2 \pmod{2}.
\]

The conjugates of a Latin square are obtained by permuting the roles of the rows, columns and symbols. Thus there are six conjugacy classes, giving orthogonal arrays that are related by permuting the three columns. The invariant graphs or tournaments above will be the same and independent of the conjugate that is taken. However the parity of the Latin square depends upon the row/column pair, and so the parity can be different for other conjugates.

The following result connecting the Alon-Tarsi conjecture to Rota’s basis conjecture for linear matroids of rank \(m\) (over fields), or equivalently, for vector spaces of rank \(m\) over fields of characteristic zero, is found in [12, 14, 16]. A reduced Latin square has the first row (or column) in standard order. The number of reduced Latin squares (of even or odd type) is therefore the number of Latin squares of that type divided by \(m!\).

Theorem 2.4. If the number \(n_e\) of even reduced Latin squares of order \(m\) (even) is not equal to the number \(n_o\) of odd reduced Latin squares of that order, then Rota’s basis conjecture is true for vector spaces of rank \(m\) over a field. (Necessarily, the characteristic of the field has to be zero or bigger than \(m\), not dividing \(m!\), and it can’t divide \(n_e - n_o\). This excludes a finite number of characteristics if \(n_e - n_o \neq 0\).)

In the next section we can apply this to orders \(m\) that are a prime minus one.

3. The Decomposition of Doubly Stochastic Matrices

Some definitions and properties are needed from [13]. A hypercube of dimension \(m^n\) (where \(m\) is the side length and \(n\) is a positive integer) has \(mn\) slices, which are all \(m^{n-1}\) hypercubes. Fixing one of the \(n\) directions, there are \(m\) slices obtained by fixing an index in that direction.

Given a hypercube \(H\) over a field of prime characteristic \(p\) of dimension \(m^n\), the modular hyperdeterminant \(\det_p(H)\) (times \((-1)^m\)) is the sum over all monomials in the elements of \(H\), such that the monomial has its exponents summing to \(p-1\) on each slice. There is also a division by the product of the factorials of the exponents involved with each monomial. Thus \(\det_p\) is a polynomial of degree \(m(p-1)\) in \(m^n\) variables, and the monomials have coefficients that are in \(GF(p)\).

An alternative way (not previously published) to calculate this formula is to consider \(m(p-1) \times n\) ‘exponent’ tables \(T\) made up of integers from the set \(\{0, \ldots, p-1\}\). One column (usually the first) is always the same: \(1 \ldots 1, \ldots, m \ldots m\), with each \(i\) \((1 \leq i \leq m)\) repeated \(p-1\) times. The other \(n-1\) columns are permutations of this column. This
implies that there are \(\binom{m(p-1)}{p-1,...,p-1} \) possible columns, and therefore \((\binom{m(p-1)}{p-1,...,p-1})^{n-1} \) tables \(T \) with the same fixed column.

Each such table corresponds to a monomial in \(\det_p \) of degree \(m(p-1) \) in the \(m^n \) variables: any row of \(T \) is an index for a particular element of \(H \), and these \(m(p-1) \) elements are multiplied. Note that two different tables \(T \) and \(T' \) can give rise to the same monomial, and this happens when \(T' \) is obtained by permuting rows of \(T \). It can be confirmed that this is the same formula as given by the first method, up to the factor \((-1)^m \).

Note that this alternative method for constructing \(\det_p \) is very similar to the original method of Cayley to construct \(\det_0 \) in 1843. He used an \(m \times n \) table and also fixed a column. A difference there however was that the columns were permutations with a certain sign, and the product of the signs of the columns gave the multiplying factor for the corresponding monomial. In that case, two non-identical tables could not give the same monomial, since permuting rows of a table would also permute the rows of the fixed column \(1 \ldots m \). For characteristic two fields, \(\det_2 = \det_0 \) holds. In [13] the following formula is shown:

Theorem 3.1. If \(A \) is an \(m \times m \) matrix over a field of characteristic \(p \), then

\[
\det_p(A) = \det(A^{p-1}).
\]

By the Cauchy-Binet multiplicative property of the determinant we can write \(\det(A^{p-1}) \) as a product of the \(p-1 \) determinants \(\det(A) \). Using the standard formula for \(\det(A) \) as a sum of \(m! \) monomials, with plus or minus signs depending upon whether the monomial comes from an even or an odd permutation respectively, we can also write \(\det(A)^{p-1} \) as a sum of monomials. Each of these is a product of the elements \(a_{ij} \) of \(A \) with certain exponents \(e_{ij} \) having \(0 \leq e_{ij} \leq p-1 \), and there is an integer coefficient for each monomial. The exponents \(e_{ij} \) form an \(m \times m \) matrix \(E \) that is “doubly-stochastic”: the row and column sums of \(E \) are all \(p-1 \). The integer coefficient for the monomial can be calculated by finding all possible ways to write \(E \) as an ordered sum of \(p-1 \) permutations matrices of side \(m \). If there are an odd number of odd permutations in this sum then the contribution to the integer coefficient of the monomial is \(-1 \), otherwise it is \(+1 \).

The above formula for \(\det_p(A) \) implies that modulo \(p \), the integer coefficient for each monomial with a doubly-stochastic exponent matrix \(E \), is non-zero modulo \(p \), and so it is non-zero as an integer. In the special case where \(m = p-1 \), consider the exponent matrix \(E = J \), the \((p-1) \times (p-1) \) doubly-stochastic matrix of all ones. Each way of writing \(E \) as an ordered sum of \(p-1 \) permutation matrices of side \(p-1 \) corresponds to a Latin square of side \(p-1 \), and there is a bijective correspondence between the ways and the Latin squares because every symbol the Latin square occurs as a permutation matrix. A Latin square with an odd number of permutation matrices (where the symbols are the same) that are odd has odd symbol parity; see Section 2. From Corollary 2.3, for a Latin square \(L \) of even order \(p-1 \), \(\text{par}(L) \equiv \text{sympar}(L) + (p-1)/2 \) (mod 2).

Thus, the formula for \(\det_p \) implies this:

Theorem 3.2. For any odd prime \(p \), the number of even Latin squares of order \(p-1 \) minus the number of odd Latin squares of that order, is \((-1)^{(p-1)/2} \) modulo \(p \).

By the results here we have shown:
Theorem 3.3. Rota’s basis conjecture is true for vector spaces of dimensions $p - 1$, where p is a prime, and the characteristic of the base field is zero or p, or any other characteristics possibly excluding a finite number of them.

In [8] a similar theorem has been shown for $p + 1$. Now $26 = 5^2 + 1 = 3^3 - 1$ is neither a prime plus one, nor a prime minus one. The remaining even numbers less than 26 are $2 = 3 - 1$, $4 = 3 + 1 = 5 - 1$, $6 = 5 + 1 = 7 - 1$, $8 = 7 + 1$, $10 = 11 - 1$, $12 = 11 + 1 = 13 - 1$, $14 = 13 + 1$, $16 = 17 - 1$, $18 = 17 + 1 = 19 - 1$, $20 = 19 + 1$, $22 = 23 - 1$, $24 = 23 + 1$.

Thus

Corollary 3.4. The smallest unsolved case of even order for the Alon-Tarsi conjecture (and for Rota’s basis conjecture for characteristic zero fields) is 26.

References

[4] A. Cayley, On the theory of determinants, Camb. Phil. Trans. viii, 1849, 75. (The paper was actually given at a meeting of the society in 1843.)

E-mail address: davidg@csem.flinders.edu.au

CSEM, Flinders University, P.O. Box 2100, Adelaide, South Australia 5001, Australia