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Abstract 
We consider the effects of tuning d e l a y  in optical 

broadcast networks. We show that for offl ine schedul- 
ing these effects are small even i f  the tuning time is as 
large as the packet duration. In  particular, we consider 
scheduling of random traffic with tunable transmitters 
and fixed-tuned receivers. We provide a lower bound 
to the completaon time of any off-line schedule with 
an arbitrary number of wavelengths. We  then describe 
a near-optimal schedule which is  based on the prin- 
ciple of having idle transmitters tune to wavelengths 
just-in-time to  start their transmissions. Stability and 
capacity issues in  the transmission of real-time traf- 
fic are considered. We  show that the scheduling prob- 
lem admits a single stable equilibrium point, and point 
out how the traffic capacity of a bro'adcast network 
can be reached. We also consider the implications in 
connection-oriented networks. 

1 Introduction 
We consider packet transmissions in an all-optical, 

wavelength division multiplexed (WDM) network with 
a broadcast star physical topology. Each of the N 
nodes in the network has a single tunable transmit- 
ter and a single fixed-tuned receiver. There are W 
(5  N )  wavelengths in the network. I< = N/W re- 
ceivers share a wavelength. (We assume for simplicity 
that K is an integer.) For reasons that will become 
apparent, we say the network is bandwidth limited if 
W 5 N / 2 ,  so that each wavelength is shared by at 
least two receivers. Our main focus is on bandwidth- 
limited networks; however the case where each receiver 
is assigned a unique wavelength (W = N )  will also be 
considered. 

Any signal transmitted on any wavelength is re- 
ceived by all the nodes simultaneously (the propaga- 
tion delays are negligible). Therefore, some form of 
coordination or scheduling is required to ensure that 
no two transmitters use' the same wavelength at the 
same time [l]. This coordination is complicated by 
the fact that a transmitter needs time to tune from 
one wavelength to another. We define the normalized 
tuning delay 6 as the time for a transmitter to tune, 
expressed in units of packet duration. The value of 6 
depends on the transmission rate, the packet size, and 
the laser tuning time. For instance, with a 1 Gbps 
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rate, 1000 bit packets, and 1 ps tuning time, the nor- 
malized tuning delay 6 = 1. Advances in rapidly tun- 
able lasers and optical filters will make S smaller. Con- 
versely, higher transmission speeds and smaller packet 
sizes increase 6. 

We mainly consider the effects of tuning delay on 
bandwidth-limited networks supporting random traf- 
fic when 6 5 1. For results on deterministic traffic 
with larger 6, see 2, 31. Our major contribution is to 
show that the ine A? ciency due to tuning delay can be 
eliminated through off-line scheduling, provided that 
the tuning times are shorter than the packet duration. 
We also consider scheduling circuit connections on a 
broadcast star with tunable transmitters and fixed- 
tuned receivers. This problem admits an identical 
formulation to the packet transmission case outlined 
above. We show that there is no throughput penalty 
associated with tuning delay as long as the tuning 
times are shorter than the time slots. 

In Section 2, we introduce the mathematical model 
and summarize previous work. In Section 3, we pro- 
vide a lower bound on the average time to transmit 
a set of packets. We also provide an upper bound 
by considering a schedule Pieris and Sasaki used for 
deterministic traffic [2 In Section 4, we introduce a 
simple near-optimal sc k edule for random traffic. Sec- 
tion 5 relates the results to a real-time traffic situ- 
ation, shows the inherent stability of the scheduling 
problem, and obtains the traffic capacity. The issue of 
time-slot assignment in connection-oriented broadcast 
networks is considered in Section 6. Conclusions are 
given in Section 7. 

2 Traffic Model and Previous Work 
We now present a general model which can be used 

for both connectionless and connection-oriented traf- 
fic. Consider first a packet transmission scenario. An 
off-line scheduler assigns a sequence of transmission 
times to head-of-line packets for all source-destination 
pairs. In particular, there is a random traffic ma- 
trix D with dij = l if the source-destination pair 
( i , j )  has a packet to be scheduled and dij = 0 other- 
wise. We assume that the random variables { d i j }  are 
independent and identically distributed (i.i.d.) with 
Pr(dij = 1) = p .  Thus the matrix D is composed 
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of N 2  i.i.d. Ber(p) (Bernoulli distributed with param- 
eter p )  random variables. The parameter p models 
the buffer occupancy probability for each of the N’ 
source-destination buffers. 

Our goal is to  investigate how the packet transmis- 
sions must be scheduled for a given set of parameters 
{ N ,  W b ,  p }  so that the average time to  transmit D 
is minimized. We assume that the traffic matrix D 
is known to  all nodes so that every node can deter- 
mine its sequence of transmissions and tunings inde- 
pendently of other nodes. 

The constraints on an admissible schedule are easily 
expressed in terms of the traffic matrix D: 

C1) For dij  = 1, let t ( i , j )  be the starting time of 
transmission of the corresponding packet. Then 

I t ( i , j )  - t ( i ‘ , j ’ )  12 1 

for all (not necessarily distinct) rows i ,  i’ and for all 
columns j, j’ that belong to  the same wavelength. 

C2) Tuning constraint: 

for all rows i and for all columns j and j ’  that belong 
to  different wavelengths. 

The constraint C1 stems from the fact that a wave- 
length can be used by one source destination pair a t  a 
time, and that each source can transmit at most one 
packet a t  a time. Constraint C2 includes the trans- 
mitter tuning delay and introduces an asymmetry be- 
tween the rows and the columns of D. 

While the above traffic model is described in terms 
of packet transmissions, it  also applies to  the case of 
connection-oriented networks such as IBM’s Rainbow 
[4] and the MIT/AT&T/DEC Consortium’s testbed 
networkf [5]. Here the entries are viewed as sessions to  
be established between the nodes with the possibility 
of multiple connections per node. This point of view 
will be elaborated in Section 6. 

The random traffic matrix model just described is 
more general than that considered by previous work 
on packet scheduling in networks. The case p = 1 
corresponds to  all-to-all packet transmission scenario 
considered by Pieris and Sasaki [2] and Aggarwal et.al. 
[3]. Here every node has exactly one packet to  trans- 
mit to  every other node. Pieris and Sasaki consider the 
case of tunable transmitters and fixed-tuned receivers 
and assume 6 is a non-negative integer. They make the 
fundamental observation that for large tuning delays 
there exists an optimal number of wavelengths which 
optimally balances the wavelength concurrency with 
tuning delay. It is shown that any schedule should 
take a time of a t  least N d  ( b  2 l), and two sched- 
ules are provided with clearance times of N ( & +  1 )  
and 2N& respectively. We will adopt one of these 
schedules in Section 3 to  provide an upper bound in 
the case of random traffic. In this work, we also im- 
prove their lower bound to  the clearance time, and 

generalize it for random traffic. Another difference in 
this paper is that we view the number of wavelengths 
as fixed and try to  achieve optimal scheduling for all 
W .  

Aggarwal et.al. [3 consider the case of tunable 

bound of N O  to  the clearance time of an all- 
to-all transmission schedule, and an upper bound of 
N &+0.5). These results assume 6 >> 1 ,  whereas we 

The special case of W = N wavelengths with an ar- 
bitrary traffic matrix D corresponds to  the well-known 
scheduling problem in Satellite Switched Time Divi- 
sion Multiple Access (SS-TDMA . In SS-TDMA, d i .  
is the number of time slots per rame that is needed 
for the source-destination pair (i, j ) ,  and the schedule 
corresponds to  the design of a frame’. The N wave- 
lengths are analogous to spatial diversity of N ground 
stations, and tuning corresponds to  a reconfiguration 
of the on-board satellite switch [6]. However, there 
are important differences between optical WDM and 
SS-TDMA. First, changing the switch configuration 
corresponds to all users tuning simultaneously which 
is not a requirement in optical WDM. For instance, 
the scheduling algorithm that will be presented in Sec- 
tion 4 uses non-simultaneous tuning to  achieve near- 
optimal clearance time. In SS-TDMA, 6 typically is 
small and therefore the emphasis has been on mini- 
mizing the total transmission time [6, 71. In this case 
polynomial-time algorithms for generating the opti- 
mal schedule are known. Gopal and Wong consider 
the other extreme 6 >> 1, and show that finding the 
optimal SS-TDMA schedule for a given traffic matrix 
is NP-complete even in special cases [SI. In this pa- 
per, our interest is in pursuing average-case optimality 
when the traffic matrix is generated by a probability 
distribution. 

transmitters and tuna Ib le receivers and provide a lower 

wi \ 1 be interested in the case 6 5 1. 

3 Lower and Upper Bounds on the 

As explained in the previous section, the traffic ma- 
trix D contains the packets to be transmitted in the 
current schedule. From the traffic matrix we define 
the IV x W collapsed traflc matrix C as 

Clearance Time 

c‘ij = 5 d i k  l < i < N ,  l < j < W  
k = ( j - l ) K + l  

where K = N / W  is the number of receivers per wave- 
length. Thus c i j  represents the total number of pack- 
ets firom transmitter Ti to  the receivers using wave- 
length X j  . These entries are statistically independent 
and are Bin N /  W, p )  (Binomially distributed with pa- 
rameters N 5 W and p ) .  

Let us temporarily neglect the tuning delay, i.e., set 
5 = 0. In this case, the results of [6] can be applied to  
determine the clearance time of the optimal schedule. 

‘These networks allow tunability at receivers unlike our 
model. 

’This is analogous to our circuit-switched model in Sec- 
tion 6. 
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First, observe that for a given C the schedule will take 
a time at least 

c ,  is the maximal line (row or column) sum of the ma- 
trix C. Second, Hall's theorem on Systems of Distinct 
Representations (SDRs) can be applied to express C as 
a sum of exactly c, permutation matrices3. Since each 
such permutation matrix corresponds to conflict-free 
transmission of packets in C ,  the resulting schedule 
has an optimal clearance time of c,. Polynomial-time 
algorithms to find optimal schedules are known [6] .  

When the collapsed traffic matrix C is generated ac- 
cording to the probability distribution described ear- 
lier, the optimal expected clearance time with 6 = 0,  
T*(6 = O,p) ,  is found as the expected value of the 
maximal line sum: 

where cr and cc are the maximal row and column sums 
respectively, and the lower bound follows from the con- 
vexity of max(z, y) and Jensen's inequality [9]. 

Now let us return to the case of nonzero tuning 
delays and consider a simple idea that we will return 
to in the sequel. Suppose each packet is "padded" by 
6 time units to allow possible (and wasteful) tuning 
after each packet transmission. This padding results 
in a schedule that takes an average time of T'(6 = 
O,p)(l + 6) to complete. Thus the optimal schedule 
has an average clearance time bounded by 

For 6 5 1, the upper and lower bounds are within a 
factor of 2. One of the goals in the subsequent sections 
is to show that this potentially 100% inefficiency can 
be avoided by a more efficient schedule. Note that 
this is not an additional requirement, some form of 
scheduling is always necessary to avoid conflicts even 
without tuning delays. 

A tighter lower bound than the one in 1)  can be 

row of C ,  and suppose there is a total of Ni pack- 
ets distributed over I(; columns. Then transmitter Ti 
must spend a time Ni transmitting its packets and a 
time Ki6 tuning to Iqi different wavelengths4, hence 
the clearance time must be at least 

obtained by the following argument. Consi 6 er the ith 

which implies 

3A permutation matrix is a 0-1 matrix with at most 
one nonzero entry per row and per column. 

'The initial tuning of transmitters to appropriate wave- 
lengths at the beginning of the schedule is included in the 
bound. 

The Ni are i.i.d. Bin(N,p), while I<i are i.i.d. Bin(W, 
The latter distribution follows from 

events of W wavelengths 
are statistically independent. For cdj = 0, all N / W  
corresponding entries must be zero.) If W = N ,  then 
Ki = Ni and 

On the other hand, if W < N ,  Ni and Ki are corre- 
lated, obtaining the expectation in ( 2 )  appears to be 
a difficult task. In this case, we will use 

r 1 

where I<,. is the number of occupied wavelength 
groups in the row with maximal row sum. In the sec- 
ond line above, we have weakened the bound by con- 
sidering the row that achieves maximal N i ,  and in the 
third line we have used the fact that the maximally 
crowded row will have a larger expected wavelength 
occupancy than a typical row. 

It is useful to define the expected value of the max- 
imum of a set of i.i.d. Binomial random variables. Let 
X;, 1 5 i 5 L ,  be i.i.d. Bin(M,c), and define 

It is easy to obtain f ( M ,  E ,  L )  as 

It is also possible to obtain an approximation to 
f ( M , f , L ) ,  when M and L are both large, through 
a Chernoff bound as 

f ( ~ ,  6,  L )  N M E  + ~ J M E ( I  - E )  InL . 
Using this definition, we have from (3) 

T " ( W  L f ( N , P ,  N) + W [ I  - (1 - d N / 7  6 
for W < N ,  and 

T'(4 PI 2 f ( N ,  P l N ) ( 1 +  6) 
for W = N .  We will refer to this bound as the row 
lower bound. One can also obtain a column lower 
bound using the constraint that no more than one en- 
try of a column of C can be transmitted simultane- 
ously. Hence the schedule will take a time of at least 
the maximal column sum: 
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Combining the row and column bounds, we have for 
W < N  

W , p )  2 "{f(N,P, N )  + 
f ( W W , P ,  W ) }  (4) 

with = W [ 1 -  (1 - P ) ~ / ~ ] ,  while for W = N 

r?l* (6, P )  2 f ( N ,  P ,  N ) ( 1  + 6) (5) 

as the row bound is uniformly tighter than the column 
bound with N wavelengths. 

The bounds in (4) and (5) will prove to be very 
important as we will find a schedule which achieves 
an average clearance time that is very close to the 
bounds. 

At this point let us consider the special case of p = 1 
in some detail. This is the all-to-all broadcast scenario 
that was analyzed by Pieris and Sasaki in [2] .  The 
lower bound in (4)-(5) simplifies to  

P ( 6 , p  = 1 )  2 max(N + WS, N 2 / W )  (6) 

for all W .  This is a better lower bound than that given 
in [2] as max(W6,N2/W). The value of W which 
minimizes the lower bound (6) is 

2N 
1 + m  

W * ( S , p  = 1) = 

which decreases from N to  0.62N as 6 increases from 0 
to  1 .  For 6 >> 1 ,  W* N N / d ,  the same value obtained 
in [2] .  Since our analytical development assumes that 
both W and N / W  are integers, we must consider the 
cases W = N / 2  and W = N as potential minima. 
The lower bounds are N ( 1 +  6) for W = N ,  and 2N 
for W = N / 2  when 0 5 6 5 1. Thus W = N is 
the optimal wavelength setting. The same conclusion 
holds even if we allowed N / W  to  be non-integer: the 
schedule will take at least 2N time units when N / 2  5 
W < N ,  since at least one channel will have [ N / W l  = 
2 receivers. Therefore W = N is the unique optimum 
for p = 1 and 6 < 1. (For 6 = 1 ,  the same lower bound 
of 2N is achieved for N / 2  5 W 5 N . )  

Figure 1 shows the lower bound for p = 1 and N = 
100 as a function of W with 6 = 0.1 and 6 = 1 .  The 
conclusions reached above can also be confirmed from 
the curves. Note that the data points on these curves 
are computed only for integer N / W  and are connected 
by straight lines only for presentation. 

The lower bound is minimized either by W = N or 
by W = N / 2  for p < 1 as seen from Figure 2 which 
shows the normalized clearance time for p = 0.1 and 
p = 0.5. In fact, it can be shown from the definition 
of f(-) that f ( 2 N , p ,  N / 2 )  2 f ( N , p ,  N )  + N p .  That  
W* is either N or N / 2  for any value of p easily follows 
from this result. 

While a lower bound to  the average clearance time 
provides a limit to  the efficiency of scheduling, it is 
necessary t o  assess its tightness before any conclusions 
can be drawn from such a bound. Therefore we would 

like to  obtain an upper bound to  T*(S ,p ) ,  preferably 
by uising a simple scheduling algorithm. In this sec- 
tion, we consider a suboptimal schedule given in [2] 
for the case p = 1 and 6 >> 1 .  This schedule, which 
will be called Pieris-Sasaki schedule, performs within 
a factor 2 of the lower bound in [2] when W is op- 
timized. We generalize it for p < 1, and analyze it 
to  obtain an upper bound to  the clearance time. In 
the next section, we will present a better upper bound 
through a different scheduling algorithm. 

Pieris-Sasaki schedule groups the transmitters into 
W groups GI, Gz, . . . , Gw where Gj consists of trans- 
mitters T( i - I )K+l ,  T( i -1)~+2,  . . . , ZK (I< = N / W ) .  
Initially the transmitters in Gi are tuned to  X i  and se- 
quentially transmit their packets to  the receivers in Xi .  
When all the transmissions in all W wavelengths are 
completed, the transmitters in G, tune to  Xiel (e de- 
notes modulo W addition defined over { l ,  2, . . . , w}), 
and transmit their packets in Xiel. The schedule com- 
pletes after W such tuning phases. The number of 
packets transmitted by a transmitter group on a wave- 
length is Bin(N2/W2, p ) .  Since each phase of the al- 
gorithm involves a tuning and last until all of the W 
concurrent tran2missions are completed, the average 
clearance time Tps (6, p )  is given by 

T P S ( 6 , P )  = w (f ( N 2 / W 2 , p ,  W )  + 6) L T * ( S , P )  * 

This upper bound to the optimal clearance time is a I" so 
shown in Figures 1 and 2 for various values of p and 6. 
It is seen that for p = 1 and 6 5 1 ,  the upper bound 
and the lower bound are extremely close. In fact, in 
this case we have from (6) and (7) 

6 T ' ( S , p =  1 )  
N I<+-> Ii' - 

where I< = N / W .  For 6 5 1 ,  the ratio p of the upper 
bound to the lower bound is given by 

1 Ii' = 1 
p = { 1 + 6 / K 2  K 2 2 .  

Thus the Pieris-Sasaki algorithm is optimal5 when p = 
1 ,  6 5 1 and W = N ,  and is within a factor of 1 + 
( W / N ) 2 6  of the optimal performance when W 5 N 2. 

of wavelengths (W << N ) ,  this algorithm is nearly 
optimal. 

However, this near-optimality is no longer attained 
when p < 1 as Figure 2 indicates. In fact, when p << 1 
and W is large, the upper bound indicates an infe- 
rior performance than the lower bound. There are 
two potential sources for this discrepancy. First, the 
synchronized nature of Pieris-Sasaki algorithm is well 
suited for a full traffic matrix, but is less efficient for 
a sparse matrix. Second, the lower bound may not be 
tighl, for p < 1 .  In the next section, we will provide 
a diltkrent scheduling algorithm which achieves near- 
optimal results for all values of p .  This will show that 
the lower bound is, in fact, tight. 

That  is, for high load ( p  2 l ) ,  and a limited num b er 

5The optimal performance for W = N and p = 1 could 
also be achieved by a schedule that employs padding. 
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4 Single Reservation Scheduling 
For a random traffic matrix D ,  it is intuitively clear 

that an efficient scheduling algorithm must exploit the 
traffic information so as to avoid unnecessary tuning. 
We now describe an algorithm that is based on reserv- 
ing idle transmitters to wavelengths that are close to 
completing the service of the active transmitters. The 
concurrency in the tuning and transmission events im- 
proves the efficiency. We call the algorithm the Szngle 
Reservation Algorithm (SRA as it reserves a t  most 

ple of SRA is to reserve an idle and unreserved trans- 
mitter for a wavelength Xi ,  6 time units before the 
transmitter currently active in X i  completes its trans- 
mission. Thus for 6 < 1, the reserved transmitter can 
tune to X i  just-in-time to  eliminate any dead-time in 
X j .  

A reservation based real-time protocol, the MaTPi 
protocol, has been recently proposed for optical WDM 
with integer 6 [lo]. In MaTPi, a node with data re- 
serves a time slot which is 6 time slots in the future. 
SRA uses a different philosophy; it utilizes the global 
traffic information to  reserve idle nodes, as explained 
below. 

In the initial phase of the SRA, the transmitter 
which has the maximum number of packets in X I  tunes 
to XI. Of the remaining transmitters, the one with 
most packets in Xz  tunes to  Xz and so on. These trans- 
mitters then sequentially transmit all their packets in 
the tuned wavelength. The rest of the transmitters 
remain initially idle and unreserved. When the re- 
maining transmission time in A i  falls below 6, an idle 
transmitter with packets on X i  is reserved. The re- 
served transmitter starts tuning to X i  and transmits 
its packets as soon as its tuning is complete. The 
transmitter which was previously using Ai  joins the 
idle pool and becomes available for reservation. If 
there are more than one idle and unreserved trans- 
mitters that  have packets for X i ,  the one with largest 
demand for X i  is reserved. Conversely, if there are no 
idle transmitters with traffic on A i ,  X i  remains unre- 
served and potentially unused until a reservation can 
be made. In the case of simultaneous reservations on 
two or more wavelengths, priority is given to the wave- 
length with lowest index6. The algorithm continues 
until the matrix is cleared. 

It is difficult to model the performance of SRA ana- 
lytically. Therefore we will resort to  Monte Carlo sim- 
ulations for evaluating the average clearance time. In 
Figures 1 and 2 we show the average clearance time 
of SRA for some sample values of S and p .  As sug- 
gested by these figures, we have observed that for 
6 5 1 and 0 < p 5 1, the SRA clearance time 
is very close to the lower bound. We have simu- 
lated the cases 6 = 0 . 1 , 0 . 5 , 1 ,  p = 0 .1 ,0 .5 ,1 ,  and 
W = 1,2,4,5,10,20,25,50,100, for N = 100. The 
worst case discrepancy between the simulation and the 

‘This fixed priority implies that the rightmost columns 
of the traffic matrix are cleared later on the average. Fair- 
ness can be achieved by rotating the priority among the 
wavelengths. 

one transmitter for each wave r‘ ength. The basic princi- 

lower bound was 30% and occurred when 6 = p = 1, 
and W = 50. In most cases the simulation perfor- 
mance was within 5% of the lower bound. 

Note that the Single Reservation Algorithm will 
not be efficient for 6 > 1 as the reserved transmit- 
ters may not complete their tunings in time to  avoid 
“dead times”. This is particularly true when W is 
large and p is small, since in this case the idle pool 
will be small. Reserving multiple transmitters may be 
a better option to implement. Our goal in presenting 
SRA is not to  provide a best possible scheduling al- 
gorithm; rather, it is to  demonstrate that  the lower 
bound presented earlier analytically captures the fun- 
damental effects of tuning delay on performance in a 
random traffic situation. This way, one can reliably 
use the lower bound to derive insights into the effect 
of tuning delays on scheduling performance. 

First, let us consider the all-to-all transmission case 
p = 1. Assuming the lower bound in (6) can be 
achieved, the scheduling penalty due to tuning delay 
is given by 

1 + 6  W = N  
= { 1  W 5 N / 2 .  

A T * ( 6 , p =  1) A ( 6 , p  = 1) = 
T*(6 = 0 , p  = 1) 

(8) 
Thus if there are no constraints on the number of 
wavelengths, one would use W = N wavelengths to 
minimize the clearance time and suffer a penalty fac- 
tor of 1 + 6. If W 5 N 2, as it would normally be the 
case in a large networ ic , the clearance time would be 
larger than that with one wavelength per user; how- 
ever there is no penalty due to  the tuning delay. This 
conclusion has an important practical ramification: I n  
a bandwidth-limited network, the packet length can be 
made as short as the tuning t ime without any tuning 
penalty. 

Another relevant issue is the efficiency of the op- 
timal schedule relative to  a schedule with padding. 
Since padding achieves a clearance time of T*(6 = 
0,  p = 1)(1+ 6), we define the improvement with the 
optimal schedule with p = 1 as 

W = N  
1 + 6  W < N / 2  (9) 

which means that with W 5 N / 2 ,  optimal scheduling 
will gain a factor of 1+6  over padding. But if W = N ,  
padding is optimal. 

For p < 1 we define the scheduling penalty A(6 ,p )  
and optimality improvement I (6 ,  p )  similarly. The av- 
erage clearance time with no tuning delay T*(6  = 0, p )  
is given by the expected value of the maximal line 
sum in C. Recall that the N row sums of C are the 
i.i.d. Bin(N,p) while the W column sums are i.i.d. 
Bin(N2/W,p). However, since rows and columns are 
not independent, the exact computation of the aver- 
age critical sum is intractable. Therefore we use the 
Jensen inequality to obtain the lower bound: 

T*@ = 0 , P )  2 max ( f ( N , P ,  N I ,  f (N2/W,P,  w,) 
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to  conservatively overestimate the penalty A 6, p and 

bound is expected to  be uniformly tight since for W < 
N ,  the maximal line sum is a column sum with high 
probability and for W = N ,  the relative inaccuracy in 
the bound is at most 1 - f( N ,  p ,  N ) / f ( N ,  p ,  2 N )  which 
is small when N p  is large. Our numerical calculations 
show that the penalty and the improvement with re- 
spect to  padding are still given by Equations (8 and 
(9) respectively for all values of p when 6 5 1.  Jhere- 
fore, in a bandwidth-limited network with W 5 N / 2 ,  
there is no penalty due to  tuning delay, and an im- 
provement of 1 + 6 over padding. When W = N ,  the 
tuning delay penalty approaches 1 + 6 while improve- 
ment over padding vanishes ( I (  6, p )  becomes unity). 

These conclusions are summarized in Figure 3 
which shows the optimal clearance time T*(6, p ) ,  the 
clearance time without any tuning delay T*(6 = O , p ) ,  
and the clearance time with padding (1 + S ) p ( S  = 
0 , p )  as functions of W .  (We have used f ( N , p , L )  M 
N p  in the figure for clarity of presentation.) 

An important implication of these results is that, 
in bandwidth-limited networks, introducing tunabil- 
ity at the receivers as well as the transmitters cannot 
improve the clearance time, as the performance is lim- 
ited by the bandwidth and not by the tuning delay. 

5 Real-Time Traffic 
The off-line scheduling approach we have consid- 

ered in the preceding sections must be embedded in a 
network with real-time packet traffic. In this setting, 
the packet stream will be stored in N 2  buffers, one 
per source-destination pair, and a single head-of-line 
packet will be cleared from each non-empty buffer per 
schedule7. 

This raises the question as to  whether such a net- 
work reaches equilibrium and whether the equilibrium 
is stable. Let the packet arrival rate (normalized with 
respect to  packet duration) per source-destination pair 
be A. If A is too large, the number of packets that ar- 
rive during a schedule will exceed the amount that can 
be cleared in the next schedule, the buffer occupancies 
will grow without bound, and the traffic input to  the 
schedule converges to  a full matrix = 1). Thus, 
there is a certain traffic capacity Co(d7 beyond which 
input traffic rates cannot be supported. However, it is 
not clear that rates A 5 Co(6) can be supported with 
stability, i.e., with a single distribution p on the traffic 
matrix and a steady state buffer occupancy. We now 
proceed to  show that this is the case under optimal 
scheduling. 

The aggregate input rate to the network-is N 2 A  
while the aggregate output rate is N 2 p / T * ( 6 ,  p ) .  
Thus, flow conservation dictates that in the steady 
state (if it exists) 

underestimate the improvement I ( 6 , p ) .  T 6 1  e ower 

'Of course, we could allow traffic matrices with non- 
binary entries in scheduling. 

For a given throughput A, (10) must be solved for p .  
Let g ( p )  = p / T ' ( 6 , p ) .  For a single equilibrium point 
g(p) .  must be monotonic on (0,1]. That  g ( p )  2 g ( p / n )  
for integer n can be seen as follows. A suboptimal 
way to schedule a matrix C with probability distri- 
bution Ber(p) is to randomly decompose C into n 
matrices C1, Cz, . . . , C, each with probability distri- 
bution Ber(p/n) and to  sequentially schedule these n 
matrices. Thus p ( 6 , p )  5 nT*(S,p/n)  which implies 
g ( p )  g ( p / n ) .  In general g ( p )  is monotonically in- 
creasing with p .  

As a result of this monotonicity, an equilibrium 
point exists as long as 

A 

A 1 
A 5; Co(6) = - 

where Co(6) is the scheduling capacity per source- 
destination pair. The overall scheduling capacity of 
the network is 

= {;/(1+6) W = N  
W 5 N / 2  

where the last equality is valid for 6 5 1. With a 
large number of wavelengths the capacity is reduced 
by a factor 1 + 6. For W 5 N / 2 ,  the capacity is not 
affected by tuning delay (provided that 6 5 1). 

Another implication of the monotonicity of g ( p )  is 
that the equilibrium point is stable. A graphical per- 
turbation analysis shows that small fluctuations in the 
input rate A will be compensated by changes in p ,  ren- 
dering the equilibrium point ( p ,  A) stable. 

The queueing delay of the underlying system can 
be found through a standard vacation model [ll]. 
With Poisson packet arrivals, each source-destination 
pair sees an M/D/l queueing system where the server 
serves a single packet from the buffer and takes a va- 
cation of random duration T .  In this limited-service 
server-vacation model, one needs the first two mo- 
ments, of the schedule clearance time in order to  eval- 
uate the average delay experienced by a packet. The 
first moment can be accurately approximated by the 
lower bound obtained in this paper. Similar tech- 
niques can also be developed for the second moment. 
Alternatively, the second moment can be estimated 
using numerical simulation. 

6 Connection-Oriented Networks 
We have found it convenient to describe the 

scheduling framework in this paper in terms of a con- 
nectiolnless network. The model and the results are 
equally applicable to  a connection-oriented network 
with sessions. In this context the entry ddj = 1 of the 
traffic matrix corresponds to  a session to  be estab- 
lished between transmitter Ti and receiver R..  (Mul- 
tiple (connections between a transmitter and several 
receivers are allowed.) Since the topology is a broad- 
cast star, a circuit connection corresponds to a wave- 
length and a time slot assignment in a Time Division 
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Multiplexed (TDM) frame. Since the wavelengths are 
preassigned to the receivers in a fixed manner, the 
scheduling problem becomes one of time slot assign- 
ment in the TDM frame subject to  the same con- 
straints in the packet switching case. (see Section 2). 
The goal is to find the frame of shortest duration that 
satisfies the tuning delay and transceiver constraints. 
This is equivalent to finding the minimum clearance 
time schedule when the packet duration is replaced by 
the duration of a time slot. Our results iin Section 4 
indicate that the time slot can be made as short as 
the tuning delay 6 without any tuning penalty in a 
bandwidth-limited network. 

One major difference between connectionless and 
connection-oriented traffic is the frequency at  which 
the scheduling algorithm is executed. With packet 
transmissions, the schedule lasts only for one clear- 
ance time, so the execution time of the algorithm is 
important. On the other hand, with circuits the sched- 
ule is in effect for a longer time scale. The current 
time slot assignment will remain unchanged until one 
of the current sessions complete or until a new session 
request is received. Therefore, the time complexity of 
scheduling algorithms is less critical with connection- 
oriented traffic, a near-optimal algorithm may be at- 
tractive even with a high time complexity. 

7 Conclusions 
We have considered scheduling of random traffic in 

an optical WDM network in order to  assess the effect 
of tuning delay on the performance. We first presented 
a lower bound on clearance time as a function of the 
network size, the number of available wavelengths, the 
statistical distribution of the traffic matrix, and the 
tuning delay S. We then established that this bound 
captures the fundamental limits to the scheduling ef- 
ficiency through numerical simulation of a scheduling 
algorithm based on advance reservation of the trans- 
mitters. As a consequence, we have shown that for 
tuning delays that are less than or equal to packet du- 
ration, the penalty due to tuning delay depends on the 
number of wavelengths, W ,  in the network. If there 
are as many wavelengths as there are users, the tun- 
ing delay 6 causes an increase in the average clearance 
time by a factor 1 + 6. This optimal performance can 
be achieved by padding 5 to  each packet in the traffic 
matrix and by using well-known techniques for decom- 
posing the given traffic matrix into a minimal number 
of permutation matrices. When the network has a 
limited number of available wavelengths, the practi- 
cal situation for large N ,  we have reached a somewhat 
surprising conclusion that there is no penalty in the 
clearance time through optimal scheduling as long as 
6 5 1. This means that through optimal scheduling 
one can eliminate the need for very rapidly tunable op- 
tical devices for packet switching. For instance, with 
a 100 Mbps transmission rate and 1000 bit packets, a 
10 ps tuning delay is sufficient. This conclusion is in 
contrast with the previous conjecture that tuning de- 
lays must be very small relative to the packet size [12, 

shown that tunability only 
is sufficient for attaining the 

in bandwidth-limited net- 

works. 
The results in this paper apply not only to 

connectionless packet-switched traffic, but also to 
connection-oriented traffic where the scheduling is 
used to assign time slots to different sessions. Multiple 
sessions per node can be supported using the schedul- 
ing approach with slot lengths comparable to tuning 
delays. 

We have also shown that scheduling results in a sin- 
gle stable equilibrium point with real-time traffic. A 
scheduling capacity has been introduced as the max- 
imum traffic that can be carried by the network. It 
has been shown that the scheduling capacity is not 
affected by tuning delays for a network with limited 
number of wavelengths (W 5 N / 2 ) .  

Large tuning delay of tunable devices has been 
viewed as a major impediment in establishing packet- 
switched and multi-session circuit-switched all-optical 
networks. It is likely that future networks will have a 
limited number of wavelengths relative to  the number 
of nodes and a tuning delay comparable to  the packet 
delay. The results of this paper indicate that efficient 
scheduling algorithms can provide near-optimal per- 
formance for a variety of services in such networks. 
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Figure 2: Same as Fig. 1 with p < 1 and 6 = 1, (a) 
p = 0.1, (b) p = 0.5. 
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Figure 3: A comparison of the clearance times of the 
optimal schedule, the 6 = 0 schedule, and the schedule 
with padding. 
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