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Intro: Overview
This paper:

● constituency parsing
● a novel greedy top-down inference algorithm
● independent scoring for label and span

The goal is to preserve the basic algorithmic properties of span-oriented (rather 
than transition-oriented) parse representations, while exploring the extent to which 
neural representational machinery can replace the additional structure required by 
existing chart parsers.



Intro: Penn Treebank

● The first publicly available syntactically annotated corpus
● Standard data set for English parsers
● Manually annotated with phrase-structure trees
● 48 preterminals (tags):

○ 36 POS tags, 12 other symbols (punctuation etc.)

● 14 nonterminals: standard inventory (S, NP, VP,...)
● Dataset for this paper



Intro: Constituency Parsing



Intro: Span and Label

span(0, 5) represent the full sentence, with label S.



Intro: Hinge Loss

In machine learning, the hinge loss is a loss function used for training classifiers. 
The hinge loss is used for "maximum-margin" classification, most notably for 
support vector machines (SVMs).[1]

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Statistical_classification


Background: Transition Based Parser

● Do not admit fast dynamic programs and require careful feature engineering 
to support exact search-based inference (Thang et al., 2015)

● Require complex training procedures to benefit from anything other than 
greedy decoding (Wiseman and Rush, 2016)



Background: Chart Parser

● Require additional works, e.g, pre-specification of a complete context-free 
grammar for generating output structures and initial pruning of the output 
space

● Do not achieve results competitive with the best transition-based models.



Algorithm: Chart Parsing
The basic model, compatible with traditional chart-based dp algorithms.

Use modified CKY recursion to find the tree with highest score. O(n^3).



Model: Span Representation f5-f3 b3-b5: span(3,5)



Model: Scoring Functions



Algorithm: Chart Parsing
● base case:
● score of the split (i, k, j) as the sum of its subspan scores:

● joint label and split decision: 



Algorithm: Chart Parsing

Finally, s_best(0, 5).

e.g. sbest(1, 4) : [(1, 2) (2, 4)];  [(1, 3) (3, 4)]; 

             = max[slabel(1,4)] + max[(sbest(1, 2)+sbest(2, 4)+sspan(1, 2)+sspan(2, 4)),
(sbest(1, 3)+sbest(3, 4)+sspan(1, 3)+sspan(3, 4))]



Algorithms: Top-Down Parsing
At a high level, given a span, we independently assign it a label and pick a split 
point, then repeat this process for the left and right subspans.

● base case: 

● label and split decision : 



Algorithms: Top-Down Parsing



Training: Loss Functions
For a span (i, j) occurring in the gold tree, let l* and k* represent the correct label 
and split point, and let    and    be the predictions made by computing the 
maximizations

● Hinge loss for label:

● Hinge loss for split: 



Training: Alternatives

● Top-Middle-Bottom Label Scoring
● Left and Right Span Scoring
● Span Concatenation Scoring
● Deep Biaffine Span Scoring
● Structured Label Loss



Training: Details
● Penn Treebank for English experiments, French Treebank from the SPMRL 

2014 shared task for French experiments.
● a two-layer bidirectional LSTM for our base span features. Dropout with a 

ratio selected from {0.2, 0.3, 0.4} is applied to all non-recurrent connections of 
the LSTM

● All parameters (including word and tag embeddings) are randomly initialized 
using Glorot initialization

● Adam optimizer with its default settings
● implemented in C++ using the DyNet neural network library (Neubig et al., 

2017).



Evaluation Metric: F1 score
● The traditional F-measure or balanced F-score (F1 score) is the harmonic 

mean of precision and recall



Results
Processing one sentence at a 
time on a c4.4xlarge Amazon 
EC2 instance:

● Chart parser: 20.3 sens/s
● Top-down: 75.5 sens/s



Conclusion
Span-Based Neural Constituency Parser

● bi-LSTM for span representation
● dynamic programming chart-based decoding
● a greedy novel top-down inference procedure
● NN methods works


