FI-SEMISIMPLE, FI-t-SEMISIMPLE AND STRONGLY $F I-t$-SEMISIMPLE MODULES

Inaam Mohammed Ali Hadi ${ }^{1}$, Farhan Dakhil Shyaa ${ }^{2}$ §
${ }^{1}$ Department of Mathematics University of Baghdad College of Education for Pure Sciences (Ibn-Al-Haitham) University of Baghdad Baghdad, IRAQ
${ }^{2}$ Department of Mathematics University of Al-Qadisiyah College of Education
Al-Qadisiya, IRAQ

Abstract

In this paper, we introduce the notions of $F I$-semisimple, $F I$-t-semisimple and strongly $F I$-t-semisimple modules. This is a generalization of semisimple modules. Many results connected with these concepts are given.

AMS Subject Classification: 16D10, 16D70, 16D90, 16P70
Key Words: FI-semisimple modules, FI-t-semisimple modules, strongly FI-t-semisimple modules, t -semisimple modules

1. Introduction

Through this paper R be a ring with unity and M is a right R-module. A submodule A of an R-module M is said to be essential in M (denoted by $A \leq_{\text {ess }}$ $M)$, if $A \bigcap W(0)$ for every non-zero submodule W of M. Equivalently $A \leq_{\text {ess }} M$ if whenever $A \bigcap W=0$, then $W=0$, see [12]. Recall that a submodule N of R module M is called closed $\left(N \leq_{c} M\right)$ if whenever $N \leq_{e s s} W \leq M$, then $N=W$, see [10]. In other word, $N \leq_{c} M$, if N has no proper essential extension in M, see [12]. The singular submodule of an R-module M denoted by $Z(M)$ and

[^0]defined by $x: \operatorname{in} M: \operatorname{ann}(x)_{R} \leq_{\text {ess }} R$ where $\operatorname{ann}(x)_{R}=r \in R: x r=0 . M$ is called singular submodule if $Z(M)=M$ and nonsingular if $Z(M)=0$.

Let $Z_{2}(M)$ be the second singular (or Goldi torsion) of M which is defined by $Z(M /(Z(M)))=\left(Z_{2}(M)\right) /(Z(M))$ where $Z(M)$ is the singular submodule of $M A$ module M is called Z_{2}-torsion if $Z_{2}(M)=M$ and a ring R is called right Z_{2}-torsion if $Z_{2}\left(R_{R}\right)=R_{R}$, see [11]. The concept of t-essential submodules is introduced as generalization of essential submodules, see [5]. A submodule N of M is said to be t-essential in M (denoted by $\left(N \leq_{t e s} M\right)$ if for every submodule B of $M, N \bigcap B \leq Z_{2}(M)$ implies that $B \leq Z_{2}(M)$. It is clear that every essential submodule is t-essential, but not conversely. However, for a nonsingular R-module M, the two concepts are coincide.

As a generalization of closed submodule Asgari and Haghany in [3] introduced concept of t-closed. A submodule N of M is t-closed in M if $N \leq_{t e s}$ $W \leq M$ implies that $N=W$. Every t-close is closed, but not conversely and they are equivalent in nonsingular modules.

A submodule N of M is called fully invariant if $f(N) \leq N$ for every R endomorphism f of M. Clearly 0 and M are fully invariant submodules of M, see [10]. M is called duo module if every submodule of M is fully invariant. A submodule N of an R-module is called stable if for each homomorphism $\mathrm{f}: N \rightarrow M, f(N) \leq N$. A module is called fully stable if every submodule of M is stable, [1]. Recall that an R-module M is multiplication if for each submodule N of M, there exists ideal I of R such that $N=M I$. Equivalently M is a multiplication R-module if for each submodule N of $M N=M(N: R M)$, where $(N: M)=r \in R: r M \leq N$, see [10]. A module M is called semisimple if every submodule is direct summand. It is known that a module M is semisimple if every submodule N contains a direct summand K of M such that $N \leq_{\text {ess }} N$.

This observation lead Asgari et al [4] to introduce the notion [3] of t semisimple modules as a generalization of semisimple modules. A module M is t-semisimple if for every submodule N of M, there exists a direct summand K such that $K \leq_{\text {tes }} N$.

In this paper we present three generalizations of semisimple and t-semisimple modules namely $F I$-semisimple, $F I$-t-semisimple and strongly $F I$-t-semisimple.

It is clear that the class of strongly t-semisimple modules contains the class of t-semisimple.

This paper consists of four sections, in Section 2 we present the concept namely $F I$-semisimple modules. Where an R-module M is called $F I$-semisimple if for each fully invariant submodule N of M, there exists K direct summand of M such that K essential in N. Many properties about this concept, and many connections between it and other related concepts are introduced.

In Section 3 we study generalization of t-semisimple namely, $F I$ - t-semisimple module is introduced. An R-module M is called $F I-t$-semisimple if for each fully invariant submodule N of M, there exists $K \leq{ }^{\oplus} M$ such that $K \leq_{\text {tes }} N$. Also, many properties about this concept, are given. Section 4 we present another generalization of t-semisimple namely strongly $F I-t$-semisimple. An R-module M is called strongly $F I-t$-semisimple if for each fully invariant submodule N of M, there exists a fully invariant direct summand K such that $K \leq_{\text {tes }} N$. Many properties about this concept are introduced, and many connections between it and other related concepts are presented.

We quote the following for future use
Proposition 1.1 ([3]). The following statements are equivalent for a submodule A of an R-module:
(1) A is t-essential in M;
(2) $\left(A+Z_{2}(M)\right) / Z_{2}(M)$ is essential in $M / Z_{2}(M)$;
(3) $A+Z_{2}(M)$ is essential in M;
(4) M / A is Z_{2}-torsion.

Lemma 1.2 ([5]). Let A_{λ} be submodule of $M \lambda$ for all λ in a set Λ.
(1) If Λ is a finite and $A_{\lambda} \leq_{\text {tes }} M_{\lambda}$, then $\bigcap_{\Lambda}\left|A_{\lambda} \leq_{\text {tes }} \bigcap_{\Lambda}\right| M_{\lambda}$ for all $\lambda \in \Lambda$.
(2) $\oplus_{\Lambda} A_{\lambda} \leq_{\text {tes }} \oplus \Lambda M_{\lambda}$, if and only if $A_{\lambda} \leq_{\text {tes }} M_{\lambda}$, for all $\lambda \in \Lambda$.

Lemma 1.3 ([14]). Let R be a ring and let $L \leq K$ be submodules of an R-module M such that L is a fully invariant submodule of K and K is a fully invariant submodule of M. Then L is a fully invariant submodule of M.

The following results are well known.
Proposition 1.4 ([7]). Any sum (or intersection) of fully invariant submodules an R-module M is fully invariant submodules M.

Proposition 1.5 ([14]). If $M=\oplus_{i} \in \Lambda$ where X_{i} is an R-module, for each $i \in \Lambda$ and N is a fully invariant submodule of M, then $N=\oplus_{i} \in \Lambda x_{i} \cap N$ and $X_{i} \cap N$ is fully invariant submodule of X_{i}, for each $i \in \Lambda$.

Proposition 1.6 ([14]). Let R be any ring and let an R-module $M=$ $K \oplus K^{\prime}$ be the direct sum of submodules K, K^{\prime} Then K is a fully invariant submodule of M if and only if $\operatorname{Hom}\left(K, K^{\prime}\right)=0$.

Proposition 1.7 ([6]). Let M be an R-module and $K \leq L \leq M$ if L / K is a fully invariant submodule of M / K and K is a fully invariant submodule of M, then L is a fully invariant in M.

2. FI-Semisimple Modules

Definition 2.1. An R-module M is called $F I$-semisimple if for each fully invariant submodule N of M, there exists direct summand K such that $K \leq_{\text {ess }} N$.

The following result is a characterization of $F I$-semisimple modules.
Proposition 2.2. An R-module M is $F I$-semisimple if and only if every fully invariant submodule of M is a direct summand.

Proof. \Rightarrow Let N be a fully invariant submodule of M, so there exists $K \leq{ }^{\oplus} M$ such that $K \leq_{\text {ess }} N$. But $K \leq{ }^{\oplus} M$ implies K is closed in M, so it has no proper essential extension in M. Thus $K=N$ and so $N \leq{ }^{\oplus} M$.
\Leftarrow Let N be a fully invariant submodule of M. By hypothesis $N \leq{ }^{\oplus} M$. But $N \leq_{\text {ess }} N$ and $N \leq{ }^{\oplus} M$. Thus M is $F I$-semisimple.

Remarks and Examples 2.3 (1) It is clear that every semisimple module is $F I$-semisimple, but the converse is not true in general, for example: The Z-module Q has only two fully invariant submodules which are (0), Q. Hance Q is $F I$-semisimple, but it is not semisimple.
(2) t-semisimple module does not implies $F I$-semisimple in general for example Z_{12} as Z-module t-semisimple but it is not $F I$-semisimple. Also $F I$ semisimple module does not implies t-semisimple, for example Q as Z-module is $F I$-semisimple and it is not t-semisimple.
(3) If M is a duo module (hence if M is a multiplication module), then M is a semisimple module if and only if M is $F I$-semisimple. In particular the Z-modules Z, Z_{4}, Z_{12} are not $F I$-semisimple. Also, for every commutative ring R, R is semisimple if and only if R is $F I$-semisimple.
(4) A fully invariant submodule of FI-semisimple is FI-semisimple.

Proof. Let N be a fully invariant submodule of M and M is a $F I$-semisimple. Let U be a fully invariant submodule of N, hence U is a fully invariant in M by proposition 1. 3. It follows that $U \leq^{\oplus} M$. Thus $U \oplus U^{\prime}=M$ for some $U^{\prime} \leq M$ and so $N=\left(U \oplus U^{\prime}\right) \bigcap N=U \oplus\left(U^{\prime} \bigcap N\right)$ by modular law. Then $U \leq{ }^{\oplus} N$. Thus N is $F I$-semisimple by Proposition (2. 2). Z_{4} as Z_{4}-module is not singular, but it is Z_{2}-torsion, so it is strongly t-semisimple.
(5) Every $F I$-semisimple module M is $F I$-extending. Where M is called $F I$-extending if every fully invariant submodule is essential in a direct summand.

Proof. Let N be a fully invariant submodule of M. As M is $F I$-semisimple, $N \leq{ }^{\oplus} M$. But $N \leq_{\text {ess }} N$. So that M is $F I$-extending.
(6) If M and N are isomorphic R-modules, then M is $F I$-semisimple if and only if N is $F I$-semisimple.
(7) If $f: M \mapsto M^{\prime}$ be an epimorophism and M^{\prime} is $F I$-semisimple, then it is not necessary that M is $F I$-semisimple. For example $\Pi: Z \mapsto Z /(6) \cong Z_{6}, Z_{6}$ is $F I$-semisimple, but Z is not.

Proposition 2.4. Let M be a $F I$-semisimple R-module and N is a fully invariant submodule in M then M / N is a $F I$-semisimple module.

Proof. Let W / N be a fully invariant submodule of M / N. Since N is a fully invariant submodule of M. Then W is fully invariant submodule of M by Proposition (1. 7). But M is $F I$-semisimple, so $W \leq{ }^{\oplus} M$. Then $W \oplus K=M$ for some $K \leq M$. This implies $W / N \oplus K+N / N=M / N$. Thus $W / N \leq{ }^{\oplus} M / N$ and M / N is $F I$-semisimple.

Corollary 2.5. Let $f: M \mapsto M^{\prime}$ be an R - epimorphism and Kerf is a fully invariant submodule of M. If M is a $F I$-semisimple R-module, then M^{\prime} is a FI-semisimple.

Proof. Since $f: M \mapsto M^{\prime}$ epimorphism, $M / \operatorname{Ker} f \cong M^{\prime}$. But $M / \operatorname{Ker} f$ is a $F I$-semisimple module by proposition (2. 4), hence M^{\prime} is $F I$-semisimple by Remarks and Examples 2. 3(5).

Corollary 2.6. Let M be a $F I$-semisimple R-module. Then $M /\left(Z_{2}(M)\right)$ is $F I$-semisimple and $M=Z_{2}(M) \oplus M^{\prime}$ where M^{\prime} is nonsingular $F I$-semisimple.

Proof. As $Z_{2}(M)$ is a fully invariant submodule of $M, M /\left(Z_{2}(M)\right)$ is $F I$ semisimple module by Proposition (2. 4). Also, $Z_{2}(M)$ is a fully invariant submodule in Mimplies $Z_{2}(M) \leq{ }^{\oplus} M$, by Proposition (2. 2). Thus $M=$ $Z_{2}(M) \oplus M^{\prime}$ for some $M^{\prime} \leq M$. But $M^{\prime} \cong M /\left(Z_{2}(M)\right)$, so M^{\prime} is nonsingular $F I$-semisimple.

Proposition 2.7. Let $M=M_{1} \oplus M_{2}$, where $M_{1}, M_{2} \leq M$ If M_{1} and M_{2} are FI-semisimple, then M is $F I$-semisimple and converse hold if M_{1} and M_{2} are FI-submodules of M.

Proof. \Rightarrow Let N be a fully invariant submodule of M. Then

$$
N=N \bigcap M=N \bigcap M_{1} \oplus N \bigcap M_{2}
$$

and $N \bigcap M_{1}, N \bigcap M_{2}$ are fully invariant submodules of M_{1} and M_{2} respectively by Lemma 1.3. Put $N_{1}=N \bigcap M_{1}, N={ }_{2}=N \bigcap M_{2}$. Hence $N_{1} \leq M_{1}$,
$N_{2} \leq M_{2}$, since M_{1} and M_{2} are $F I$-semisimple modules. It follows that $N=N_{1} \oplus N_{2} \leq{ }^{\oplus} M$ and so M is $F I$-semisimple.
\Leftarrow Since M_{1} is a fully invariant submodule of M, and

$$
M / M_{1}=\left(M_{1} \oplus M_{2}\right) / M_{1} \cong M_{2}
$$

Hence M_{2} is $F I$-semisimple, by Proposition (2. 4). Similarly, M_{1} is $F I$ semisimple.

3. $F I$ - t-Semisimple Modules

Definition 3.1. An R-module M is called $F I$ - t-semisimple if for each fully invariant submodule N of M, there exists $K \leq{ }^{\oplus} M$ such that $K \leq_{t e s} N$.

Remarks and Examples 3.2. (1) It is clear that every t-semisimple module is $F I-t$-semisimple, but the converse is not true, for Q as Z-module is not t-semisimple and it is clear that it is $F I-t$-semisimple.
(2) It is clear that every $F I$-semisimple module is $F I-t$-semisimple, hence each of the Z-module $Q, Q \oplus Z_{2}, Z_{2} \oplus Z_{6}$ is $F I-t$-semisimple, since each of them is $F I$-semisimple module.
(3) The converse of part (2) is not true in general, for example, the Z_{12} is a $F I-t$-semisimple (since it is t-semisimple) but it is not $F I$-semisimple, and the Z-module Z is not $F I-t$-semisimple.
(4) Let M be a nonsingular R-module. Then M is $F I$-semisimple if and only if M is $F I-t$-semisimple. In particular, Z as Z-module is not $F I-t$ semisimple, and if $R=Z[x]$, then R_{R} is not $F I-t$-semisimple.

Proof. \Rightarrow It is clear by part (2).
\Leftarrow Let M be a $F I-t$-semisimple module and N be a fully invariant submodule of M, there exists $K \leq{ }^{\oplus} M$ and $K \leq_{\text {tes }} N$. But M is nonsingular implies N is nonsingular and hence $K \leq_{\text {ess }} N$. But $K \leq{ }^{\oplus} M$ implies K is a closed submodule of M and so that $K=N$. It follows that M is $F I$-semisimple by Proposition 2.2.

Proposition 3.3. Every fully invariant submodule of a $F I-t$-semisimple module is $F I-t$-semisimple.

Proof. Let N be a fully invariant submodule of a $F I-t$-semisimple R module M. To prove N is $F I-t$-semisimple, let W be fully invariant submodule of N. Hence W is a fully invariant submodule of M. It follows that there exists
$K \leq{ }^{\oplus} M$ and $K \leq_{\text {tes }} W$, since M is $F I-t$-semisimple. Hence $M=K \oplus C$ for some $C \leq M$ and so that $N=K \oplus(C \bigcap N)$, thus $K \leq{ }^{\oplus} N$ and so that N is $F I-t$-semisimple.

Proposition 3.4. Let $M=M_{1} \oplus M_{2}$. If M_{1} and M_{2} are $F I$ - t-semisimple, then M is a $F I-t$-semisimple. The converse holds, if M_{1} and M_{2} are fully invariant submodules.

Proof. \Rightarrow Let N be a fully submodule of M. Then $N=N_{1} \oplus N_{2}$, where N_{1} is fully invariant in M_{1} and N_{2} is fully invariant in M_{2} by Lemma(1. 5). Hence, there exist $K_{1} \leq^{\oplus} M_{1}$ and $K_{2} \leq^{\oplus} M_{2}$ such that $K_{1} \leq_{\text {tes }} N_{1}, K_{2} \leq_{\text {tes }} N_{2}$. Hence $K=K_{1} \oplus K_{2} \leq^{\oplus} M$ and $K=K_{1} \oplus K_{2} \leq_{\text {tes }} N_{1} \oplus N_{2}=N$. \Leftarrow It is clear by Proposition (3. 3).

To prove our next result, we need the following lemma.
Lemma 3.5. Let $K \leq N \leq M$ such that $N \leq{ }^{\oplus} M$. If K is a fully invariant submodule in M, then K is a fully invariant in N.

Proof. Since $N \leq{ }^{\oplus} M, N \oplus L=M$ for some $L \leq M$. Let $\vartheta: N \mapsto N$ be any R-homomorphism. ϑ can be extended to homomorphism $h: M \mapsto M$ where $h(x)=(\vartheta(x)$ if $x \in$ N0otherwise $)$. Then $h(K) \leq K$. But $K \leq N$, so $h(K)=\vartheta(K)$ and hence $\vartheta(K) \leq K$; that K is a fully invariant submodule of N.

Let (*) means the following: For an R-module M, the complement of $Z_{2}(M)$ is stable in M. An R-module M is called self-projective if M is M-projective; equivalently for every submodule N of M and for every homomorphism $\theta: M \mapsto$ $M / N, \theta$ can be lifted by a homomorphism $\psi: M \mapsto N$ such that $\phi \circ \psi=\theta$, where ϕ is the natural projection from NintoM/N[13].

Theorem 3.6. Consider the following statements for an R-module M :
(1) M is an $F I-t$-semisimple module;
(2) $M / Z_{2}(M)$ is a $F I$-semisimple module;
(3) $M=Z_{2}(M) \oplus M^{\prime}$, where M^{\prime} is nonsingular, $F I$-semisimple and M^{\prime} is stable in M;
(4) Every nonsingular FI-submodule of M is a direct summand;
(5) Every FI-submodule of M which contains $Z_{2}(M)$ is direct summand of M.

Then $(3) \Rightarrow(5) \Rightarrow(2)$ and $(3) \Rightarrow(1) \Rightarrow(4) .(4) \Rightarrow(3)$ if condition $(*)$ hold. $(2) \Rightarrow$ (1) if M is self- projective. Thus all statements from (1) to (5) are equivalent if M satisfies ($*$) and M is self-projective.

Proof. (3) \Rightarrow (5) Let N be a fully invariant submodule of $M, N \supseteq Z_{2}(M)$. Since $M=Z_{2}(M) \oplus M^{\prime}$ where M^{\prime} is $F I$-semisimple nonsingular and stable in
M.

Then $N=Z_{2}(M) \oplus(M)^{\prime} \bigcap N$ by modular law. As N and M^{\prime} are fully invariant in M, so $N \bigcap M^{\prime}$ is fully invariant in M. Hence $\left(N \bigcap M^{\prime}\right)$ is fully invariant in M^{\prime} by Lemma (3. 5). As M^{\prime} is $F I$-semisimple, $\left(N \cap M^{\prime}\right) \leq{ }^{\oplus} M^{\prime}$.

It follows that $M^{\prime}=\left(N \bigcap M^{\prime}\right) \oplus W$, for some $W \leq M^{\prime}$ and so that $M=$ $Z_{2}(M) \oplus\left[\left(N \bigcap M^{\prime}\right) \oplus W\right]=\left[Z_{2}(M) \oplus\left(N \bigcap M^{\prime}\right)\right] \oplus W=N \oplus W$. Therefore $N \leq{ }^{\oplus} M$.
$(5) \Rightarrow(2)$ Let $N /\left(Z_{2}(M)\right)$ be a fully invariant submodule of $M /\left(Z_{2}(M)\right)$. Since $Z_{2}(M)$ is fully invariant in M, then N is fully invariant in M by Proposition (1. 7). Also $N \oplus Z_{2}(M)$, so by condition (5), $N \leq{ }^{\oplus} M$. Thus $N \oplus$ $K=M$ for some $K \leq M$. it follows that $M /\left(Z_{2}(M)\right) N /\left(Z_{2}(M)\right) \oplus(K+$ $\left.Z_{2}(M)\right) /\left(Z_{2}(M)\right)$ So that $N /\left(Z_{2}(M)\right) \leq^{\oplus} M /\left(Z_{2}(M)\right)$ and so $M /\left(Z_{2}(M)\right)$ is a $F I$-semisimple.
$(3) \Rightarrow(1)$ By hypothesis, $M=Z_{2}(M) \oplus M^{\prime}$, where M^{\prime} is nonsingular $F I$ semisimple and M^{\prime} is stable in M. Let N be a fully invariant submodule of M. It follows that $\left(N \cap M^{\prime}\right) \leq \leq^{\oplus} M$. On the other hand, $N /\left(\left(N \bigcap M^{\prime}\right)\right) \cong((N+$ $\left.\left.M^{\prime}\right)\right) / M^{\prime} \leq M / M^{\prime}$ which is Z_{2}-torsion, hence, $N /\left(\left(N \cap M^{\prime}\right)\right)$ is Z_{2}-torsion and so that $\left(N \bigcap M^{\prime}\right) \leq_{\text {tes }} N$ by Proposition (1. 1). Thus $\left(N \cap M^{\prime}\right) \leq^{\oplus} M$ and $\left(N \cap M^{\prime}\right) \leq_{\text {tes }} N$ which implies that M is $F I-t$-semisimple.
$(1) \Rightarrow(4)$ Let N be a nonsingular fully invariant submodule of M. By condition (1) there exists $K \leq{ }^{\oplus} M$ such that $K \leq_{\text {tes }} N$. As N is nonsingular, $K \leq_{\text {ess }} N$. But $K \leq{ }^{\oplus} M$, implies K is closed in M, hence $K=N$. Thus $N \leq{ }^{\oplus} M$.
(4) $\Rightarrow(3)$ Let M^{\prime} be a complement of $Z_{2}(M)$. Hence $Z_{2}(M) \oplus M^{\prime} \leq_{\text {ess }} M$, implies $M^{\prime} \leq M$ by proposition (1. 1). Hence M / M^{\prime} is Z_{2}-torsion. We claim that M^{\prime} is nonsingular. To explain our assertion, suppose $x \in Z\left(M^{\prime}\right)$, sox \in $M^{\prime} \oplus M$ and $\operatorname{ann}(x) \leq_{\text {ess }} R$. Hence $\operatorname{ann}(x) \leq_{t e s} R$ and this implies $x \in Z_{2}(M)$. Thus $x \in Z_{2}(M) \bigcap=M^{\prime}=(0)$, thus $x=0$ and M^{\prime} is a nonsingular. By condition $(*), M^{\prime}$ is stable, hence $M^{\prime} \leq{ }^{\oplus} M$ by condition (4). Thus $M=M^{\prime} \oplus L$, for some $L \leq M$ and so $Z_{2}(M)=Z_{2}\left(M^{\prime}\right) \oplus Z_{2}(L)$. But $Z_{2}\left(M^{\prime}\right)=0$ and $L \cong$ M / M^{\prime} is Z_{2}-torsion, so $Z_{2}(L)=L$. Hence $Z_{2}(M)=L$. Thus $M=M^{\prime} \oplus Z_{2}(M)$ such that M^{\prime} is nonsingular and stable. To prove M^{\prime} is $F I$-semisimple, let N be a fully invariant submodule of M^{\prime}. As M^{\prime} is fully unvariant in M, so N is fully invariant in M, and since M^{\prime} is nonsingular, implies N is nonsingular. Thus N is nonsingular fully invariant in M. Hence by condition (4), $N \leq{ }^{\oplus} M$, and so $N \oplus W=M$, for some $W \leq M$. Then $M^{\prime}=(N \oplus W) \bigcap M^{\prime}=N \oplus\left(W \bigcap M^{\prime}\right)$ by modular law. Thus $N \leq{ }^{\oplus} M^{\prime}$. Thus M^{\prime} is a $F I$-semisimple module.
$(2) \Rightarrow(1)$ Let N be a fully invariant submodule of M. Then $N+Z_{2}(M)$ is fully invariant submodule of M. Since M is self-projective, $\left.N+Z_{2}(M)\right) /\left(Z_{2}(M)\right)$
is a fully invariant submodule of $(M) /\left(Z_{2}(M)\right)$. Hence,$\left(N+Z_{2}(M)\right) /\left(Z_{2}(M)\right) \leq{ }^{\oplus}$ $(M) /\left(Z_{2}(M)\right)$ because $(M) /\left(Z_{2}(M)\right)$ is $F I$-semisimple. Hence $(M) /\left(Z_{2}(M)\right)=$ $\left(N+Z_{2}(M)\right) /\left(Z_{2}(M)\right) \oplus(W) /\left(Z_{2}(M)\right)$ for some $(W) /\left(Z_{2}(M)\right) \leq(M) /\left(Z_{2}(M)\right)$, and this implies $\left(N+Z_{2}(M)\right) \oplus W=M$. But $Z_{2}(M) \leq W$ so that $N \oplus W=M$. Thus $N \leq \oplus$ and M is $F I$-semisimple and hence M is FIt-semisimple.

Recall that "an R-module M is called $F I-t$-extending if every fully invariant t-closed submodule of M is a direct summand", see [6].

Proposition 3.7. Let M be an R-module such that condition (*) hold. If M is a $F I$ - t-semisimple, then M is $F I-t$-extending.

Proof. By Theorem (3. 6) $(1 \Rightarrow 4 \Rightarrow 3 \Rightarrow 5)$ for each fully invariant submodule N such that $N \supseteq Z_{2}(M), N \leq{ }^{\oplus} M$ and hence for each fully invariant submodule N with that $N \supseteq Z_{2}(M)$, imply $N \leq_{\text {ess }} N \leq{ }^{\oplus} M$. Thus M is $F I-t$-extending by [6, Theorem 2. $2(6) \Rightarrow(1)]$.

Theorem 3.8. Let M be an R-module such that complement of a fully invariant submodule is stable. Then M is an FI-t-semisimple if and only if M / C is an $F I$-semisimple, for each t-closed fully invariant submodule of M, and the converse hold if M is self- projective.

Proof. \Rightarrow By Proposition (3. 7), M is $F I-t$-extending. Hence, any fully invariant t-closed submodule, $C \leq{ }^{\oplus} M$ by Definition. Thus $C \oplus C^{\prime}=M$ for some $C^{\prime} \leq M$. By hypothesis C^{\prime} is a $F I$-submodule of M. Hence C^{\prime} is a $F I-t$-semisimple by Proposition (2. 10). But $C^{\prime} \propto M / C$ is a $F I$-semisimple.
$\Leftarrow Z_{2}(M)$ is $F I-t$-closed submodule. Hence by hypothesis, $M /\left(Z_{2}(M)\right)$ is $F I$-semisimple. Thus M is $F I-t$-semisimple by Theorem (2. 6) $2 \Rightarrow 1$.

Proposition 3.9. Let M be an R-module such that complement of any fully invariant submodule is fully invariant. Then M is a $F I-t$-semisimple if and only if $N+Z_{2}(M)$ is closed, for each fully invariant submodule N of M.

Proof. \Rightarrow By Theorem (3. 6) $1 \Rightarrow 5$, for each fully invariant submodule N of M such that $N \supseteq Z_{2}(M)$, N is a direct summand. But $N+Z_{2}(M) \supset Z_{2}(M)$ and it is fully invariant submodule of M, so that $N+Z_{2}(M)$ is a direct summand and hence $N+Z_{2}(M)$ is a closed submodule of M.
\Leftarrow To prove M is $F I-t$-semisimple. Let K be a nonsingular fully invariant submodule of M. Assume L is a complement of K, then by hypothesis, L is fully invariant submodule of M. Also $K \oplus L \leq_{\text {ess }} M$, and $K \oplus L$ is a fully invariant submodule of M. It follows that $K \oplus L)+Z_{2}(M) \leq_{\text {ess }} M$. But $(K \oplus L)+Z_{2}(M)$ is fully invariant submodule containing $Z_{2}(M)$, so that $(K \oplus L)+Z_{2}(M)$ is closed by hypothesis. Thus $(K \oplus L)+Z_{2} M=M$ and so $K+\left(L+Z_{2}(M)\right)=M$ is closed by hypothesis. Thus $(K \oplus L)+Z_{2} M=M$ and
so $K+\left(L+Z_{2}(M)\right)=M$. But we can show that. $K \bigcap\left(L+Z_{2}(M)\right)=0$ as follows if $0 \neq x \in K \bigcap\left(L+Z_{2}(M)\right)$, then $x=l+y, l \in L, y \in Z_{2}(M)$. Since K is nonsingular, $\operatorname{ann}(x) \leq \mathcal{F}_{\text {ess }} R$. But $x-l=y, \operatorname{soann}(x-l)=\operatorname{ann}(y) \leq_{\text {ess }} R$. It follows that $\operatorname{ann}(x) \bigcap \operatorname{ann}(l) \leq_{\text {ess }} R$, which implies $\operatorname{ann}(x) \leq_{\text {ess }} R$, that is a contradiction Thus $\left.K \bigcap(L+Z)_{2}(M)\right)=0$, and $K \oplus\left(L+Z_{2}(M)\right)=M$. that is $K \leq{ }^{\oplus} M$ and hence M is $F I-t$-semisimple by Theorem (3.6)4 $\Rightarrow(3) \Rightarrow(1)$.

Proposition 3.10. Let M be an R-module such that condition (*) hold. Then M is $F I$ - tsemisimple if and only if M has no proper nonzero fully invariant submodule N containing $Z_{2}(M)$ with $N \leq_{\text {ess }} M$.

Proof. \Rightarrow By Theorem (3.6) $1 \Rightarrow 5$, since M is $F I-t$-semisimple, implies for is fully invariant submodule N of M containing $Z_{2}(M), N \leq{ }^{\oplus} M$. Hence $N \leq \neq$ ess M for each $\left(N \supseteq Z_{2}(M), N\right.$ is fully invariant).
$\Leftarrow L e t M^{\prime}$ be a complement of $Z_{2}(M)$, so that $M^{\prime} \oplus Z_{2}(M) \leq_{\text {ess }} M$. But by hypothesis, M^{\prime} is a fully invariant submodule of M and also $M^{\prime} \oplus Z_{2}(M)$ is a fully invariant submodule of M. Thus $M^{\prime} \oplus Z_{2}(M)=M$. Hence, $M^{\prime} \cong M /\left(Z_{2}(M)\right)$ is nonsingular and stable. Let N be a fully invariant submodule of M^{\prime}. Since M^{\prime} is a fully invariant in M, then N is a fully invariant submodule in M. Hence $N+Z_{2}(M)$ is fully invariant in M. Let K be a complement of $N+Z_{2}(M)$. So that $\left(N+Z_{2}(M)\right) \oplus K \leq_{\text {ess }} M$. But by hypothesis $\left(N+Z_{2}(M)\right) \oplus K=M$, then $N+\left(Z_{2}(M)+K\right)=M$. We can show that $N \bigcap\left(Z_{2}(M)+K\right)=(0)$, as follows. Let $x \in N \bigcap\left(Z_{2}(M)+K\right)$. Then $x=a+b$ for some $a \in Z_{2}(M), b \in K$. Then $x-a=b \in\left(N+Z_{2}(M)\right) \bigcap K=0$, hence $x-a=b=0$, and so that $x=a \in\left(N \bigcap Z_{2}(M)=Z_{2}(N)=0\right.$. Thus $x=0$ and $N \bigcap\left(Z_{2}(M)+K\right)=0$, hence $N \oplus\left(Z_{2}(M)+K\right)=M$, that is $N \leq{ }^{\oplus} M$. Now $M^{\prime}=\left[N \oplus\left(Z_{2}(M)+\right.\right.$ $K)] \cap M^{\prime}=N \oplus\left[\left(Z_{2}(M)+K\right) \bigcap M^{\prime}\right]$. Thus $N \leq{ }^{\oplus} M^{\prime}$. Hence M^{\prime} is $F I$ semisimple which implies that $M /\left(Z_{2}(M)\right)$ is $F I$-semisimple. Thus by Theorem 3. $7((3) \Rightarrow(1)) M$ is $F I-t$-semisimple.

Recall that if N, K are submodules of $M . K$ is called a supplement of N if K is minimal with respect to the property $M=K+N$. Equivalently K is a supplement of N if $M=K+N$ and $K \bigcap N \ll K$
(the notion \ll denotes a small submodule)[8]. K is called a weak supplement of N if $M=K+N$ and $K \bigcap N \ll M$, [8].

Proposition 3.11. (3. 11): Let M be an R-module such that condition
 nonsingular fully invariant submodule of M has a weak supplement.

Proof. Let N be nonsingular fully invariant submodule of M. By hypothesis there exists a submodule K of M such that $M=K+N$ and $K \bigcap N \ll M$. Clearly $M=(K+\operatorname{Rad}(M))+N$. Now we show that $(K+\operatorname{Rad}(M)) \cap N=0$.

Assume that $x \in(K+\operatorname{Rad}(M)) \bigcap N$. Then $x=y+z$ where $y \in K$ and $z \in \operatorname{Rad}(M)$. Since $\operatorname{Rad}(M)$ is Z_{2}-torsion there exists a t-essential right ideal I of R such that $(x-y) I=0$. Thus $x I=y I \leq K \bigcap N \leq \operatorname{Rad}(M) \leq Z_{2}(M)$. So $\left(x+Z_{2}(M)\right) I=Z_{2}(M)$ and $x+Z_{2}(M) \in Z_{2}\left(M /\left(Z_{2}(M)\right)\right)=0$. Hence $x \in Z_{2}(M)$. Thus $x \in Z_{2}(M) \bigcap N=Z_{2}(N)=0$ and this implies that N is direct summand. Hence by Theorem 3. $6(4 \Rightarrow 3 \Rightarrow 1) M$ is $F I-t$-semisimple.

Proposition 3.12. The following assertions are equivalent for an module M which satisfies, that for any $B \leq M$, a complement of a fully invariant submodule A of B is a fully invariant in B.
(1) M is $F I$-t-semisimple
(2) For each fully invariant submodule N of M, there exists a decomposition $M=K \oplus L$ such that $K \leq L$ and L is stable in M and $N \bigcap L \leq Z_{2}(L)$.
(3) For each fully invariant submodule N of $M, N=K \oplus K^{\prime}$ such that K is a direct summand stable in M and K^{\prime} is Z_{2}-torsion.

Proof. (1) $\Rightarrow(2)$ Let N be a fully invariant submodule of M. Let K be a complement of $Z_{2}(N)$ in N. Then K is a fully invariant in N and $K \oplus$ $Z_{2}(N) \leq_{e s s} N$. By proposition (3. 3) and proposition (3. 10), $K \oplus Z_{2}(N)=N$. Let C be a complement of $K \oplus Z_{2}(M)$, so C is a fully invariant submodule of M and $\left(K \oplus Z_{2}(M)\right) \oplus C \leq_{\text {ess }} M$. But M is $F I-t$-semisimple, hence by proposition (3. 10), $\left.K \oplus Z_{2}(M)\right) \oplus C=M$. Put $Z_{2}(M) C=L$, hence is a fully invariant in M. Moreover, $N=(K \oplus L) \bigcap N=K \oplus(N \bigcap L)$. But $K \oplus Z_{2}(N)=N$ implies $N / K \cong Z_{2}(N)$ which is Z_{2}-torsion. On other hand, $N / K \cong N \bigcap L$, so that $N \bigcap L$ is Z_{2}-torsion. Then $N \bigcap L=Z_{2}(N \bigcap L) \leq Z_{2}(L)$. Thus $M=K \oplus L$ is the desired decomposition.
$(2) \Rightarrow(3)$ Let N be a fully invariant submodule of M. By condition (2), $M=K \oplus L$ where $K \leq N$ and L is stable in M and $N \bigcap L \subseteq Z_{2}(L)$. Hence $N=(K \oplus L) \bigcap N=K \oplus(L \bigcap N)$. Put $K^{\prime}=N \bigcap L$, so that $N=K \oplus K^{\prime}$, and $N / K \cong K^{\prime}=N \bigcap L$ which is Z_{2}-torsion. Also K stable in M, since K is a complement of L in M.
$(3) \Rightarrow(1) \operatorname{Let} N$ be a fully invariant submodule of M. By condition (3), $N=K \oplus K^{\prime}$, where $K \leq{ }^{\oplus} M$ and stable in M and K^{\prime} is Z_{2}-torsion. Now $K \leq N$ and $N / K \cong K^{\prime}$ which is Z_{2}-torsion. Hence $K \leq_{t e s} N$ and so that M is $F I-t$-semisimple.

An R-module M is said to be t-Baer, if $t_{M}(I)=m \in M \mid I m \leq Z_{2}(M)$ is a direct summand of M for each left ideal I of $\operatorname{End}(M)$. An R - module M is $F I-t$-Baer if $t_{M}(I)$ is a direct summand of M for any two-sided ideal I of $\operatorname{End}(M) . t_{S}(N)=\varphi \in S: \varphi N \leq Z_{2}(M)[6]$.

Proposition 3.13. Let M be an R-module such that complement of
$Z_{2}(M)$ is stable. Then the following statements are equivalent:
(1) M is $F I-t$-semisimple.
(2) M is $F I$ - t-extending and $N=t_{M} t_{S}(N)$ for every fully invariant submodule N of M contain $Z_{2}(M)$.
(3) M is $F I-t$-Baer and $N=t_{M} t_{S}(N)$ for every fully invariant submodule N of M contain $Z_{2}(M)$.

Proof. (1) $\Rightarrow(2) M$ is $F I-t$-semisimple implies M is $F I-t$-extending by Proposition (3. 7). Now, let N be a fully invariant submodule of M and $N \supseteq Z_{2}(M)$. Hence $N \leq{ }^{\oplus} M$ by Theorem 3. $6(4 \Rightarrow 3 \Rightarrow 5)$. Hence, $M=N \oplus N^{\prime}$ for some $N^{\prime} \leq M$. It is obvious, that $N \leq t_{M} t_{S}(N)$. Let Π^{\prime} be the canonical projection on N^{\prime}, that is $\pi^{\prime}: N \oplus N^{\prime} \mapsto N^{\prime} \leq N \oplus N^{\prime}$, so $\pi^{\prime} \in S$, $\pi^{\prime}(N)=0 \leq Z_{2}(M)$, so $\pi^{\prime} \int_{S}(N), m \in t_{M} t_{S}(N), \pi^{\prime}(m) \in Z_{2}(M) \leq N$. Hence $\pi^{\prime}(m)=0$, and then $m \in N$.
$(2) \Rightarrow(3)$ It is obvious, since every $F I-t$-extending is $F I-t$ - Baer [6, Thorem 3. 9].
$(3) \Rightarrow(1)$ Since M is $F I-t$-Baer, $Z_{2}(M)=t_{M}(S)$ is a direct summand and $M=Z_{2}(M) \oplus M^{\prime}$, where M^{\prime} is nonsingular. Hence M^{\prime} is a complement of $Z_{2}(M)$, so it is stable.

Now, let N^{\prime} be a fully invariant submodule of M^{\prime}, so that N^{\prime} is a fully invariant submodule of M. Put $N=Z_{2}(M) \oplus N^{\prime}$. Then N is a fully invariant submodule of M containing $Z_{2}(M)$. On the other hand, M is $F I-t$-Baer and $t_{(N)}$ is a two sided ideal of S, hence $t_{M} t_{S}(N) \leq{ }^{\oplus} M$. Thus $N \leq{ }^{\oplus} M$. It follows that $M=N \oplus W$ for some $W \leq M$, hence $M=Z_{2}(M) \oplus N^{\prime} \oplus W$. But by hypothesis complement of $Z_{2}(M)$ is stable so by [1], $N^{\prime} \oplus W=M^{\prime}$ and hence $N^{\prime} \leq{ }^{\oplus} M^{\prime}$, and this implies M^{\prime} is $F I$-semisimple. Therefore M is $F I-t-$ semisimple by Theorem $3.6(3 \Rightarrow 1)$.

4. Strongly $F I-t$-Semisimple

Definition 4.1. An R-module M is called strongly $F I$-t-semisimple if for each fully invariant submodule N of M, there exists a fully invariant direct summand K such that $K \leq_{\text {tes }} N$.

Remarks and Examples (4. 2). (1) Every strongly $F I-t$-semisimple is $F I-t$-semisimple and every strongly t-semisimple is strongly $F I-t$-semisimple.
(2) Consider Q as Z-module is strongly $F I$-t-semisimple, since Q has only two fully invariant submodules (0), Q. But Q is not strongly t-semisimple.
(3) Every $F I$-semisimple module M is strongly $F I-t$-semisimple.

Proof. Let N be a $F I$-submodule of M. Then $N \leq{ }^{\oplus} M$, since M is a $F I$-semisimple. But $N \leq_{t e s} N$, hence M is strongly $F I-t$-semisimple.

Proposition 4.3. Let M be an R-module with property, complement of any submodule of M is stable. The following statements are equivalent:
(1) M is strongly FI-t-semisimple;
(2) M is $F I-t$-semisimple;

Proof. (1) \Rightarrow (2)It is clear.
$(2) \Rightarrow(1)$ Let N be a fully invariant submodule of M. Since M is $F I-t$ semisimple, there exists $K \leq{ }^{\oplus} M$ and $K \leq_{t e s} N$. Hence $M=K \oplus W$ for some $W \leq M$. Hence K is a complement of W. But by hypothesis K is stable. Thus M is strongly $F I-t$-semisimple.

Proposition 4.4. A fully invariant submodule N of a strongly $F I-t$ semisimple module M is strongly $F I-t$-semisimple.

Proof. Let W be a fully invariant submodule of N. Then Wis a fully invariant submodule of M by Proposition (1.3). Since M is strongly $F I-t$ semisimple, there exists $K \leq{ }^{\oplus} M, K$ is a fully invariant submodule of M and $K \leq_{\text {tes }} W$. But $K \leq{ }^{\oplus} M$ implies $M=K \oplus A$ for some $A \leq M$ and this implies $N=K \oplus(A \bigcap N)$; that is $K \leq^{\oplus} N$. Beside this by Lemma (3. 5), K is a fully invariant submodule of N. Thus N is strongly $F I-t$-semisimple.

Remark 4.5. The condition a fully invariant submodule of M cannot be dropped from Proposition 4. 4 as the following example shows. Q as Z module is strongly $F I-t$-semisimple, and $Z<Q$. But Z is not strongly $F I-t$-semisimple and, Z is not fully invariant submodule of Q.

We can set the following corollaries.
Corollary 4.6. For any strongly $F I-t$-semisimple module $M, Z_{2}(M)$ is strongly FI-t-semisimple.

Proof. It follows directly by Proposition 4.4.
Proposition 4.7. Let M be an R-module and satisfies (*). If M is strongly $F I$-t-semisimple, then $M /\left(Z_{2}(M)\right)$ is $F I$-semisimple, and hence it is strongly FI - t-semisimple. The converse is hold if M is self-projective.

Proof. \Rightarrow As M is strongly $F I-t$-semisimple, M is $F I-t$-semisimple and hence by Theorem 3. $6(1 \Rightarrow 2), M /\left(Z_{2}(M)\right)$ is $F I$-semisimple. \Leftarrow If $M /\left(Z_{2}(M)\right)$ is a $F I$-semisimple, then by the proof of Theorem $3.6(2 \Rightarrow 1) M$ is a $F I$-semisimple module and hence M is strongly $F I-t$-semisimple.

Corollary 4.8. Let M be a self-projective and satisfies (*). Then the statements are equivalent:
(1) M is strongly $F I-t$-semisimple;
(2) $M /\left(Z_{2}(M)\right)$ is $F I$-semisimple;
(3) M is $F I-t$-semisimple.

Proof. (1) \Leftrightarrow (2) It follows by proposition (4. 7).
$(2) \Leftrightarrow(3)$ It follows by Theorem 3. $6(2 \Leftrightarrow 1)$.
The following result follows by combining Proposition (4. 3) and Proposition (3.10).

Proposition 4.9. Let M be an R-module such that complement of any submodule of M is stable. Then the following conditions are equivalent:
(1) M is strongly $F I-t$-semisimple;
(2) M is $F I-t$-semisimple;
(3) M has no proper nonzero fully invariant submodule N containg $Z_{2}(M)$ and $N \leq_{\text {ess }} M$.

Lemma 4.10. Let $M=M_{1} \oplus M_{2}$ where M_{1} and M_{2} be R-modules, such that M_{1} and M_{2} are fully invariant in M. Then M is strongly $F I-t$-semisimple if and only if M_{1} and M_{2} are strongly FI-t-semisimple.

Proof. \Rightarrow It follows by Proposition 4. 4.
\Leftarrow Let N be a fully invariant submodule of M. Then by Proposition 1. 5, $N=\left(N \bigcap M_{1}\right) \oplus\left(N \bigcap M_{2}\right)$ and $N \bigcap M_{1}, N \bigcap M_{2}$ are fully invariant submodules of M_{1} and M_{2} respectively. Put $N_{1}=N \bigcap M_{1}, N_{2}=N \bigcap M_{2}$. As M_{1} and M_{2} are strongly FI-t-semisimple, there exists $K_{1} \leq{ }^{\oplus} M_{1}, K_{1}$ is a fully invariant in M_{1} with $K_{1} \leq_{\text {tes }} N_{1}$ and there exists $K_{2} \leq{ }^{\oplus} M_{2}, K_{2}$ is a fully invariant in M_{2} with $K_{2} \leq_{\text {tes }} N_{2}$. But $K_{1} \leq{ }^{\oplus} M_{1}, K_{2} \leq{ }^{\oplus} M_{2}$ implies $K=K_{1} \oplus K_{2} \leq{ }^{\oplus} M$. By Proposition 1.6, $\left(M_{1}, M_{2}\right)=0, \operatorname{Hom}\left(M_{2}, M_{1}\right)=0$,

$$
\begin{aligned}
& \operatorname{End}\left(M_{1}, M_{2}\right) \cong\left(\begin{array}{cc}
\operatorname{End} M_{1} & \operatorname{Hom}\left(M_{2}, M_{1}\right) \\
\operatorname{Hom}\left(M_{1}, M_{2}\right) & \operatorname{End} M_{2}
\end{array}\right) \\
&=\left(\begin{array}{cc}
\operatorname{End} M_{1} & \alpha_{1} \\
\alpha_{2} & \operatorname{EndM} M_{2}
\end{array}\right) .
\end{aligned}
$$

Therefore

$$
\theta=\left(\begin{array}{cc}
\alpha_{1} & 0 \\
0 & \alpha_{2}
\end{array}\right)
$$

$\alpha_{1} \in E n d M_{1}, \alpha_{2} \in E n d M_{2}$. It follows that $\theta\left(K_{1} \oplus K_{2}\right)=\alpha_{1}\left(K_{1}\right) \oplus \alpha_{2}\left(K_{2}\right) \leq$ $K_{1} \oplus K_{2}=K$. Thus K is fully invariant in M. Also $K_{1} \leq_{\text {tes }} N_{1}$ and $K_{2} \leq_{\text {tes }} N_{2}$ imply $K \leq_{\text {tes }} N$ by Proposition 1. 2(2). Thus M is strongly $F I-t$-semisimple.

Lemma 4.11. Let $M=M_{1} \oplus M_{2}$ such that ann $M_{1}+a n n M_{2}=R$. Then:
(1) $\operatorname{Hom}\left(M_{1}, M_{2}\right)=0$ and $\operatorname{Hom}\left(M_{2}, M_{1}\right)=0$.
(2) M_{1} and M_{2} are fully invariant in M.

Proof. (1) Since $R=$ ann $M_{1}+$ ann M_{2}, then $M_{1}=M_{1}\left(a n n M_{1}\right)+$ $M_{1}\left(a n n M_{2}\right), M_{2}=M_{2}\left(\right.$ ann $\left.M_{1}\right)+M_{1}\left(\right.$ ann M_{2}. Put ann $M_{1}=A_{1}$, ann $M_{2}=A_{2}$, therefore $M_{1}=M_{1} A_{2}$, and $M_{2}=M_{2} A_{1}$. Then for each $\varphi \in \operatorname{Hom}\left(M_{1}, M_{2}\right)$, $\varphi\left(M_{1}\right)=\varphi\left(M_{1}, A_{2}\right)=\varphi\left(M_{1}\right) A_{2} \leq M_{2} A_{2}=0$, hence $\varphi=0$. Thus $\operatorname{Hom}\left(M_{1}\right.$, $\left.M_{2}\right)=0$. Similarly, $\operatorname{Hom}\left(M_{2}, M_{1}\right)=0$.
(2) It follows directly by Proposition (1. 6).

Proposition 4.12. Let $M=M_{1} \oplus M_{2}$ where M_{1} and M_{2} be R-modules with $M_{1}+$ ann $M_{2}=R$. Then M is strongly $F I-t$-semisimple if and only if M_{1} and M_{2} are strongly $F I-t$-semisimple.

Proof. \Rightarrow It follows by Proposition (4. 4).
Proposition 4.13. If M is an R-module and $M=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are fully invariant submodules of M. Then M is strongly $F I-t$-semisimple if and only if M_{1} and M_{2} are strongly FI-t-semisimple.

Proof. \Rightarrow By Lemma 4.11 (2) M_{1} and M_{2} are fully invariant submodule of M and so the result follows by Proposition 4.4.
\Leftarrow It follows by Lemma 4.11 (1).

References

[1] M.S. Abas, On Fully Stable Modules, Ph.D. Thesis, College of Science, University of Baghdad, 1991.
[2] F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, Second Edition, Graduate Texts in Math., Volume 13, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
[3] Sh. Asgari, A. Haghany, t-Extending modules and t-Baer modules, Comm. Algebra, 39 (2011), 1605-1623.
[4] Sh. Asgari, A. Haghany, Y. Tolooei, T-semisimple modules and T-semisimple rings comm, Algebra, 41, No. 5 (2013), 1882-1902.
[5] Sh. Asgri, A. Haghany, Densely co-Hopfian modules, Journal of Algebra and its Aplications, 9 (2010), 989-1000.
[6] Sh. Asgari, A. Haghany, Generalizations of t-extending modules relative to fully invariant submodules, J. Korean Math. Soc., 49 (2012), 503-514.
[7] G. F. Birkenmeier, J.K. Park, S.T. Rizvi, Modules with fully invariant submodules essential in fully invariant summands, Comm. Algebra, 30, No. 4 (2002), 1833-1852.
[8] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.
[9] N.V. Dung, D.V. Huynh, P.F Smith, R. Wisbauer, Extending Modules, Pitman Research Notes in Mathematics, 313, Longman, Harlow, 1994.
[10] Z.A. El-Bast, P.F. Smith, Multiplication modules, Comm. Algebra, 16 (1988), 755-779.
[11] K.R. Goodearl, Ring Theory, Non Singular Rings and Modules, Marcel Dekker, Inc. New York-Basel, 1976.
[12] Kasch, Modules and Rings, Acad. Press, London, 1982.
[13] S.H. Mohamed, B.J. Muller, Continuous and Discrete Modules, Cambridge University Press, Cambridge, 1990.
[14] Patrick F. Smith, Fully invariant multiplication modules, Palestine Journal of Mathematics, 4 (2015), 462-470.

[^0]: Received: January 3, 2017
 Revised: April 3, 2017
 Published: July 14, 2017
 ${ }^{\S}$ Correspondence author
 (C) 2017 Academic Publications, Ltd. url: www.acadpubl.eu

