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1. Introduction

Through this paper R be a ring with unity and M is a right R-module. A
submodule A of an R-moduleM is said to be essential inM (denoted by A ≤ess

M), if A
⋂

W (0) for every non-zero submoduleW ofM . Equivalently A ≤ess M
if whenever A

⋂

W = 0, thenW = 0, see [12]. Recall that a submodule N of R-
moduleM is called closed (N ≤c M) if whenever N ≤ess W ≤M , thenN =W ,
see [10]. In other word, N ≤c M , if N has no proper essential extension in M ,
see [12]. The singular submodule of an R-module M denoted by Z(M) and
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defined by x : inM : ann(x)R ≤ess R where ann(x)R = r ∈ R : xr = 0. M is
called singular submodule if Z(M) =M and nonsingular if Z(M) = 0.

Let Z2(M) be the second singular (or Goldi torsion) of M which is defined
by Z(M/(Z(M))) = (Z2(M))/(Z(M)) where Z(M) is the singular submodule
ofM A moduleM is called Z2-torsion if Z2(M) =M and a ring R is called right
Z2-torsion if Z2(RR) = RR, see [11]. The concept of t-essential submodules is
introduced as generalization of essential submodules, see [5]. A submodule
N of M is said to be t-essential in M (denoted by (N ≤tes M) if for every
submodule B of M , N

⋂

B ≤ Z2(M) implies that B ≤ Z2(M). It is clear
that every essential submodule is t-essential, but not conversely. However, for
a nonsingular R-module M, the two concepts are coincide.

As a generalization of closed submodule Asgari and Haghany in [3] intro-
duced concept of t-closed. A submodule N of M is t-closed in M if N ≤tes

W ≤ M implies that N = W . Every t-close is closed, but not conversely and
they are equivalent in nonsingular modules.

A submodule N of M is called fully invariant if f(N) ≤ N for every R-
endomorphism f of M . Clearly 0 and M are fully invariant submodules of M ,
see [10]. M is called duo module if every submodule of M is fully invariant.
A submodule N of an R-module is called stable if for each homomorphism
f:N → M , f(N) ≤ N . A module is called fully stable if every submodule
of M is stable, [1]. Recall that an R-module M is multiplication if for each
submodule N of M , there exists ideal I of R such that N =MI. Equivalently
M is a multiplication R-module if for each submoduleN ofM N =M(N :R M),
where (N :M) = r ∈ R : rM ≤ N , see [10]. A moduleM is called semisimple if
every submodule is direct summand. It is known that a moduleM is semisimple
if every submodule N contains a direct summand K of M such that N ≤ess N .

This observation lead Asgari et al [4] to introduce the notion [3] of t-
semisimple modules as a generalization of semisimple modules. A module M is
t-semisimple if for every submodule N of M , there exists a direct summand K
such that K ≤tes N .

In this paper we present three generalizations of semisimple and t-semisimple
modules namely FI-semisimple, FI−t-semisimple and strongly FI−t-semisimple.

It is clear that the class of strongly t-semisimple modules contains the class
of t-semisimple.

This paper consists of four sections, in Section 2 we present the concept
namely FI-semisimple modules. Where anR -moduleM is called FI-semisimple
if for each fully invariant submodule N ofM , there exists K direct summand of
M such that K essential in N . Many properties about this concept, and many
connections between it and other related concepts are introduced.



FI-SEMISIMPLE, FI − t-SEMISIMPLE... 287

In Section 3 we study generalization of t-semisimple namely, FI−t-semisimple
module is introduced. An R-module M is called FI − t−semisimple if for each
fully invariant submodule N of M, there exists K ≤⊕ M such that K ≤tes N .
Also, many properties about this concept, are given. Section 4 we present an-
other generalization of t-semisimple namely strongly FI − t-semisimple. An
R-module M is called strongly FI − t-semisimple if for each fully invariant
submodule N of M , there exists a fully invariant direct summand K such that
K ≤tes N . Many properties about this concept are introduced, and many
connections between it and other related concepts are presented.

We quote the following for future use

Proposition 1.1 ([3]). The following statements are equivalent for a
submodule A of an R-module:

(1) A is t-essential in M ;

(2) (A+ Z2(M))/Z2(M) is essential in M/Z2(M);

(3) A+ Z2(M) is essential in M ;

(4) M/A is Z2-torsion.

Lemma 1.2 ([5]). Let Aλ be submodule of Mλ for all λ in a set Λ.

(1) If Λ is a finite and Aλ ≤tes Mλ, then
⋂

Λ | Aλ≤tes

⋂

Λ |Mλ for all λ ∈ Λ.

(2) ⊕ΛAλ ≤tes ⊕ΛMλ, if and only if Aλ ≤tes Mλ, for all λ ∈ Λ.

Lemma 1.3 ([14]). Let R be a ring and let L ≤ K be submodules of an
R-module M such that L is a fully invariant submodule of K and K is a fully
invariant submodule of M . Then L is a fully invariant submodule of M .

The following results are well known.

Proposition 1.4 ([7]). Any sum (or intersection) of fully invariant sub-
modules an R-module M is fully invariant submodules M .

Proposition 1.5 ([14]). If M = ⊕i ∈ Λ where Xi is an R-module, for
each i ∈ Λ and N is a fully invariant submodule of M , then N = ⊕i ∈ Λxi

⋂

N
and Xi

⋂

N is fully invariant submodule of Xi, for each i ∈ Λ.

Proposition 1.6 ([14]). Let R be any ring and let an R -module M =
K ⊕ K

′

be the direct sum of submodules K, K
′

Then K is a fully invariant
submodule of M if and only if Hom (K, K

′

) = 0.

Proposition 1.7 ([6]). Let M be an R-module and K ≤ L ≤ M if L/K
is a fully invariant submodule of M/K and K is a fully invariant submodule of
M , then L is a fully invariant in M .
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2. FI-Semisimple Modules

Definition 2.1. An R-module M is called FI-semisimple if for each
fully invariant submodule N of M , there exists direct summand K such that
K ≤ess N .

The following result is a characterization of FI-semisimple modules.

Proposition 2.2. An R-module M is FI-semisimple if and only if every
fully invariant submodule of M is a direct summand.

Proof. ⇒ Let N be a fully invariant submodule of M , so there exists
K ≤⊕ M such that K ≤ess N . But K ≤⊕ M implies K is closed in M , so it
has no proper essential extension in M . Thus K = N and so N ≤⊕ M .

⇐ Let N be a fully invariant submodule of M . By hypothesis N ≤⊕ M .
But N ≤ess N and N ≤⊕ M . Thus M is FI-semisimple.

Remarks and Examples 2.3 (1) It is clear that every semisimple module
is FI-semisimple, but the converse is not true in general, for example: The
Z-module Q has only two fully invariant submodules which are (0), Q. Hance
Q is FI-semisimple, but it is not semisimple.

(2) t-semisimple module does not implies FI-semisimple in general for ex-
ample Z12 asZ-module t-semisimple but it is not FI-semisimple. Also FI-
semisimple module does not implies t-semisimple, for example Q as Z-module
is FI-semisimple and it is not t-semisimple.

(3) If M is a duo module (hence if M is a multiplication module), then M
is a semisimple module if and only if M is FI-semisimple. In particular the
Z-modules Z, Z4, Z12 are not FI-semisimple. Also, for every commutative ring
R, R is semisimple if and only if R is FI-semisimple.

(4) A fully invariant submodule of FI-semisimple is FI-semisimple.

Proof. LetN be a fully invariant submodule ofM andM is a FI-semisimple.
Let U be a fully invariant submodule of N , hence U is a fully invariant in M
by proposition 1. 3. It follows that U ≤⊕ M . Thus U ⊕ U

′

= M for some
U

′

≤ M and so N = (U ⊕ U
′

)
⋂

N = U ⊕ (U
′ ⋂

N) by modular law. Then
U ≤⊕ N . Thus N is FI-semisimple by Proposition (2. 2). Z4 as Z4 -module is
not singular, but it is Z2-torsion, so it is strongly t-semisimple.

(5) Every FI-semisimple module M is FI-extending. Where M is called
FI-extending if every fully invariant submodule is essential in a direct sum-
mand.
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Proof. Let N be a fully invariant submodule ofM . AsM is FI-semisimple,
N ≤⊕ M . But N ≤ess N . So that M is FI-extending.

(6) If M and N are isomorphic R-modules, then M is FI-semisimple if and
only if N is FI-semisimple.

(7) If f :M 7→M
′

be an epimorophism and M
′

is FI-semisimple, then it is
not necessary that M is FI-semisimple. For example Π : Z 7→ Z/(6) ∼= Z6, Z6

is FI-semisimple, but Z is not.

Proposition 2.4. Let M be a FI-semisimple R-module and N is a fully
invariant submodule in M then M/N is a FI-semisimple module.

Proof. Let W/N be a fully invariant submodule of M/N . Since N is a
fully invariant submodule of M . Then W is fully invariant submodule of M by
Proposition (1. 7). But M is FI-semisimple, so W ≤⊕ M . Then W ⊕K =M
for some K ≤M . This impliesW/N⊕K+N/N =M/N . ThusW/N ≤⊕ M/N
and M/N is FI-semisimple.

Corollary 2.5. Let f : M 7→ M
′

be an R- epimorphism and Kerf is a
fully invariant submodule of M . If M is a FI-semisimple R-module, then M

′

is a FI-semisimple.

Proof. Since f :M 7→ M
′

epimorphism, M/Kerf ∼= M
′

. But M/Kerf is
a FI-semisimple module by proposition (2. 4), hence M

′

is FI-semisimple by
Remarks and Examples 2. 3(5).

Corollary 2.6. LetMbe a FI-semisimple R-module. ThenM/(Z2(M)) is
FI-semisimple and M = Z2(M)⊕M

′

where M
′

is nonsingular FI-semisimple.

Proof. As Z2(M) is a fully invariant submodule of M , M/(Z2(M)) is FI-
semisimple module by Proposition (2. 4). Also, Z2(M) is a fully invariant
submodule in MimpliesZ2(M) ≤⊕ M , by Proposition (2. 2). Thus M =
Z2(M) ⊕M

′

for some M
′

≤ M . But M
′ ∼= M/(Z2(M)), so M

′

is nonsingular
FI-semisimple.

Proposition 2.7. Let M = M1 ⊕M2, where M1,M2 ≤ M If M1and M2

are FI-semisimple, then M is FI-semisimple and converse hold if M1 and M2

are FI-submodules of M .

Proof. ⇒ Let N be a fully invariant submodule of M . Then

N = N
⋂

M = N
⋂

M1 ⊕N
⋂

M2

and N
⋂

M1, N
⋂

M2 are fully invariant submodules of M1 and M2 respec-
tively by Lemma 1.3. Put N1 = N

⋂

M1, N =2= N
⋂

M2. Hence N1 ≤ M1,
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N2 ≤ M2, since M1 and M2 are FI-semisimple modules. It follows that
N = N1 ⊕N2 ≤

⊕ M and so M is FI-semisimple.
⇐ Since M1 is a fully invariant submodule of M , and

M/M1 = (M1 ⊕M2)/M1
∼=M2.

Hence M2 is FI-semisimple, by Proposition (2. 4). Similarly, M1 is FI-
semisimple.

3. FI − t-Semisimple Modules

Definition 3.1. An R-module M is called FI-t-semisimple if for each
fully invariant submodule N of M , there exists K ≤⊕ M such that K ≤tes N .

Remarks and Examples 3.2. (1) It is clear that every t-semisimple
module is FI − t-semisimple, but the converse is not true , for Q as Z-module
is not t-semisimple and it is clear that it is FI − t-semisimple.

(2) It is clear that every FI-semisimple module is FI− t-semisimple, hence
each of the Z-module Q, Q ⊕ Z2, Z2 ⊕ Z6 is FI − t-semisimple, since each of
them is FI-semisimple module.

(3) The converse of part (2) is not true in general, for example, the Z12 is
a FI − t-semisimple (since it is t-semisimple) but it is not FI-semisimple, and
the Z-module Z is not FI − t-semisimple.

(4) Let M be a nonsingular R-module. Then M is FI-semisimple if and
only if M is FI − t-semisimple. In particular, Z as Z-module is not FI − t-
semisimple, and if R = Z[x], then RR is not FI − t-semisimple.

Proof. ⇒It is clear by part (2).
⇐ Let M be a FI − t-semisimple module and N be a fully invariant sub-

module of M , there exists K ≤⊕ M and K ≤tes N . But M is nonsingular
implies N is nonsingular and hence K ≤ess N . But K ≤⊕ M implies K is a
closed submodule ofM and so that K = N . It follows thatM is FI-semisimple
by Proposition 2.2.

Proposition 3.3. Every fully invariant submodule of a FI− t-semisimple
module is FI − t-semisimple.

Proof. Let N be a fully invariant submodule of a FI − t-semisimple R-
moduleM . To proveN is FI−t-semisimple, letW be fully invariant submodule
of N . Hence W is a fully invariant submodule of M . It follows that there exists
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K ≤⊕ M and K ≤tes W , since M is FI − t-semisimple. Hence M = K ⊕C for
some C ≤ M and so that N = K ⊕ (C

⋂

N), thus K ≤⊕ N and so that N is
FI − t-semisimple.

Proposition 3.4. LetM =M1⊕M2. IfM1 andM2 are FI−t-semisimple,
then M is a FI − t-semisimple. The converse holds, if M1 and M2 are fully
invariant submodules.

Proof. ⇒ Let N be a fully submodule of M . Then N = N1⊕N2, where N1

is fully invariant inM1 and N2 is fully invariant inM2 by Lemma(1. 5). Hence,
there exist K1 ≤⊕ M1 and K2 ≤⊕ M2 such that K1 ≤tes N1, K2 ≤tes N2.
Hence K = K1⊕K2 ≤

⊕ M and K = K1⊕K2 ≤tes N1⊕N2 = N . ⇐ It is clear
by Proposition (3. 3).

To prove our next result, we need the following lemma.

Lemma 3.5. Let K ≤ N ≤ M such that N ≤⊕ M . If K is a fully
invariant submodule in M , then K is a fully invariant in N .

Proof. Since N ≤⊕ M , N ⊕ L = M for some L ≤ M . Let ϑ : N 7→ N
be any R-homomorphism. ϑ can be extended to homomorphism h : M 7→ M
where h(x) = (ϑ(x)ifx ∈ N0otherwise). Then h(K) ≤ K. But K ≤ N , so
h(K) = ϑ(K) and hence ϑ(K) ≤ K; that K is a fully invariant submodule of
N .

Let (∗) means the following: For an R-moduleM , the complement of Z2(M)
is stable in M . An R-module M is called self-projective if M is M -projective;
equivalently for every submoduleN ofM and for every homomorphism θ :M 7→
M/N , θ can be lifted by a homomorphism ψ : M 7→ Nsuch that φ ◦ ψ = θ ,
where φ is the natural projection from NintoM/N [13].

Theorem 3.6. Consider the following statements for an R-module M :

(1) M is an FI − t-semisimple module;

(2) M/Z2(M) is a FI-semisimple module;

(3) M = Z2(M) ⊕M
′

, where M
′

is nonsingular, FI-semisimple and M
′

is
stable in M ;

(4) Every nonsingular FI-submodule of M is a direct summand;

(5) Every FI-submodule of M which contains Z2(M) is direct summand of
M .

Then (3)⇒ (5) ⇒ (2) and (3) ⇒ (1) ⇒ (4).(4) ⇒ (3) if condition (∗)
hold. (2)⇒ (1) if M is self- projective. Thus all statements from (1) to (5) are
equivalent if M satisfies (∗) and M is self-projective.

Proof. (3)⇒ (5) Let N be a fully invariant submodule of M , N ⊇ Z2(M).
Since M = Z2(M)⊕M

′

where M
′

is FI-semisimple nonsingular and stable in
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M .

Then N = Z2(M) ⊕ (M)
′ ⋂

N by modular law. As N and M
′

are fully
invariant in M , so N

⋂

M
′

is fully invariant in M . Hence (N
⋂

M
′

) is fully
invariant in M

′

by Lemma (3. 5). As M
′

is FI-semisimple, (N
⋂

M
′

) ≤⊕ M
′

.

It follows that M
′

= (N
⋂

M
′

) ⊕W , for some W ≤ M
′

and so that M =
Z2(M) ⊕ [(N

⋂

M
′

) ⊕W ] = [Z2(M) ⊕ (N
⋂

M
′

)] ⊕W = N ⊕W . Therefore
N ≤⊕ M .

(5) ⇒(2) Let N/(Z2(M)) be a fully invariant submodule of M/(Z2(M)).
Since Z2(M) is fully invariant in M , then N is fully invariant in M by Propo-
sition (1. 7). Also N ⊕ Z2(M), so by condition (5), N ≤⊕ M . Thus N ⊕
K = M for some K ≤ M . it follows that M/(Z2(M))N/(Z2(M)) ⊕ (K +
Z2(M))/(Z2(M)) So that N/(Z2(M)) ≤⊕ M/(Z2(M)) and so M/(Z2(M)) is a
FI-semisimple.

(3) ⇒ (1) By hypothesis, M = Z2(M)⊕M
′

, where M
′

is nonsingular FI-
semisimple and M

′

is stable in M . Let N be a fully invariant submodule of M .
It follows that (N

⋂

M
′

) ≤⊕ M . On the other hand, N/((N
⋂

M
′

)) ∼= ((N +
M

′

))/M
′

≤M/M
′

which is Z2-torsion, hence, N/((N
⋂

M
′

)) is Z2-torsion and
so that (N

⋂

M
′

) ≤tes N by Proposition (1. 1). Thus (N
⋂

M
′

) ≤⊕ M and
(N

⋂

M
′

) ≤tes N which implies that M is FI − t-semisimple.

(1) ⇒(4) Let N be a nonsingular fully invariant submodule of M . By
condition (1) there exists K ≤⊕ M such that K ≤tes N . As N is nonsingular,
K ≤ess N . ButK ≤⊕ M , implies K is closed in M , hence K = N . Thus
N ≤⊕ M .

(4) ⇒ (3) Let M
′

be a complement of Z2(M). Hence Z2(M)⊕M
′

≤ess M ,
implies M

′

≤ M by proposition (1. 1). Hence M/M
′

is Z2-torsion. We claim
that M

′

is nonsingular. To explain our assertion, suppose x ∈ Z(M
′

), sox ∈
M

′

⊕M and ann(x) ≤ess R. Hence ann(x) ≤tes R and this implies x ∈ Z2(M).
Thus x ∈ Z2(M)

⋂

= M
′

= (0), thus x = 0 and M
′

is a nonsingular. By
condition (∗),M

′

is stable, henceM
′

≤⊕ M by condition (4). ThusM =M
′

⊕L,
for some L ≤ M and so Z2(M) = Z2(M

′

) ⊕ Z2(L). But Z2(M
′

) = 0 and L ∼=
M/M

′

is Z2-torsion, so Z2(L) = L. Hence Z2(M) = L. ThusM =M
′

⊕Z2(M)
such thatM

′

is nonsingular and stable. To proveM
′

is FI-semisimple, let N be
a fully invariant submodule of M

′

. As M
′

is fully unvariant in M , so N is fully
invariant inM , and sinceM

′

is nonsingular, implies N is nonsingular. Thus N
is nonsingular fully invariant in M . Hence by condition (4), N ≤⊕ M , and so
N ⊕W =M , for some W ≤ M . Then M

′

= (N ⊕W )
⋂

M
′

= N ⊕ (W
⋂

M
′

)
by modular law. Thus N ≤⊕ M

′

. Thus M
′

is a FI-semisimple module.

(2)⇒ (1) Let N be a fully invariant submodule of M . Then N + Z2(M) is
fully invariant submodule ofM . SinceM is self-projective, N+Z2(M))/(Z2(M))



FI-SEMISIMPLE, FI − t-SEMISIMPLE... 293

is a fully invariant submodule of (M)/(Z2(M)). Hence , (N+Z2(M))/(Z2(M)) ≤⊕

(M)/(Z2(M)) because (M)/(Z2(M)) is FI-semisimple. Hence (M)/(Z2(M)) =
(N+Z2(M))/(Z2(M))⊕(W )/(Z2(M)) for some (W )/(Z2(M)) ≤ (M)/(Z2(M))
, and this implies (N+Z2(M))⊕W =M . But Z2(M) ≤W so thatN⊕W =M .
Thus N ≤⊕ M and M is FI-semisimple and hence M is FIt-semisimple.

Recall that “an R-moduleM is called FI− t-extending if every fully invari-
ant t-closed submodule of M is a direct summand”, see [6].

Proposition 3.7. Let M be an R-module such that condition (∗) hold.
If M is a FI − t-semisimple, then M is FI − t-extending.

Proof. By Theorem (3. 6) (1 ⇒ 4 ⇒ 3 ⇒ 5) for each fully invariant
submoduleN such thatN ⊇ Z2(M), N ≤⊕ M and hence for each fully invariant
submodule N with that N ⊇ Z2(M), imply N ≤ess N ≤⊕ M . Thus M is
FI − t-extending by [6, Theorem 2. 2 (6)⇒(1)].

Theorem 3.8. Let M be an R-module such that complement of a fully
invariant submodule is stable. Then M is an FI − t-semisimple if and only if
M/C is an FI-semisimple, for each t-closed fully invariant submodule of M ,
and the converse hold if M is self- projective.

Proof. ⇒ By Proposition (3. 7), M is FI − t-extending. Hence, any fully
invariant t-closed submodule, C ≤⊕ M by Definition. Thus C ⊕ C

′

= M for
some C

′

≤ M . By hypothesis C
′

is a FI-submodule of M . Hence C
′

is a
FI − t-semisimple by Proposition (2. 10). But C

′

∝M/C is a FI-semisimple.

⇐ Z2(M) is FI− t-closed submodule. Hence by hypothesis, M/(Z2(M)) is
FI-semisimple. Thus M is FI − t-semisimple by Theorem (2. 6) 2 ⇒ 1.

Proposition 3.9. Let M be an R-module such that complement of any
fully invariant submodule is fully invariant. Then M is a FI − t-semisimple if
and only if N + Z2(M) is closed, for each fully invariant submodule N of M .

Proof. ⇒ By Theorem (3. 6) 1 ⇒ 5, for each fully invariant submodule N
of M such that N ⊇ Z2(M), N is a direct summand. But N +Z2(M) ⊃ Z2(M)
and it is fully invariant submodule ofM , so thatN+Z2(M) is a direct summand
and hence N + Z2(M) is a closed submodule of M .

⇐ To prove M is FI− t-semisimple. Let K be a nonsingular fully invariant
submodule of M . Assume L is a complement of K, then by hypothesis, L
is fully invariant submodule of M . Also K ⊕ L ≤ess M , and K ⊕ L is a
fully invariant submodule of M . It follows that K ⊕ L) + Z2(M) ≤ess M .
But (K ⊕ L) + Z2(M) is fully invariant submodule containing Z2(M), so that
(K ⊕ L) + Z2(M) is closed by hypothesis. Thus (K ⊕ L) + Z2M = M and so
K+(L+Z2(M)) =M is closed by hypothesis. Thus (K⊕L)+Z2M =M and
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so K + (L + Z2(M)) = M . But we can show that. K
⋂

(L + Z2(M)) = 0 as
follows if 0 6= x ∈ K

⋂

(L+ Z2(M)), then x = l + y, l ∈ L, y ∈ Z2(M). Since K
is nonsingular, ann(x) ≤6=ess R. But x− l = y, soann(x− l) = ann(y) ≤ess R.
It follows that ann(x)

⋂

ann(l) ≤ess R, which implies ann(x) ≤ess R, that is a
contradiction Thus K

⋂

(L+ Z)2(M)) = 0 , and K ⊕ (L+ Z2(M)) = M . that
is K ≤⊕ M and henceM is FI− t-semisimple by Theorem (3.6)4 ⇒ (3) ⇒ (1).

Proposition 3.10. Let M be an R-module such that condition (∗) hold.
Then M is FI − tsemisimple if and only if M has no proper nonzero fully
invariant submodule N containing Z2(M) with N ≤ess M .

Proof. ⇒ By Theorem (3.6)1 ⇒ 5, since M is FI − t-semisimple, implies
for is fully invariant submodule N of M containing Z2(M), N ≤⊕ M . Hence
N ≤6=ess M for each (N ⊇ Z2(M), N is fully invariant).

⇐ LetM
′

be a complement of Z2(M), so thatM
′

⊕Z2(M) ≤ess M . But by
hypothesis,M

′

is a fully invariant submodule ofM and alsoM
′

⊕Z2(M) is a fully
invariant submodule of M . Thus M

′

⊕Z2(M) =M . Hence, M
′ ∼=M/(Z2(M))

is nonsingular and stable. Let N be a fully invariant submodule of M
′

. Since
M

′

is a fully invariant inM , then N is a fully invariant submodule inM . Hence
N +Z2(M) is fully invariant in M . Let K be a complement of N +Z2(M). So
that (N + Z2(M)) ⊕ K ≤ess M . But by hypothesis (N + Z2(M)) ⊕ K = M ,
then N + (Z2(M) +K) = M . We can show that N

⋂

(Z2(M) +K) = (0), as
follows. Let x ∈ N

⋂

(Z2(M)+K). Then x = a+ b for some a ∈ Z2(M), b ∈ K.
Then x − a = b ∈ (N + Z2(M))

⋂

K = 0, hence x − a = b = 0, and so that
x = a ∈ (N

⋂

Z2(M) = Z2(N) = 0. Thus x = 0 and N
⋂

(Z2(M) + K) = 0,
hence N ⊕ (Z2(M) + K) = M , that is N ≤⊕ M . Now M

′

= [N ⊕ (Z2(M) +
K)]

⋂

M
′

= N ⊕ [(Z2(M) + K)
⋂

M
′

]. Thus N ≤⊕ M
′

. Hence M
′

is FI-
semisimple which implies that M/(Z2(M))is FI-semisimple. Thus by Theorem
3. 7 ((3) ⇒ (1))M is FI − t-semisimple.

Recall that if N,K are submodules of M.K is called a supplement of N if
K is minimal with respect to the property M = K + N . Equivalently K is a
supplement of N if M = K +N and K

⋂

N ≪ K

(the notion≪ denotes a small submodule)[8]. K is called a weak supplement
of N if M = K +N and K

⋂

N ≪M , [8].

Proposition 3.11. (3. 11): Let M be an R-module such that condition
(∗) hold. A module M is FI − t-semisimple if Rad(M) is Z2-torsion and every
nonsingular fully invariant submodule of M has a weak supplement.

Proof. Let N be nonsingular fully invariant submodule ofM . By hypothesis
there exists a submodule K of M such that M = K + N and K

⋂

N ≪ M .
Clearly M = (K +Rad(M)) +N . Now we show that (K +Rad(M))

⋂

N = 0.
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Assume that x ∈ (K + Rad(M))
⋂

N . Then x = y + z where y ∈ K and
z ∈ Rad(M). Since Rad(M) is Z2-torsion there exists a t-essential right ideal
I of R such that (x − y)I = 0. Thus xI = yI ≤ K

⋂

N ≤ Rad(M) ≤ Z2(M).
So (x + Z2(M))I = Z2(M) and x + Z2(M) ∈ Z2(M/(Z2(M))) = 0. Hence
x ∈ Z2(M). Thus x ∈ Z2(M)

⋂

N = Z2(N) = 0 and this implies that N is
direct summand. Hence by Theorem 3. 6 (4 ⇒ 3 ⇒ 1)M is FI − t-semisimple.

Proposition 3.12. The following assertions are equivalent for an module
M which satisfies, that for any B ≤ M , a complement of a fully invariant
submodule A of B is a fully invariant in B.

(1) M is FI − t-semisimple

(2) For each fully invariant submoduleN ofM , there exists a decomposition
M = K ⊕ L such that K ≤ L and L is stable in M and N

⋂

L ≤ Z2(L).

(3) For each fully invariant submodule N of M,N = K ⊕K
′

such that K
is a direct summand stable in M and K

′

is Z2-torsion.

Proof. (1) ⇒ (2) Let N be a fully invariant submodule of M . Let K be
a complement of Z2(N) in N . Then K is a fully invariant in N and K ⊕
Z2(N) ≤ess N . By proposition (3. 3) and proposition (3. 10), K⊕Z2(N) = N .
Let C be a complement of K⊕Z2(M), so C is a fully invariant submodule ofM
and (K⊕Z2(M))⊕C ≤ess M . But M is FI−t-semisimple, hence by proposition
(3. 10), K ⊕Z2(M))⊕C =M . Put Z2(M)C = L, hence is a fully invariant in
M . Moreover, N = (K ⊕L)

⋂

N = K ⊕ (N
⋂

L). But K ⊕Z2(N) = N implies
N/K ∼= Z2(N) which is Z2-torsion. On other hand, N/K ∼= N

⋂

L, so that
N

⋂

L is Z2-torsion. Then N
⋂

L = Z2(N
⋂

L) ≤ Z2(L). Thus M = K ⊕ L is
the desired decomposition.

(2) ⇒ (3) Let N be a fully invariant submodule of M . By condition (2),
M = K ⊕ L where K ≤ N and Lis stable in M and N

⋂

L ⊆ Z2(L). Hence
N = (K ⊕ L)

⋂

N = K ⊕ (L
⋂

N). Put K
′

= N
⋂

L, so that N = K ⊕ K
′

,
and N/K ∼= K

′

= N
⋂

L which is Z2-torsion. Also K stable in M , since K is
a complement of L in M .

(3) ⇒ (1)LetN be a fully invariant submodule of M . By condition (3),
N = K ⊕ K

′

, where K ≤⊕ M and stable in M and K
′

is Z2-torsion. Now
K ≤ N and N/K ∼= K

′

which is Z2-torsion. Hence K ≤tes N and so that M is
FI − t-semisimple.

An R-module M is said to be t-Baer, if tM (I) = m ∈M |Im ≤ Z2(M) is a
direct summand of M for each left ideal I of End(M). An R- module M is
FI − t-Baer if tM (I) is a direct summand of M for any two-sided ideal I of
End(M). tS(N) = ϕ ∈ S : ϕN ≤ Z2(M)[6].

Proposition 3.13. Let M be an R-module such that complement of
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Z2(M) is stable. Then the following statements are equivalent:

(1) M is FI − t-semisimple.

(2) M is FI − t-extending and N = tM tS(N) for every fully invariant
submodule N of M contain Z2(M).

(3) M is FI− t-Baer and N = tM tS(N) for every fully invariant submodule
N of M contain Z2(M).

Proof. (1) ⇒ (2)M is FI − t-semisimple implies M is FI − t-extending
by Proposition (3. 7). Now, let N be a fully invariant submodule of M and
N ⊇ Z2(M). Hence N ≤⊕ M by Theorem 3. 6 (4 ⇒ 3 ⇒ 5). Hence,
M = N ⊕N

′

for some N
′

≤ M . It is obvious, that N ≤ tM tS(N). Let Π
′

be
the canonical projection on N

′

, that is π
′

: N ⊕N
′

7→ N
′

≤ N ⊕N
′

, so π
′

∈ S,
π

′

(N) = 0 ≤ Z2(M), so π
′
∫

S
(N) , m ∈ tM tS(N), π

′

(m) ∈ Z2(M) ≤ N . Hence

π
′

(m) = 0, and then m ∈ N .

(2) ⇒ (3) It is obvious, since every FI − t-extending is FI − t− Baer [6,
Thorem 3. 9 ].

(3) ⇒ (1) Since M is FI − t-Baer, Z2(M) = tM (S) is a direct summand
and M = Z2(M) ⊕M

′

, where M
′

is nonsingular. Hence M
′

is a complement
of Z2(M), so it is stable.

Now, let N
′

be a fully invariant submodule of M
′

, so that N
′

is a fully
invariant submodule of M . Put N = Z2(M)⊕N

′

. Then N is a fully invariant
submodule of M containing Z2(M). On the other hand, M is FI − t-Baer and
t(N) is a two sided ideal of S, hence tM tS(N) ≤⊕ M . Thus N ≤⊕ M . It follows

that M = N ⊕W for some W ≤ M , hence M = Z2(M) ⊕ N
′

⊕W . But by
hypothesis complement of Z2(M) is stable so by [1], N

′

⊕W = M
′

and hence
N

′

≤⊕ M
′

, and this implies M
′

is FI-semisimple. Therefore M is FI − t−
semisimple by Theorem 3. 6 (3 ⇒ 1).

4. Strongly FI − t-Semisimple

Definition 4.1. An R-module M is called strongly FI − t-semisimple if
for each fully invariant submodule N of M , there exists a fully invariant direct
summand K such that K ≤tes N .

Remarks and Examples (4. 2). (1) Every strongly FI− t-semisimple is
FI−t-semisimple and every strongly t-semisimple is strongly FI−t-semisimple.

(2) Consider Q as Z-module is strongly FI− t-semisimple, since Q has only
two fully invariant submodules (0), Q. But Q is not strongly t-semisimple.
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(3) Every FI-semisimple module M is strongly FI − t-semisimple.

Proof. Let N be a FI-submodule of M . Then N ≤⊕ M , since M is a
FI-semisimple. But N ≤tes N , hence M is strongly FI − t-semisimple.

Proposition 4.3. Let M be an R-module with property, complement of
any submodule of M is stable. The following statements are equivalent:

(1) M is strongly FI − t-semisimple;

(2) M is FI − t-semisimple;

Proof. (1) ⇒ (2)It is clear.

(2) ⇒ (1) Let N be a fully invariant submodule of M . Since M is FI − t-
semisimple, there exists K ≤⊕ M and K ≤tes N . Hence M = K ⊕W for some
W ≤M . Hence K is a complement of W . But by hypothesis K is stable. Thus
M is strongly FI − t-semisimple.

Proposition 4.4. A fully invariant submodule N of a strongly FI − t-
semisimple module M is strongly FI − t-semisimple.

Proof. Let W be a fully invariant submodule of N . Then Wis a fully
invariant submodule of M by Proposition (1. 3). Since M is strongly FI − t-
semisimple, there exists K ≤⊕ M , K is a fully invariant submodule of M and
K ≤tes W . But K ≤⊕ M implies M = K⊕A for some A ≤M and this implies
N = K ⊕ (A

⋂

N); that is K ≤⊕ N . Beside this by Lemma (3. 5), K is a fully
invariant submodule of N . Thus N is strongly FI − t-semisimple.

Remark 4.5. The condition a fully invariant submodule of M cannot
be dropped from Proposition 4. 4 as the following example shows. Q as Z-
module is strongly FI − t-semisimple, and Z < Q. But Z is not strongly
FI − t-semisimple and, Z is not fully invariant submodule of Q.

We can set the following corollaries.

Corollary 4.6. For any strongly FI − t-semisimple module M , Z2(M) is
strongly FI − t-semisimple.

Proof. It follows directly by Proposition 4.4.

Proposition 4.7. Let M be an R-module and satisfies (∗). If M is
strongly FI − t-semisimple, then M/(Z2(M)) is FI-semisimple, and hence it is
strongly FI − t-semisimple. The converse is hold if M is self-projective.

Proof. ⇒ As M is strongly FI − t-semisimple, M is FI − t-semisimple
and hence by Theorem 3. 6 (1 ⇒ 2), M/(Z2(M)) is FI-semisimple. ⇐If
M/(Z2(M)) is a FI-semisimple, then by the proof of Theorem 3. 6 (2 ⇒ 1)M
is a FI-semisimple module and hence M is strongly FI − t-semisimple.
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Corollary 4.8. Let M be a self-projective and satisfies (∗). Then the
statements are equivalent:

(1) M is strongly FI − t-semisimple;
(2) M/(Z2(M)) is FI-semisimple;
(3) M is FI − t-semisimple.
Proof. (1) ⇔ (2) It follows by proposition (4. 7).
(2) ⇔ (3) It follows by Theorem 3. 6 (2 ⇔ 1).

The following result follows by combining Proposition (4. 3) and Proposi-
tion (3. 10).

Proposition 4.9. Let M be an R-module such that complement of any
submodule of M is stable. Then the following conditions are equivalent:

(1) M is strongly FI − t-semisimple;
(2) M is FI − t-semisimple;
(3) M has no proper nonzero fully invariant submodule N containg Z2(M)

and N ≤ess M .

Lemma 4.10. Let M =M1 ⊕M2 where M1 and M2 be R-modules, such
thatM1 andM2 are fully invariant inM . ThenM is strongly FI−t-semisimple
if and only if M1 and M2 are strongly FI − t-semisimple.

Proof. ⇒It follows by Proposition 4. 4.
⇐ Let N be a fully invariant submodule of M . Then by Proposition 1. 5,

N = (N
⋂

M1)⊕(N
⋂

M2) andN
⋂

M1, N
⋂

M2 are fully invariant submodules
of M1 and M2 respectively. Put N1 = N

⋂

M1, N2 = N
⋂

M2. As M1 and M2

are strongly FI-t-semisimple, there exists K1 ≤
⊕ M1, K1 is a fully invariant in

M1 with K1 ≤tes N1 and there exists K2 ≤
⊕ M2 , K2 is a fully invariant in M2

with K2 ≤tes N2. But K1 ≤
⊕ M1, K2 ≤

⊕ M2 implies K = K1⊕K2 ≤
⊕ M . By

Proposition 1.6, (M1,M2) = 0, Hom(M2,M1) = 0,

End(M1,M2) ∼=

(

EndM1 Hom(M2,M1)
Hom(M1,M2) EndM2

)

=

(

EndM1 α1

α2 EndM2

)

.

Therefore

θ =

(

α1 0
0 α2

)

,

α1 ∈ EndM1 , α2 ∈ EndM2. It follows that θ(K1 ⊕K2) = α1(K1)⊕ α2(K2) ≤
K1⊕K2 = K. Thus K is fully invariant inM . Also K1 ≤tes N1 and K2 ≤tes N2

imply K ≤tes N by Proposition 1. 2(2). ThusM is strongly FI− t-semisimple.
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Lemma 4.11. Let M =M1⊕M2 such that annM1+annM2 = R. Then:

(1) Hom(M1,M2) = 0 and Hom(M2,M1) = 0.

(2) M1 and M2 are fully invariant in M .

Proof. (1) Since R = annM1 + annM2 , then M1 = M1(annM1) +
M1(annM2),M2 =M2(annM1)+M1(annM2. Put annM1 = A1, annM2 = A2,
therefore M1 = M1A2, and M2 = M2A1. Then for each ϕ ∈ Hom(M1,M2),
ϕ(M1) = ϕ(M1, A2) = ϕ(M1)A2 ≤ M2A2 = 0 , hence ϕ = 0. Thus Hom(M1,
M2) = 0. Similarly, Hom(M2,M1) = 0.

(2) It follows directly by Proposition (1. 6).

Proposition 4.12. Let M = M1 ⊕M2 where M1 and M2 be R-modules
with M1 + annM2 = R. Then M is strongly FI − t-semisimple if and only if
M1 and M2 are strongly FI − t-semisimple.

Proof. ⇒ It follows by Proposition (4. 4).

Proposition 4.13. IfM is an R-module andM =M1⊕M2, whereM1 and
M2 are fully invariant submodules of M . ThenM is strongly FI− t-semisimple
if and only if M1 and M2 are strongly FI − t-semisimple.

Proof. ⇒ By Lemma 4.11 (2) M1and M2 are fully invariant submodule of
M and so the result follows by Proposition 4.4.

⇐ It follows by Lemma 4.11 (1).
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