International Journal of Pure and Applied Mathematics

Volume 115 No. 2 2017, 285-300 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v115i2.7

FI-SEMISIMPLE, FI - t-SEMISIMPLE AND STRONGLY FI - t-SEMISIMPLE MODULES

Inaam Mohammed Ali Hadi¹, Farhan Dakhil Shyaa² ¹Department of Mathematics University of Baghdad College of Education for Pure Sciences (Ibn-Al-Haitham) University of Baghdad Baghdad, IRAQ ²Department of Mathematics University of Al-Qadisiyah College of Education Al-Qadisiya, IRAQ

Abstract: In this paper, we introduce the notions of FI-semisimple, FI-t-semisimple and strongly FI-t-semisimple modules. This is a generalization of semisimple modules. Many results connected with these concepts are given.

AMS Subject Classification: 16D10, 16D70, 16D90, 16P70

Key Words: FI-semisimple modules, FI-t-semisimple modules, strongly FI-t-semisimple modules

1. Introduction

Through this paper R be a ring with unity and M is a right R-module. A submodule A of an R-module M is said to be essential in M (denoted by $A \leq_{ess} M$), if $A \cap W(0)$ for every non-zero submodule W of M. Equivalently $A \leq_{ess} M$ if whenever $A \cap W = 0$, then W = 0, see [12]. Recall that a submodule N of R-module M is called closed ($N \leq_c M$) if whenever $N \leq_{ess} W \leq M$, then N = W, see [10]. In other word, $N \leq_c M$, if N has no proper essential extension in M, see [12]. The singular submodule of an R-module M denoted by Z(M) and

Received:	January 3, 2017
Revised:	April 3, 2017
Published:	July 14, 2017

© 2017 Academic Publications, Ltd. url: www.acadpubl.eu

§Correspondence author

defined by $x : inM : ann(x)_R \leq_{ess} R$ where $ann(x)_R = r \in R : xr = 0$. M is called singular submodule if Z(M) = M and nonsingular if Z(M) = 0.

Let $Z_2(M)$ be the second singular (or Goldi torsion) of M which is defined by $Z(M/(Z(M))) = (Z_2(M))/(Z(M))$ where Z(M) is the singular submodule of M A module M is called Z_2 -torsion if $Z_2(M) = M$ and a ring R is called right Z_2 -torsion if $Z_2(R_R) = R_R$, see [11]. The concept of t-essential submodules is introduced as generalization of essential submodules, see [5]. A submodule N of M is said to be t-essential in M (denoted by $(N \leq_{tes} M)$ if for every submodule B of M, $N \cap B \leq Z_2(M)$ implies that $B \leq Z_2(M)$. It is clear that every essential submodule is t-essential, but not conversely. However, for a nonsingular R-module M, the two concepts are coincide.

As a generalization of closed submodule Asgari and Haghany in [3] introduced concept of t-closed. A submodule N of M is t-closed in M if $N \leq_{tes} W \leq M$ implies that N = W. Every t-close is closed, but not conversely and they are equivalent in nonsingular modules.

A submodule N of M is called fully invariant if $f(N) \leq N$ for every Rendomorphism f of M. Clearly 0 and M are fully invariant submodules of M, see [10]. M is called duo module if every submodule of M is fully invariant. A submodule N of an R-module is called stable if for each homomorphism $f:N \to M, f(N) \leq N$. A module is called fully stable if every submodule of M is stable, [1]. Recall that an R-module M is multiplication if for each submodule N of M, there exists ideal I of R such that N = MI. Equivalently M is a multiplication R-module if for each submodule N of $M = M(N :_R M)$, where $(N:M) = r \in R : rM \leq N$, see [10]. A module M is called semisimple if every submodule is direct summand. It is known that a module M is semisimple if every submodule N contains a direct summand K of M such that $N \leq_{ess} N$.

This observation lead Asgari et al [4] to introduce the notion [3] of tsemisimple modules as a generalization of semisimple modules. A module M is t-semisimple if for every submodule N of M, there exists a direct summand Ksuch that $K \leq_{tes} N$.

In this paper we present three generalizations of semisimple and t-semisimple modules namely FI-semisimple, FI-t-semisimple and strongly FI-t-semisimple.

It is clear that the class of strongly *t*-semisimple modules contains the class of *t*-semisimple.

This paper consists of four sections, in Section 2 we present the concept namely FI-semisimple modules. Where an R-module M is called FI-semisimple if for each fully invariant submodule N of M, there exists K direct summand of M such that K essential in N. Many properties about this concept, and many connections between it and other related concepts are introduced. In Section 3 we study generalization of t-semisimple namely, FI-t-semisimple module is introduced. An R-module M is called FI - t-semisimple if for each fully invariant submodule N of M, there exists $K \leq M$ such that $K \leq_{tes} N$. Also, many properties about this concept, are given. Section 4 we present another generalization of t-semisimple namely strongly FI - t-semisimple. An R-module M is called strongly FI - t-semisimple if for each fully invariant submodule N of M, there exists a fully invariant direct summand K such that $K \leq_{tes} N$. Many properties about this concept are introduced, and many connections between it and other related concepts are presented.

We quote the following for future use

Proposition 1.1 ([3]). The following statements are equivalent for a submodule A of an R-module:

(1) A is t-essential in M;

(2) $(A + Z_2(M))/Z_2(M)$ is essential in $M/Z_2(M)$;

(3) $A + Z_2(M)$ is essential in M;

(4) M/A is Z_2 -torsion.

Lemma 1.2 ([5]). Let A_{λ} be submodule of $M\lambda$ for all λ in a set Λ . (1) If Λ is a finite and $A_{\lambda} \leq_{tes} M_{\lambda}$, then $\bigcap_{\Lambda} | A_{\lambda} \leq_{tes} \bigcap_{\Lambda} | M_{\lambda}$ for all $\lambda \in \Lambda$. (2) $\bigoplus_{\Lambda} A_{\lambda} \leq_{tes} \bigoplus \Lambda M_{\lambda}$, if and only if $A_{\lambda} \leq_{tes} M_{\lambda}$, for all $\lambda \in \Lambda$.

Lemma 1.3 ([14]). Let R be a ring and let $L \leq K$ be submodules of an R-module M such that L is a fully invariant submodule of K and K is a fully invariant submodule of M. Then L is a fully invariant submodule of M.

The following results are well known.

Proposition 1.4 ([7]). Any sum (or intersection) of fully invariant submodules an R-module M is fully invariant submodules M.

Proposition 1.5 ([14]). If $M = \bigoplus_i \in \Lambda$ where X_i is an *R*-module, for each $i \in \Lambda$ and N is a fully invariant submodule of M, then $N = \bigoplus_i \in \Lambda x_i \cap N$ and $X_i \cap N$ is fully invariant submodule of X_i , for each $i \in \Lambda$.

Proposition 1.6 ([14]). Let R be any ring and let an R -module $M = K \oplus K'$ be the direct sum of submodules K, K' Then K is a fully invariant submodule of M if and only if Hom (K, K') = 0.

Proposition 1.7 ([6]). Let M be an R-module and $K \leq L \leq M$ if L/K is a fully invariant submodule of M/K and K is a fully invariant submodule of M, then L is a fully invariant in M.

2. FI-Semisimple Modules

Definition 2.1. An *R*-module *M* is called *FI*-semisimple if for each fully invariant submodule *N* of *M*, there exists direct summand *K* such that $K \leq_{ess} N$.

The following result is a characterization of FI-semisimple modules.

Proposition 2.2. An *R*-module *M* is *FI*-semisimple if and only if every fully invariant submodule of *M* is a direct summand.

Proof. \Rightarrow Let N be a fully invariant submodule of M, so there exists $K \leq M$ such that $K \leq_{ess} N$. But $K \leq M$ implies K is closed in M, so it has no proper essential extension in M. Thus K = N and so $N \leq M$.

 \Leftarrow Let N be a fully invariant submodule of M. By hypothesis $N \leq M$. But $N \leq_{ess} N$ and $N \leq M$. Thus M is FI-semisimple.

Remarks and Examples 2.3 (1) It is clear that every semisimple module is FI-semisimple, but the converse is not true in general, for example: The Z-module Q has only two fully invariant submodules which are (0), Q. Hance Q is FI-semisimple, but it is not semisimple.

(2) t-semisimple module does not implies FI-semisimple in general for example Z_{12} as Z-module t-semisimple but it is not FI-semisimple. Also FI-semisimple module does not implies t-semisimple, for example Q as Z-module is FI-semisimple and it is not t-semisimple.

(3) If M is a duo module (hence if M is a multiplication module), then M is a semisimple module if and only if M is FI-semisimple. In particular the Z-modules Z, Z_4 , Z_{12} are not FI-semisimple. Also, for every commutative ring R, R is semisimple if and only if R is FI-semisimple.

(4) A fully invariant submodule of FI-semisimple is FI-semisimple.

Proof. Let N be a fully invariant submodule of M and M is a FI-semisimple. Let U be a fully invariant submodule of N, hence U is a fully invariant in M by proposition 1. 3. It follows that $U \leq M$. Thus $U \oplus U' = M$ for some $U' \leq M$ and so $N = (U \oplus U') \cap N = U \oplus (U' \cap N)$ by modular law. Then $U \leq N$. Thus N is FI-semisimple by Proposition (2. 2). Z_4 as Z_4 -module is not singular, but it is Z_2 -torsion, so it is strongly t-semisimple.

(5) Every FI-semisimple module M is FI-extending. Where M is called FI-extending if every fully invariant submodule is essential in a direct summand.

Proof. Let N be a fully invariant submodule of M. As M is FI-semisimple, $N \leq M$. But $N \leq_{ess} N$. So that M is FI-extending.

(6) If M and N are isomorphic R-modules, then M is FI-semisimple if and only if N is FI-semisimple.

(7) If $f: M \mapsto M'$ be an epimorophism and M' is *FI*-semisimple, then it is not necessary that M is *FI*-semisimple. For example $\Pi: Z \mapsto Z/(6) \cong Z_6, Z_6$ is *FI*-semisimple, but Z is not.

Proposition 2.4. Let M be a FI-semisimple R-module and N is a fully invariant submodule in M then M/N is a FI-semisimple module.

Proof. Let W/N be a fully invariant submodule of M/N. Since N is a fully invariant submodule of M. Then W is fully invariant submodule of M by Proposition (1. 7). But M is FI-semisimple, so $W \leq M$. Then $W \oplus K = M$ for some $K \leq M$. This implies $W/N \oplus K + N/N = M/N$. Thus $W/N \leq M/N$ and M/N is FI-semisimple.

Corollary 2.5. Let $f: M \mapsto M'$ be an *R*- epimorphism and Kerf is a fully invariant submodule of *M*. If *M* is a *FI*-semisimple *R*-module, then M' is a *FI*-semisimple.

Proof. Since $f: M \mapsto M'$ epimorphism, $M/Kerf \cong M'$. But M/Kerf is a *FI*-semisimple module by proposition (2. 4), hence M' is *FI*-semisimple by Remarks and Examples 2. 3(5).

Corollary 2.6. Let M be a FI-semisimple R-module. Then $M/(Z_2(M))$ is FI-semisimple and $M = Z_2(M) \oplus M'$ where M' is nonsingular FI-semisimple.

Proof. As $Z_2(M)$ is a fully invariant submodule of M, $M/(Z_2(M))$ is FIsemisimple module by Proposition (2. 4). Also, $Z_2(M)$ is a fully invariant submodule in $MimpliesZ_2(M) \leq M$, by Proposition (2. 2). Thus $M = Z_2(M) \oplus M'$ for some $M' \leq M$. But $M' \cong M/(Z_2(M))$, so M' is nonsingular FI-semisimple.

Proposition 2.7. Let $M = M_1 \oplus M_2$, where $M_1, M_2 \leq M$ If M_1 and M_2 are FI-semisimple, then M is FI-semisimple and converse hold if M_1 and M_2 are FI-submodules of M.

Proof. \Rightarrow Let N be a fully invariant submodule of M. Then

$$N = N \bigcap M = N \bigcap M_1 \oplus N \bigcap M_2$$

and $N \cap M_1, N \cap M_2$ are fully invariant submodules of M_1 and M_2 respectively by Lemma 1.3. Put $N_1 = N \cap M_1$, $N =_2 = N \cap M_2$. Hence $N_1 \leq M_1$,

 $N_2 \leq M_2$, since M_1 and M_2 are *FI*-semisimple modules. It follows that $N = N_1 \oplus N_2 \leq M$ and so M is *FI*-semisimple.

 \Leftarrow Since M_1 is a fully invariant submodule of M, and

$$M/M_1 = (M_1 \oplus M_2)/M_1 \cong M_2.$$

Hence M_2 is *FI*-semisimple, by Proposition (2. 4). Similarly, M_1 is *FI*-semisimple.

3. FI - t-Semisimple Modules

Definition 3.1. An *R*-module *M* is called *FI-t*-semisimple if for each fully invariant submodule *N* of *M*, there exists $K \leq M$ such that $K \leq_{tes} N$.

Remarks and Examples 3.2. (1) It is clear that every *t*-semisimple module is FI - t-semisimple, but the converse is not true, for Q as Z-module is not *t*-semisimple and it is clear that it is FI - t-semisimple.

(2) It is clear that every FI-semisimple module is FI - t-semisimple, hence each of the Z-module $Q, Q \oplus Z_2, Z_2 \oplus Z_6$ is FI - t-semisimple, since each of them is FI-semisimple module.

(3) The converse of part (2) is not true in general, for example, the Z_{12} is a FI - t-semisimple (since it is t-semisimple) but it is not FI-semisimple, and the Z-module Z is not FI - t-semisimple.

(4) Let M be a nonsingular R-module. Then M is FI-semisimple if and only if M is FI - t-semisimple. In particular, Z as Z-module is not FI - t-semisimple, and if R = Z[x], then R_R is not FI - t-semisimple.

Proof. \Rightarrow It is clear by part (2).

 \leftarrow Let M be a FI - t-semisimple module and N be a fully invariant submodule of M, there exists $K \leq M$ and $K \leq_{tes} N$. But M is nonsingular implies N is nonsingular and hence $K \leq_{ess} N$. But $K \leq M$ implies K is a closed submodule of M and so that K = N. It follows that M is FI-semisimple by Proposition 2.2.

Proposition 3.3. Every fully invariant submodule of a FI - t-semisimple module is FI - t-semisimple.

Proof. Let N be a fully invariant submodule of a FI - t-semisimple R-module M. To prove N is FI - t-semisimple, let W be fully invariant submodule of N. Hence W is a fully invariant submodule of M. It follows that there exists

 $K \leq M$ and $K \leq_{tes} W$, since M is FI - t-semisimple. Hence $M = K \oplus C$ for some $C \leq M$ and so that $N = K \oplus (C \cap N)$, thus $K \leq N$ and so that N is FI - t-semisimple.

Proposition 3.4. Let $M = M_1 \oplus M_2$. If M_1 and M_2 are FI-t-semisimple, then M is a FI - t-semisimple. The converse holds, if M_1 and M_2 are fully invariant submodules.

Proof. ⇒ Let N be a fully submodule of M. Then $N = N_1 \oplus N_2$, where N_1 is fully invariant in M_1 and N_2 is fully invariant in M_2 by Lemma(1. 5). Hence, there exist $K_1 \leq M_1$ and $K_2 \leq M_2$ such that $K_1 \leq_{tes} N_1$, $K_2 \leq_{tes} N_2$. Hence $K = K_1 \oplus K_2 \leq M$ and $K = K_1 \oplus K_2 \leq_{tes} N_1 \oplus N_2 = N$. \leftarrow It is clear by Proposition (3. 3).

To prove our next result, we need the following lemma.

Lemma 3.5. Let $K \leq N \leq M$ such that $N \leq M$. If K is a fully invariant submodule in M, then K is a fully invariant in N.

Proof. Since $N \leq M$, $N \oplus L = M$ for some $L \leq M$. Let $\vartheta : N \mapsto N$ be any *R*-homomorphism. ϑ can be extended to homomorphism $h : M \mapsto M$ where $h(x) = (\vartheta(x)ifx \in N0otherwise)$. Then $h(K) \leq K$. But $K \leq N$, so $h(K) = \vartheta(K)$ and hence $\vartheta(K) \leq K$; that K is a fully invariant submodule of N.

Let (*) means the following: For an *R*-module *M*, the complement of $Z_2(M)$ is stable in *M*. An *R*-module *M* is called self-projective if *M* is *M*-projective; equivalently for every submodule *N* of *M* and for every homomorphism $\theta : M \mapsto M/N$, θ can be lifted by a homomorphism $\psi : M \mapsto N$ such that $\phi \circ \psi = \theta$, where ϕ is the natural projection from NintoM/N[13].

Theorem 3.6. Consider the following statements for an *R*-module *M*:

(1) M is an FI - t-semisimple module;

(2) $M/Z_2(M)$ is a FI-semisimple module;

(3) $M = Z_2(M) \oplus M'$, where M' is nonsingular, FI-semisimple and M' is stable in M;

(4) Every nonsingular FI-submodule of M is a direct summand;

(5) Every FI-submodule of M which contains $Z_2(M)$ is direct summand of M.

Then $(3) \Rightarrow (5) \Rightarrow (2)$ and $(3) \Rightarrow (1) \Rightarrow (4).(4) \Rightarrow (3)$ if condition (*) hold. $(2) \Rightarrow (1)$ if M is self- projective. Thus all statements from (1) to (5) are equivalent if M satisfies (*) and M is self-projective.

Proof. (3) \Rightarrow (5) Let N be a fully invariant submodule of $M, N \supseteq Z_2(M)$. Since $M = Z_2(M) \oplus M'$ where M' is FI-semisimple nonsingular and stable in M.

Then $N = Z_2(M) \oplus (M)' \cap N$ by modular law. As N and M' are fully invariant in M, so $N \cap M'$ is fully invariant in M. Hence $(N \cap M')$ is fully invariant in M' by Lemma (3. 5). As M' is FI-semisimple, $(N \cap M') \leq M'$.

It follows that $M' = (N \cap M') \oplus W$, for some $W \leq M'$ and so that $M = Z_2(M) \oplus [(N \cap M') \oplus W] = [Z_2(M) \oplus (N \cap M')] \oplus W = N \oplus W$. Therefore $N \leq M$.

(5) \Rightarrow (2) Let $N/(Z_2(M))$ be a fully invariant submodule of $M/(Z_2(M))$. Since $Z_2(M)$ is fully invariant in M, then N is fully invariant in M by Proposition (1. 7). Also $N \oplus Z_2(M)$, so by condition (5), $N \leq M$. Thus $N \oplus K = M$ for some $K \leq M$. it follows that $M/(Z_2(M))N/(Z_2(M)) \oplus (K + Z_2(M))/(Z_2(M))$ So that $N/(Z_2(M)) \leq M/(Z_2(M))$ and so $M/(Z_2(M))$ is a FI-semisimple.

 $(3) \Rightarrow (1)$ By hypothesis, $M = Z_2(M) \oplus M'$, where M' is nonsingular FIsemisimple and M' is stable in M. Let N be a fully invariant submodule of M. It follows that $(N \cap M') \leq M$. On the other hand, $N/((N \cap M')) \cong ((N + M'))/M' \leq M/M'$ which is Z_2 -torsion, hence, $N/((N \cap M'))$ is Z_2 -torsion and so that $(N \cap M') \leq_{tes} N$ by Proposition (1. 1). Thus $(N \cap M') \leq M$ and $(N \cap M') \leq_{tes} N$ which implies that M is FI - t-semisimple.

(1) \Rightarrow (4) Let N be a nonsingular fully invariant submodule of M. By condition (1) there exists $K \leq M$ such that $K \leq_{tes} N$. As N is nonsingular, $K \leq_{ess} N$. But $K \leq M$, implies K is closed in M, hence K = N. Thus $N \leq M$.

 $(4) \Rightarrow (3)$ Let M' be a complement of $Z_2(M)$. Hence $Z_2(M) \oplus M' \leq_{ess} M$, implies $M' \leq M$ by proposition (1. 1). Hence M/M' is Z_2 -torsion. We claim that M' is nonsingular. To explain our assertion, suppose $x \in Z(M')$, $sox \in$ $M' \oplus M$ and $ann(x) \leq_{ess} R$. Hence $ann(x) \leq_{tes} R$ and this implies $x \in Z_2(M)$. Thus $x \in Z_2(M) \bigcap = M' = (0)$, thus x = 0 and M' is a nonsingular. By condition (*), M' is stable, hence $M' \leq M$ by condition (4). Thus $M = M' \oplus L$, for some $L \leq M$ and so $Z_2(M) = Z_2(M') \oplus Z_2(L)$. But $Z_2(M') = 0$ and $L \cong$ M/M' is Z_2 -torsion, so $Z_2(L) = L$. Hence $Z_2(M) = L$. Thus $M = M' \oplus Z_2(M)$ such that M' is nonsingular and stable. To prove M' is FI-semisimple, let N be a fully invariant submodule of M'. As M' is fully unvariant in M, so N is fully invariant in M, and since M' is nonsingular, implies N is nonsingular. Thus Nis nonsingular fully invariant in M. Hence by condition $(4), N \leq M$, and so $N \oplus W = M$, for some $W \leq M$. Then $M' = (N \oplus W) \bigcap M' = N \oplus (W \bigcap M')$ by modular law. Thus $N \leq M'$. Thus M' is a FI-semisimple module.

 $(2) \Rightarrow (1)$ Let N be a fully invariant submodule of M. Then $N + Z_2(M)$ is fully invariant submodule of M. Since M is self-projective, $N + Z_2(M))/(Z_2(M))$

292

is a fully invariant submodule of $(M)/(Z_2(M))$. Hence, $(N+Z_2(M))/(Z_2(M)) \leq (M)/(Z_2(M))$ because $(M)/(Z_2(M))$ is FI-semisimple. Hence $(M)/(Z_2(M)) = (N+Z_2(M))/(Z_2(M)) \oplus (W)/(Z_2(M))$ for some $(W)/(Z_2(M)) \leq (M)/(Z_2(M))$, and this implies $(N+Z_2(M)) \oplus W = M$. But $Z_2(M) \leq W$ so that $N \oplus W = M$. Thus $N \leq M$ and M is FI-semisimple and hence M is FIt-semisimple.

Recall that "an *R*-module M is called FI - t-extending if every fully invariant *t*-closed submodule of M is a direct summand", see [6].

Proposition 3.7. Let M be an R-module such that condition (*) hold. If M is a FI - t-semisimple, then M is FI - t-extending.

Proof. By Theorem (3. 6) $(1 \Rightarrow 4 \Rightarrow 3 \Rightarrow 5)$ for each fully invariant submodule N such that $N \supseteq Z_2(M), N \le M$ and hence for each fully invariant submodule N with that $N \supseteq Z_2(M)$, imply $N \le_{ess} N \le M$. Thus M is FI - t-extending by [6, Theorem 2. 2 (6) \Rightarrow (1)].

Theorem 3.8. Let M be an R-module such that complement of a fully invariant submodule is stable. Then M is an FI - t-semisimple if and only if M/C is an FI-semisimple, for each t-closed fully invariant submodule of M, and the converse hold if M is self- projective.

Proof. ⇒ By Proposition (3. 7), M is FI - t-extending. Hence, any fully invariant t-closed submodule, $C \leq M$ by Definition. Thus $C \oplus C' = M$ for some $C' \leq M$. By hypothesis C' is a *FI*-submodule of *M*. Hence C' is a *FI*-t-semisimple by Proposition (2. 10). But $C' \propto M/C$ is a *FI*-semisimple.

 $\Leftarrow Z_2(M)$ is FI - t-closed submodule. Hence by hypothesis, $M/(Z_2(M))$ is FI-semisimple. Thus M is FI - t-semisimple by Theorem (2. 6) $2 \Rightarrow 1$.

Proposition 3.9. Let M be an R-module such that complement of any fully invariant submodule is fully invariant. Then M is a FI - t-semisimple if and only if $N + Z_2(M)$ is closed, for each fully invariant submodule N of M.

Proof. \Rightarrow By Theorem (3. 6) $1 \Rightarrow 5$, for each fully invariant submodule N of M such that $N \supseteq Z_2(M)$, N is a direct summand. But $N + Z_2(M) \supset Z_2(M)$ and it is fully invariant submodule of M, so that $N + Z_2(M)$ is a direct summand and hence $N + Z_2(M)$ is a closed submodule of M.

 \Leftarrow To prove M is FI - t-semisimple. Let K be a nonsingular fully invariant submodule of M. Assume L is a complement of K, then by hypothesis, Lis fully invariant submodule of M. Also $K \oplus L \leq_{ess} M$, and $K \oplus L$ is a fully invariant submodule of M. It follows that $K \oplus L$) + $Z_2(M) \leq_{ess} M$. But $(K \oplus L) + Z_2(M)$ is fully invariant submodule containing $Z_2(M)$, so that $(K \oplus L) + Z_2(M)$ is closed by hypothesis. Thus $(K \oplus L) + Z_2M = M$ and so $K + (L + Z_2(M)) = M$ is closed by hypothesis. Thus $(K \oplus L) + Z_2M = M$ and so $K + (L + Z_2(M)) = M$. But we can show that. $K \cap (L + Z_2(M)) = 0$ as follows if $0 \neq x \in K \cap (L + Z_2(M))$, then $x = l + y, l \in L, y \in Z_2(M)$. Since K is nonsingular, $ann(x) \leq \neq_{ess} R$. But x - l = y, $soann(x - l) = ann(y) \leq_{ess} R$. It follows that $ann(x) \cap ann(l) \leq_{ess} R$, which implies $ann(x) \leq_{ess} R$, that is a contradiction Thus $K \cap (L + Z_2(M)) = 0$, and $K \oplus (L + Z_2(M)) = M$. that is $K \leq M$ and hence M is FI - t-semisimple by Theorem (3.6)4 \Rightarrow (3) \Rightarrow (1).

Proposition 3.10. Let M be an R-module such that condition (*) hold. Then M is FI – tsemisimple if and only if M has no proper nonzero fully invariant submodule N containing $Z_2(M)$ with $N \leq_{ess} M$.

Proof. ⇒ By Theorem (3.6)1 ⇒ 5, since M is FI - t-semisimple, implies for is fully invariant submodule N of M containing $Z_2(M)$, $N \leq M$. Hence $N \leq \neq_{ess} M$ for each $(N \supseteq Z_2(M), N$ is fully invariant).

 $\leftarrow Let M'$ be a complement of $Z_2(M)$, so that $M' \oplus Z_2(M) \leq_{ess} M$. But by hypothesis, M' is a fully invariant submodule of M and also $M' \oplus Z_2(M)$ is a fully invariant submodule of M. Thus $M' \oplus Z_2(M) = M$. Hence, $M' \cong M/(Z_2(M))$ is nonsingular and stable. Let N be a fully invariant submodule of M'. Since M' is a fully invariant in M, then N is a fully invariant submodule in M. Hence $N + Z_2(M)$ is fully invariant in M. Let K be a complement of $N + Z_2(M)$. So that $(N + Z_2(M)) \oplus K \leq_{ess} M$. But by hypothesis $(N + Z_2(M)) \oplus K = M$, then $N + (Z_2(M) + K) = M$. We can show that $N \cap (Z_2(M) + K) = (0)$, as follows. Let $x \in N \cap (Z_2(M) + K)$. Then x = a + b for some $a \in Z_2(M), b \in K$. Then $x - a = b \in (N + Z_2(M)) \cap K = 0$, hence x - a = b = 0, and so that $x = a \in (N \cap Z_2(M) = Z_2(N) = 0$. Thus x = 0 and $N \cap (Z_2(M) + K) = 0$, hence $N \oplus (Z_2(M) + K) = M$, that is $N \leq M$. Now $M' = [N \oplus (Z_2(M) + K)] \cap M' = N \oplus [(Z_2(M) + K) \cap M']$. Thus $N \leq M'$. Hence M' is FIsemisimple which implies that $M/(Z_2(M))$ is FI-semisimple. Thus by Theorem 3. 7 $((3) \Rightarrow (1))M$ is FI - t-semisimple.

Recall that if N, K are submodules of M.K is called a supplement of N if K is minimal with respect to the property M = K + N. Equivalently K is a supplement of N if M = K + N and $K \bigcap N \ll K$

(the notion \ll denotes a small submodule)[8]. K is called a weak supplement of N if M = K + N and $K \cap N \ll M$, [8].

Proposition 3.11. (3. 11): Let M be an R-module such that condition (*) hold. A module M is $\overline{FI} - t$ -semisimple if Rad(M) is Z_2 -torsion and every nonsingular fully invariant submodule of M has a weak supplement.

Proof. Let N be nonsingular fully invariant submodule of M. By hypothesis there exists a submodule K of M such that M = K + N and $K \cap N \ll M$. Clearly M = (K + Rad(M)) + N. Now we show that $(K + Rad(M)) \cap N = 0$. Assume that $x \in (K + Rad(M)) \cap N$. Then x = y + z where $y \in K$ and $z \in Rad(M)$. Since Rad(M) is Z_2 -torsion there exists a t-essential right ideal I of R such that (x - y)I = 0. Thus $xI = yI \leq K \cap N \leq Rad(M) \leq Z_2(M)$. So $(x + Z_2(M))I = Z_2(M)$ and $x + Z_2(M) \in Z_2(M/(Z_2(M))) = 0$. Hence $x \in Z_2(M)$. Thus $x \in Z_2(M) \cap N = Z_2(N) = 0$ and this implies that N is direct summand. Hence by Theorem 3. $6 (4 \Rightarrow 3 \Rightarrow 1)M$ is FI - t-semisimple.

Proposition 3.12. The following assertions are equivalent for an module M which satisfies, that for any $B \leq M$, a complement of a fully invariant submodule A of B is a fully invariant in B.

(1) M is FI - t-semisimple

(2) For each fully invariant submodule N of M, there exists a decomposition $M = K \oplus L$ such that $K \leq L$ and L is stable in M and $N \bigcap L \leq Z_2(L)$.

(3) For each fully invariant submodule N of $M, N = K \oplus K'$ such that K is a direct summand stable in M and K' is Z_2 -torsion.

Proof. (1) \Rightarrow (2) Let N be a fully invariant submodule of M. Let K be a complement of $Z_2(N)$ in N. Then K is a fully invariant in N and $K \oplus Z_2(N) \leq_{ess} N$. By proposition (3. 3) and proposition (3. 10), $K \oplus Z_2(N) = N$. Let C be a complement of $K \oplus Z_2(M)$, so C is a fully invariant submodule of M and $(K \oplus Z_2(M)) \oplus C \leq_{ess} M$. But M is FI-t-semisimple, hence by proposition (3. 10), $K \oplus Z_2(M)) \oplus C = M$. Put $Z_2(M)C = L$, hence is a fully invariant in M. Moreover, $N = (K \oplus L) \bigcap N = K \oplus (N \bigcap L)$. But $K \oplus Z_2(N) = N$ implies $N/K \cong Z_2(N)$ which is Z_2 -torsion. On other hand, $N/K \cong N \bigcap L$, so that $N \bigcap L$ is Z_2 -torsion. Then $N \bigcap L = Z_2(N \bigcap L) \leq Z_2(L)$. Thus $M = K \oplus L$ is the desired decomposition.

 $(2) \Rightarrow (3)$ Let N be a fully invariant submodule of M. By condition (2), $M = K \oplus L$ where $K \leq N$ and L is stable in M and $N \bigcap L \subseteq Z_2(L)$. Hence $N = (K \oplus L) \bigcap N = K \oplus (L \bigcap N)$. Put $K' = N \bigcap L$, so that $N = K \oplus K'$, and $N/K \cong K' = N \bigcap L$ which is Z₂-torsion. Also K stable in M, since K is a complement of L in M.

 $(3) \Rightarrow (1)LetN$ be a fully invariant submodule of M. By condition (3), $N = K \oplus K'$, where $K \leq M$ and stable in M and K' is Z_2 -torsion. Now $K \leq N$ and $N/K \cong K'$ which is Z_2 -torsion. Hence $K \leq_{tes} N$ and so that M is FI - t-semisimple.

An *R*-module *M* is said to be *t*-Baer, if $t_M(I) = m \in M | Im \leq Z_2(M)$ is a direct summand of *M* for each left ideal *I* of End(M). An *R*-module *M* is FI - t-Baer if $t_M(I)$ is a direct summand of *M* for any two-sided ideal *I* of End(M). $t_S(N) = \varphi \in S : \varphi N \leq Z_2(M)[6]$.

Proposition 3.13. Let M be an R-module such that complement of

(1) M is FI - t-semisimple.

(2) M is FI - t-extending and $N = t_M t_S(N)$ for every fully invariant submodule N of M contain $Z_2(M)$.

(3) M is FI-t-Baer and $N = t_M t_S(N)$ for every fully invariant submodule N of M contain $Z_2(M)$.

Proof. (1) \Rightarrow (2)*M* is FI - t-semisimple implies *M* is FI - t-extending by Proposition (3. 7). Now, let *N* be a fully invariant submodule of *M* and $N \supseteq Z_2(M)$. Hence $N \le M$ by Theorem 3. 6 (4 \Rightarrow 3 \Rightarrow 5). Hence, $M = N \oplus N'$ for some $N' \le M$. It is obvious, that $N \le t_M t_S(N)$. Let Π' be the canonical projection on N', that is $\pi' : N \oplus N' \mapsto N' \le N \oplus N'$, so $\pi' \in S$, $\pi'(N) = 0 \le Z_2(M)$, so $\pi' \int_S(N)$, $m \in t_M t_S(N), \pi'(m) \in Z_2(M) \le N$. Hence $\pi'(m) = 0$, and then $m \in N$.

 $(2) \Rightarrow (3)$ It is obvious, since every FI - t-extending is FI - t- Baer [6, Thorem 3. 9].

(3) \Rightarrow (1) Since M is FI - t-Baer, $Z_2(M) = t_M(S)$ is a direct summand and $M = Z_2(M) \oplus M'$, where M' is nonsingular. Hence M' is a complement of $Z_2(M)$, so it is stable.

Now, let N' be a fully invariant submodule of M', so that N' is a fully invariant submodule of M. Put $N = Z_2(M) \oplus N'$. Then N is a fully invariant submodule of M containing $Z_2(M)$. On the other hand, M is FI - t-Baer and $t_{(N)}$ is a two sided ideal of S, hence $t_M t_S(N) \leq M$. Thus $N \leq M$. It follows that $M = N \oplus W$ for some $W \leq M$, hence $M = Z_2(M) \oplus N' \oplus W$. But by hypothesis complement of $Z_2(M)$ is stable so by [1], $N' \oplus W = M'$ and hence $N' \leq M'$, and this implies M' is FI-semisimple. Therefore M is FI - tsemisimple by Theorem 3. 6 $(3 \Rightarrow 1)$.

4. Strongly FI - t-Semisimple

Definition 4.1. An *R*-module *M* is called strongly FI - t-semisimple if for each fully invariant submodule *N* of *M*, there exists a fully invariant direct summand *K* such that $K \leq_{tes} N$.

Remarks and Examples (4. 2). (1) Every strongly FI - t-semisimple is FI - t-semisimple and every strongly t-semisimple is strongly FI - t-semisimple.

(2) Consider Q as Z-module is strongly FI - t-semisimple, since Q has only two fully invariant submodules (0), Q. But Q is not strongly t-semisimple.

(3) Every FI-semisimple module M is strongly FI - t-semisimple.

Proof. Let N be a FI-submodule of M. Then $N \leq M$, since M is a FI-semisimple. But $N \leq_{tes} N$, hence M is strongly FI - t-semisimple.

Proposition 4.3. Let M be an R-module with property, complement of any submodule of M is stable. The following statements are equivalent:

(1) M is strongly FI - t-semisimple;

(2) M is FI - t-semisimple;

Proof. (1) \Rightarrow (2)It is clear.

 $(2) \Rightarrow (1)$ Let N be a fully invariant submodule of M. Since M is FI - tsemisimple, there exists $K \leq M$ and $K \leq_{tes} N$. Hence $M = K \oplus W$ for some $W \leq M$. Hence K is a complement of W. But by hypothesis K is stable. Thus M is strongly FI - t-semisimple.

Proposition 4.4. A fully invariant submodule N of a strongly FI - t-semisimple module M is strongly FI - t-semisimple.

Proof. Let W be a fully invariant submodule of N. Then Wis a fully invariant submodule of M by Proposition (1. 3). Since M is strongly FI - tsemisimple, there exists $K \leq -M$, K is a fully invariant submodule of M and $K \leq_{tes} W$. But $K \leq -M$ implies $M = K \oplus A$ for some $A \leq M$ and this implies $N = K \oplus (A \cap N)$; that is $K \leq -N$. Beside this by Lemma (3. 5), K is a fully invariant submodule of N. Thus N is strongly FI - t-semisimple.

Remark 4.5. The condition a fully invariant submodule of M cannot be dropped from Proposition 4. 4 as the following example shows. Q as Zmodule is strongly FI - t-semisimple, and Z < Q. But Z is not strongly FI - t-semisimple and, Z is not fully invariant submodule of Q.

We can set the following corollaries.

Corollary 4.6. For any strongly FI - t-semisimple module M, $Z_2(M)$ is strongly FI - t-semisimple.

Proof. It follows directly by Proposition 4.4.

Proposition 4.7. Let M be an R-module and satisfies (*). If M is strongly FI - t-semisimple, then $M/(Z_2(M))$ is FI-semisimple, and hence it is strongly FI - t-semisimple. The converse is hold if M is self-projective.

Proof. \Rightarrow As M is strongly FI - t-semisimple, M is FI - t-semisimple and hence by Theorem 3. 6 $(1 \Rightarrow 2)$, $M/(Z_2(M))$ is FI-semisimple. \Leftarrow If $M/(Z_2(M))$ is a FI-semisimple, then by the proof of Theorem 3. 6 $(2 \Rightarrow 1)M$ is a FI-semisimple module and hence M is strongly FI - t-semisimple. **Corollary 4.8.** Let M be a self-projective and satisfies (*). Then the statements are equivalent:

(1) M is strongly FI - t-semisimple; (2) $M/(Z_2(M))$ is FI-semisimple; (3) M is FI - t-semisimple. Proof. (1) \Leftrightarrow (2) It follows by proposition (4. 7). (2) \Leftrightarrow (3) It follows by Theorem 3. 6 (2 \Leftrightarrow 1).

The following result follows by combining Proposition (4. 3) and Proposition (3. 10).

Proposition 4.9. Let M be an R-module such that complement of any submodule of M is stable. Then the following conditions are equivalent:

(1) M is strongly FI - t-semisimple;

(2) M is FI - t-semisimple;

(3) M has no proper nonzero fully invariant submodule N containg $Z_2(M)$ and $N \leq_{ess} M$.

Lemma 4.10. Let $M = M_1 \oplus M_2$ where M_1 and M_2 be *R*-modules, such that M_1 and M_2 are fully invariant in M. Then M is strongly FI-t-semisimple if and only if M_1 and M_2 are strongly FI - t-semisimple.

Proof. \Rightarrow It follows by Proposition 4. 4.

 $\leftarrow \text{Let } N \text{ be a fully invariant submodule of } M. \text{ Then by Proposition 1. 5,} \\ N = (N \bigcap M_1) \oplus (N \bigcap M_2) \text{ and } N \bigcap M_1, N \bigcap M_2 \text{ are fully invariant submodules} \\ \text{of } M_1 \text{ and } M_2 \text{ respectively. Put } N_1 = N \bigcap M_1, N_2 = N \bigcap M_2. \text{ As } M_1 \text{ and } M_2 \\ \text{are strongly FI-t-semisimple, there exists } K_1 \leq M_1, K_1 \text{ is a fully invariant in} \\ M_1 \text{ with } K_1 \leq_{tes} N_1 \text{ and there exists } K_2 \leq M_2 \text{ , } K_2 \text{ is a fully invariant in } M_2 \\ \text{with } K_2 \leq_{tes} N_2. \text{ But } K_1 \leq M_1, K_2 \leq M_2 \text{ implies } K = K_1 \oplus K_2 \leq M. \text{ By} \\ \text{Proposition 1.6, } (M_1, M_2) = 0, Hom(M_2, M_1) = 0, \\ \end{array}$

$$End(M_1, M_2) \cong \begin{pmatrix} EndM_1 & Hom(M_2, M_1) \\ Hom(M_1, M_2) & EndM_2 \end{pmatrix}$$
$$= \begin{pmatrix} EndM_1 & \alpha_1 \\ \alpha_2 & EndM_2 \end{pmatrix}.$$

Therefore

$$\theta = \left(\begin{array}{cc} \alpha_1 & 0\\ 0 & \alpha_2 \end{array}\right),$$

 $\alpha_1 \in EndM_1$, $\alpha_2 \in EndM_2$. It follows that $\theta(K_1 \oplus K_2) = \alpha_1(K_1) \oplus \alpha_2(K_2) \leq K_1 \oplus K_2 = K$. Thus K is fully invariant in M. Also $K_1 \leq_{tes} N_1$ and $K_2 \leq_{tes} N_2$ imply $K \leq_{tes} N$ by Proposition 1. 2(2). Thus M is strongly FI - t-semisimple.

Lemma 4.11. Let $M = M_1 \oplus M_2$ such that $annM_1 + annM_2 = R$. Then: (1) $Hom(M_1, M_2) = 0$ and $Hom(M_2, M_1) = 0$. (2) M_1 and M_2 are fully invariant in M.

Proof. (1) Since $R = annM_1 + annM_2$, then $M_1 = M_1(annM_1) + M_1(annM_2)$, $M_2 = M_2(annM_1) + M_1(annM_2)$. Put $annM_1 = A_1$, $annM_2 = A_2$, therefore $M_1 = M_1A_2$, and $M_2 = M_2A_1$. Then for each $\varphi \in Hom(M_1, M_2)$, $\varphi(M_1) = \varphi(M_1, A_2) = \varphi(M_1)A_2 \leq M_2A_2 = 0$, hence $\varphi = 0$. Thus $Hom(M_1, M_2) = 0$. Similarly, $Hom(M_2, M_1) = 0$.

(2) It follows directly by Proposition (1. 6).

Proposition 4.12. Let $M = M_1 \oplus M_2$ where M_1 and M_2 be *R*-modules with $M_1 + annM_2 = R$. Then *M* is strongly FI - t-semisimple if and only if M_1 and M_2 are strongly FI - t-semisimple.

Proof. \Rightarrow It follows by Proposition (4. 4).

Proposition 4.13. If M is an R-module and $M = M_1 \oplus M_2$, where M_1 and M_2 are fully invariant submodules of M. Then M is strongly FI - t-semisimple if and only if M_1 and M_2 are strongly FI - t-semisimple.

Proof. ⇒ By Lemma 4.11 (2) M_1 and M_2 are fully invariant submodule of M and so the result follows by Proposition 4.4.

 \leftarrow It follows by Lemma 4.11 (1).

References

- M.S. Abas, On Fully Stable Modules, Ph.D. Thesis, College of Science, University of Baghdad, 1991.
- [2] F.W. Anderson, K.R. Fuller, *Rings and Categories of Modules*, Second Edition, Graduate Texts in Math., Volume 13, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
- [3] Sh. Asgari, A. Haghany, t-Extending modules and t-Baer modules, Comm. Algebra, 39 (2011), 1605-1623.
- [4] Sh. Asgari, A. Haghany, Y. Tolooei, T-semisimple modules and T-semisimple rings comm, Algebra, 41, No. 5 (2013), 1882-1902.
- [5] Sh. Asgri, A. Haghany, Densely co-Hopfian modules, Journal of Algebra and its Aplications, 9 (2010), 989-1000.
- [6] Sh. Asgari, A. Haghany, Generalizations of t-extending modules relative to fully invariant submodules, J. Korean Math. Soc., 49 (2012), 503-514.
- [7] G. F. Birkenmeier, J.K. Park, S.T. Rizvi, Modules with fully invariant submodules essential in fully invariant summands, *Comm. Algebra*, **30**, No. 4 (2002), 1833-1852.
- [8] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, *Lifting Modules*, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.

- [9] N.V. Dung, D.V. Huynh, P.F Smith, R. Wisbauer, *Extending Modules*, Pitman Research Notes in Mathematics, **313**, Longman, Harlow, 1994.
- [10] Z.A. El-Bast, P.F. Smith, Multiplication modules, Comm. Algebra, 16 (1988), 755-779.
- [11] K.R. Goodearl, *Ring Theory, Non Singular Rings and Modules*, Marcel Dekker, Inc. New York-Basel, 1976.
- [12] Kasch, Modules and Rings, Acad. Press, London, 1982.
- [13] S.H. Mohamed, B.J. Muller, Continuous and Discrete Modules, Cambridge University Press, Cambridge, 1990.
- [14] Patrick F. Smith, Fully invariant multiplication modules, Palestine Journal of Mathematics, 4 (2015), 462-470.