Two-Time Scale Controlled Markov Chains: A Decomposition and Parallel Processing Approach

A. Haurie and F. Moresino

Abstract

This paper deals with a class of ergodic control problems for systems described by Markov chains with strong and weak interactions. These systems are composed of a set of m subchains that are weakly coupled. Using results already available in the literature one formulates a limit control problem the solution of which can be obtained via an associated nondifferentiable convex programming (NDCP) problem. The technique used to solve the NDCP problem is the Analytic Center Cutting Plane Method (ACCPM) which implements a dialogue between, on one hand, a master program computing the analytical center of a localization set containing the solution and, on the other hand, an oracle proposing cutting planes that reduce the size of the localization set at each main iteration. The interesting aspect of this implementation comes from two characteristics: (i) the oracle proposes cutting planes by solving reduced sized Markov Decision Problems (MDP) via a linear program (LP) or a policy iteration method; (ii) several cutting planes can be proposed simultaneously through a parallel implementation on m processors. The paper concentrates on these two aspects and shows, on a large scale MDP obtained from the numerical approximation “à la Kushner-Dupuis” of a singularly perturbed hybrid stochastic control problem, the important computational speed-up obtained.

I. INTRODUCTION

Markov Decision Processes (MDPs) or their control counterpart, Controlled Markov Chains (CMCs) are versatile modeling tools benefitting from a rather complete theoretical framework.

At the time of this research the authors were with the Dept. of Management Studies (HEC) of the University of Geneva, Switzerland. They thank J. Filar for an introduction to the theory of singularly perturbed MDPs and the relation to decomposition techniques in LP and J.-P. Vial for his help in the implementation of the ACCPM algorithm. A preliminary version of the paper has been presented at the 39th IEEE-CDC, Sydney, Australia, December 2000.
and a series of efficient computational tools. We refer the reader to the books by M. Puterman [1] or D. Bertsekas [2] for a comprehensive presentation of these methods. In the stochastic optimal control realm CMCs play an important role in the numerical solution of problems involving controlled diffusion and jump Markov processes. The book by Kushner and Dupuis [3] gives a comprehensive presentation of these numerical techniques that use approximating CMCs. It has been shown very early (see [4], [5]) that linear programming could be used to solve problems involving MDP’s with finite state and action spaces, in particular for the ergodic (average cost) case. As recalled by Blondel and Tsitsiklis in a recent survey of computational complexity results in control [6] ... linear programming is the only method known to solve average cost MDPs in polynomial time. However the linear programs (LPs) associated with MDPs are quite large and may suffer from ill-conditioning when the Markov chains contain strong and weak interactions, that is transitions probabilities differing of an order of magnitude and corresponding to different time scales. These problems, related to the theory of singularly perturbed control systems, have been studied by Delebeque and Quadrat [7] and Phillips and Kokotovic[8] among others and, more recently, by Abbad, Bielecki and Filar [9] and [10] who have shown that, in the case of average cost MDPs, a limit control problem could be defined with an associated LP having a nice block-diagonal structure.

One way to deal with large scale but structured LPs consists of implementing a decomposition technique. The most celebrated one being the Dantzig-Wolfe [11] method where an auxiliary nondifferentiable convex programming problem is solved by the Kelley cutting plane method. Recent advances in this domain have permitted the development of a pseudo polynomial time decomposition technique called the Analytic Center Cutting Plane Method (ACCPM) [12], [13], [14], [15]. In this paper we exploit the structured LP formulation proposed in [9] and ACCPM to provide an efficient algorithm for solving ergodic MDPs with strong and weak interactions. In particular the method lends itself to a parallel processing implementation which produces a very significant speedup in the computation of the solution. The paper is organized as follows: in section II the class of MDPs under consideration is described and the so-called “limit-control problem” is defined, with the particular structured LP that can be associated with it; in section III we discuss the decomposition technique that can be implemented to solve the LP associated with the “limit-control problem”; in section IV we detail the ACCPM algorithm that can be used to solve the nondifferentiable convex optimization problem that is implied by the decomposition
approach and we show how the algorithm can exploit parallel processing and efficient dynamic programming methods in the “oracles” that are queried at each step to provide local information in the form of cutting planes; in section V we illustrate the method on the CMC resulting from the numerical approximation of a switching diffusion control system much akin to the systems studied by Filar and Haurie in [16] and [17]; this permits us to show the important speed-up obtained through the implementation of ACCPM with parallel generation of cutting planes by the oracles.

II. ERGODIC MDP WITH STRONG AND WEAK INTERACTIONS

Consider an MDP with finite state and control sets \(S \) and \(U \) respectively. A state \(s \in S \) is represented by a pair \(s = (x, i) \) where \(x \in X \) corresponds to a fast mode and \(i \in I \) to a slow mode respectively. More precisely, using the notations of Ref. [10] the generator \(G^\varepsilon[(x, i), (x', j)|u] \) of the MDP is assumed to have the form

\[
G^\varepsilon[(x, i), (x', j)|u] = B[(x, i), (x', j)|u] + \varepsilon D[(x, i), (x', j)|u] + o(\varepsilon)
\]

(1)

where

- \(B[(x, i), (x', j)|u] \) is the generator of a completely decomposable MDP, with \(\text{card}(I) \) sub-processes which do not communicate one with the other; i.e. if \(i \neq j \) then \(B[(x, i), (x', j)|u] \equiv 0 \ \forall x, x' \in X \)
- \(\varepsilon D[(x, i), (x', j)|u] \) is a perturbation that links together these \(\text{card}(I) \) sub-blocks.

This structure is illustrated on Fig. 1 by the shadows of the matrices \(B_\mu \) and \(\varepsilon D_\mu \) defining the generator of the Markov chain associated with a feedback (Markov) policy \(\mu \). The size of the dot indicates the order of magnitude of the corresponding coefficient.

A transition cost \(L^i(x, u) \) is associated with the state \(s = (i, x) \) and the control action \(u \). The class \(\Gamma \) of admissible stationary policies is a set of feedback laws \(\gamma : (x, i) \mapsto u = \gamma(x, i) \).

We assume, to simplify, that each admissible policy generates an ergodic Markov chain. One searches for a stationary policy \(\gamma^* \in \Gamma \) that maximizes the average cost criterion

\[
J(\gamma) = \liminf_{N \to \infty} \frac{1}{N} E_{\gamma} \left[\sum_{n=0}^{N-1} L^{i(n)}(x(n), u(n)) \right].
\]

(2)
Fig. 1. Structure of the generator of the weakly coupled MDP

A. LP formulations

Let $Z^i(x, u)$ denote the joint probability of being in state (x, i) and taking the action u. The MDP can be solved as the following LP

$$\max \sum_i \sum_x \sum_u L^i(x, u) Z^i(x, u)$$

s.t.

$$0 = \sum_{i \in I} \sum_x \sum_u G^\varepsilon[(x, i), (x', j)|u] Z^i(x, u)$$

$$x' \in X, \quad j \in I$$

(4)

$$1 = \sum_i \sum_x \sum_u Z^i(x, u)$$

(5)

$$0 \leq Z^i(x, u) \quad i \in I \quad x' \in X, \quad u \in U.$$

(6)

This problem is usually ill-conditioned because of the presence of big and small transition probabilities in Eq. (4).

B. The LP associated with the limit control problem

It has been shown in [10] that, when ε tends to zero, the solution of the MDP can be approximated by the solution of a limit control problem (LCP). To this LCP corresponds the
following LP

\[
\begin{align*}
\text{max} & \quad \sum_i \sum_x \sum_u L^i(x, u)Z^i(x, u) \\
\text{s.t.} & \quad 0 = \sum_x \sum_u B[(x, i), (x', i)|u]Z^i(x, u) \\
& \quad \forall x' \in X, \, i \in I \\
& \quad 0 = \sum_i \sum_{x'} \sum_x \sum_u D[(x, i), (x', j)|u]Z^i(x, u) \\
& \quad \forall j \in I \\
& \quad 1 = \sum_i \sum_x \sum_u Z^i(x, u) \\
& \quad 0 \leq Z^i(x, u) \quad i \in I, \, x' \in X, \, u \in U.
\end{align*}
\]

In this formulation the \(\varepsilon \) term has vanished and therefore the ill-conditioning, due to the mixing of high and low transition probabilities, also disappears. In this LP the constraints (8) have a block-diagonal structure while the constraints (9-10) are the coupling ones. Clearly this places the problem in the realm of decomposition methods in LP.

III. The decomposition method

A. Decoupling the MDPs

The LP associated with the limit MDP (7-11) admits a dual formulation. Let \(\phi(x', i) \) and \(\psi(j) \) be the dual variables associated with the constraint of index \((x', i)\) in Eq. (8) and the constraint of index \(j \) in Eq. (9) respectively. Let \(\Upsilon \) be the dual variable associated with the constraint Eq. (10). The dual LP is

\[
\begin{align*}
\min_{\psi, \phi, \Upsilon} \Upsilon \\
\text{s.t.} \\
\Upsilon & \geq L^i(x, u) - \sum_{x'} B[(x, i), (x', i)|u]\phi(x', i) \\
& \quad - \sum_j \sum_{x'} D[(x, i), (x', j)|u]\psi(j) \\
& \quad i \in I, \, x \in X, \, u \in U.
\end{align*}
\]
Define the expressions
\[
\Pi(\psi, x, i, u) = L^i(x, u) - \sum_j \sum_{x'} D[(x, i), (x', j)|u] \psi(j),
\]
i \in I, x \in X, u \in U. \tag{13}

Then the dual problem (12) can be rewritten as
\[
\min_{\psi, \phi, \Upsilon} \Upsilon \\
\text{s.t.} \\
\Upsilon \geq \Pi(\psi, x, i, u) - \sum_{x'} B[(x, i), (x', i)|u] \phi(x', i) \\
i \in I, x \in X, u \in U. \tag{14}
\]

Due to the block-angular structure of the generator \(B \), the constraints in (14) decouple. More precisely we formulate the \(\text{card}(I) \) subproblems
\[
\chi_i(\psi) = \min_{\phi(i), \Upsilon^i} \Upsilon^i \\
\text{s.t.} \\
\Upsilon^i \geq \Pi(\psi, x, i, u) - \sum_{x'} B^i[x, x'|u] \phi(x', i), \\
\forall x \in X, \forall u \in U, \tag{15}
\]
where \(B^i \) denotes the block of nonzero coefficients in the matrix \(B \). For each \(i \in I \), the problem (15) corresponds to a decoupled MDP. Hence, if one knows the correct dual values \(\psi(i), i \in I \), then, by introducing the modified rewards \(\Pi(\psi, x, i, u) \) as defined in (13), the problem can be decomposed into \(\text{card}(I) \) decoupled MDPs. The solution is therefore obtained by solving the convex optimization problem involving the dual variables \(\psi \)
\[
\min_{\psi \in \mathbb{R}^{\text{card}(I)}} \chi(\psi) \tag{16}
\]
where \(\chi(\psi) \) is the convex function defined as \(\chi(\psi) = \max_{i \in I} \chi_i(\psi) \) and \(\chi_i(\psi) \) is the optimal value obtained for the problem (15). We notice here that, each problem (15) can be solved either as an LP or via a typical dynamic programming method like, e.g. policy improvement or value iterations.
IV. THE ANALYTIC CENTER CUTTING PLANE METHOD

We use ACCPM with a parallel processor implementation to solve the convex programming problem (16). The epigraph of χ can be approximated by intersections of half-spaces. Given a test value $\tilde{\psi}$ in $\mathbb{R}^{\text{card}(I)}$, a procedure called oracle generates a subgradient $X(\tilde{\psi}) \in \partial \chi$ at $\tilde{\psi}$ with the property

$$\chi(\psi) \geq \chi(\tilde{\psi}) + \langle X(\tilde{\psi}), \psi - \tilde{\psi} \rangle \quad \forall \psi \in \mathbb{R}^{\text{card}(I)}. \quad (17)$$

This inequality defines a supporting hyperplane for the function to be optimized; we call it an optimality cut.

Suppose the oracle has been called at a given sequence of points $\{\psi^n\}, n \in N$. The oracle has therefore generated a set of optimality cuts defining a piecewise linear approximation $\bar{\chi} : \mathbb{R}^{\text{card}(I)} \rightarrow \mathbb{R}$ to the convex function χ

$$\bar{\chi}(\psi) = \max_{n \in N} \{\chi(\psi^n) + \langle X(\psi^n), \psi - \psi^n \rangle\}. \quad (18)$$

This permits us to write the following linear program

$$\begin{align*}
\min & \quad \varsigma \\
\text{s. t.} & \quad \varsigma \geq \chi(\psi^n) + \langle X(\psi^n), \psi - \psi^n \rangle, \quad \forall n \in N, \\
\end{align*}$$

the solution of which gives a lower bound π_l for the convex problem (16). Observe also that the best feasible solution in the generated sequence provides an upper bound π_u for the convex problem (16), i.e.

$$\pi_u = \min_{n \in N} \{\chi(\psi^n)\}. \quad (19)$$

For a given upper bound π, we call localization set the following polyhedral approximation

$$\mathcal{L}(\pi) = \{(\varsigma, \psi) : \pi \geq \varsigma, \quad \varsigma \geq \chi(\psi^n) + \langle X(\psi^n), \psi - \psi^n \rangle, \quad \forall n \in N\}. \quad (20)$$

It is the best (outer) approximation of the optimal set in (16) in the epigraph space of the function χ.

We can now summarize the ACCPM algorithm

1. Compute the analytical center1 $(\bar{\tau}, \bar{\psi})$ of the localization set $\mathcal{L}(\pi_u)$ and an associated lower bounds.

1The analytic center is the unique point in that set that maximizes the product of the slacks to the defining constraints.
bound \(\pi \).

2. Call the oracle at \((\pi, \psi)\). The oracle returns one or several cuts and an upper bound \(\chi(\psi) \)

3. Update the bounds: \(\pi_u = \min\{\chi(\psi), \pi_u\} \) and \(\pi_l = \max\{\pi, \pi_l\} \)

4. Update the upper bound \(\pi \) in the definition of the localization set (20) and add the new cuts.

These steps are repeated until a point is found such that \(\pi_u - \pi_l \) falls below a prescribed optimality tolerance. The polynomial convergence of the method was studied in [18] and [19].

In our case, as the function \(\chi \) is the maximum of \(\text{card}(I) \) functions, \textit{i.e.,}

\[
\chi(\psi) = \max_{i \in I} \chi_i(\psi),
\]

the oracle thus generates a valid cut (that is a separating plane for the epigraph of the \(\chi \) function) for each \(i \) in \(I \). The single cut (17) can be replaced with the following \(\text{card}(I) \) cuts:

\[
\chi(\psi) \geq \chi_i(\tilde{\psi}) + \langle X_i(\tilde{\psi}), \psi - \tilde{\psi} \rangle,
\]

where \(X_i(\tilde{\psi}) \) is a subgradient of the function \(\chi_i \) at \(\tilde{\psi} \).

There is no general guarantee that a multiple cut approach improves the efficiency of the algorithm, since there is an additional computing time associated with the calculation of the analytic centers when the number of cuts increases. In the framework of this particular problem the multiple cut approach proved to be more efficient than a single cut approach because the extra workload in computing the analytic center is negligible compared with the computing time of the oracle, which is the same in both cases. The multiple cuts increases the shrinking of the localization set and reduces the number of calls to the oracle. Indeed the oracle has to compute, at each iteration, \(\chi_i(\tilde{\psi}) \) and \(X_i(\tilde{\psi}) \) for all subproblems \(i \) in \(I \). In the single cut approach one selects the cut touching the epigraph of \(\chi \) and one doesn’t use the other cuts, contrarily to the multiple cut approach where all cuts are used.

Furthermore, the oracle can benefit from a parallel implementation, since the \(\text{card}(I) \) MDPs are totally decoupled and, therefore, can be solved on different computers. As indicated earlier, the oracle can use a policy improvement (PI) algorithm instead of a pure LP approach, as it has been observed in practice that PI is efficient in solving average cost MDPs of moderate size.
V. APPLICATION TO A SWITCHING DIFFUSION CONTROL PROBLEM

A. A switching diffusion ergodic control model

We consider an ergodic stochastic control problem of the class studied in Ref. [20]. More details on the economic interpretation of this model can be found in [21] and [22]. The system has an hybrid state \((x, \xi)\). The continuous state \(x\) takes value in \(\mathbb{R}^2\) and evolves according to a controlled diffusion process

\[
dx_k(t) = [u_k(t) - \alpha_k x_k(t)]dt + \sigma_k d\omega_k(t) \quad k = 1, 2.
\]

whereas the discrete state \(\xi\) takes value in a finite set \(I\) and evolves according to a controlled jump process with transition rates

\[
\varepsilon q_{i(i+1)}(x_1, x_2) = \varepsilon \left(E_i - e_i Y(x_1, x_2) \right)
\]

\[
\varepsilon q_{i(i-1)}(x_1, x_2) = \varepsilon \left(D_i + d_i Y(x_1, x_2) \right).
\]

with

\[
Y(x_1, x_2) = \left(\eta [x_1]^{-\beta} + (1 - \eta)[x_2]^{-\beta} \right)^{-\frac{1}{\beta}},
\]

A reward rate is defined by

\[
L^\xi(t)(x_1(t), x_2(t), u_1(t), u_2(t))
= c(\xi(t))Y(x_1(t), x_2(t))
- a_1 x_1(t) - a_2 x_2(t) - A_1 x_1^2(t) - A_2 x_2^2(t)
- b_1 u_1(t) - b_2 u_2(t) - B_1 u_1^2(t) - B_2 u_2^2(t).
\]

We consider the above model with a set of parameter values given in Table I. Here the parameter \(h\) defines the grid mesh for the \(x\) variables, and \(h_u\) the grid mesh for the controls.

In this model the parameter \(\varepsilon\) will eventually tend to zero, leading to a singularly perturbed switching diffusion control problem of the type discussed in [16] and [17].

B. The approximating MDP

To compute numerically the solution to this stochastic control problem we implement the method of Kushner and Dupuis [3] which uses a sequence of approximating MDPs. The singular perturbation structure in the stochastic control problem translates into an MDP with strong and weak interactions, in this approximation technique. We refer again to [16], [17], [22], [21] for more details on the structure of the approximating MDPs.
C. Solving the limit control MDP

We compare the decomposition method presented above with a direct solution of the structured LP using an efficient commercial solver (CPLEX). ACCPM is implemented with a policy improvement (PI) algorithm for the oracle\(^2\). The parallel implementation of ACCPM has been realized using MPI, a library of C-callable routines (see MPI’s reference book [24]) on a cluster of 4 PC. Our test problem is the weakly coupled CMC obtained for \(I = \{1, 2, 3, 4\} \) and a grid mesh \(h=10/3 \), corresponding to 30 sampling points on each axis. To solve the limit control problem, the corresponding LP has 3’849 rows, 135’444 columns and 1’136’514 non-zero elements. To solve the LP, CPLEX took 981 seconds (on a PC, 400 MHz, under Linux)\(^3\). When using ACCPM-PI the computing time to solve the limit control problem falls to 290 seconds. If we run the parallel version of ACCPM-PI on four processors the execution time drops to 91 seconds. In Figure 2 we display, for the parallel implementation of the decomposition method, the speed-up as a function of the number of processors.

Figure 3 shows, for both methods (CPLEX vs ACCPM-PI), the steady state probabilities for \(x \), when \(i = 3 \). We see distinctly that both methods give the same results. In addition, the maximal expected reward growth rate \(J \) equals 27.6, for both methods. Although the linear programming direct approach gives an accurate solution concerning the steady state probabilities

\(^2\)The oracle is written in C and uses SuperLU [23], a sparse linear equation solver.

\(^3\)CPLEX offers three methods, namely the simplex, the dual simplex and an interior point method. The solver took 981 seconds with the dual simplex, more than 3’000 seconds with the primal simplex. The interior point method of CPLEX stopped after 307 seconds and proposed an infeasible solution with an objective value close to the optimal value. Running the crossover to obtain a feasible solution took 726 seconds more.
and the maximal expected reward growth rate, this method gives, in most cases, an imprecise solution concerning the controls and the value function. Figure 4 shows the value function and Figure 5 shows the optimal policy, for the discrete state $i = 3$, for both methods. We see that the direct approach gives an accurate result in the middle of the grid but a blurred result near the boundaries. This is typically due to the fact that the steady state probabilities are close to 0 near the boundaries. In the direct approach the policy is defined by the ratio of the joint state-action probability $Z^i(x,u)$ with the steady state probability $\sum_{u \in U} Z^i(x,u)$. This ratio is prone to numerical instability when the values are close to 0. The PI algorithm avoids such a pitfall.

D. Computational performance

We have performed a series of tests on different instances of this approximating MDP, as shown in Table II. There the value in first column, e.g. D10-2, indicates the number of sampling
points on each x-axis (in this case 10) and the number of discrete states (here card(I)=2). The other columns indicate the size of the associated LP for the limit control problem.

The corresponding execution times are given in Table III, whereas the speed-up resulting from parallel implementation are reported, for the different models, in Table IV. Finally Table V indicates, for different instances of the problem, the maximal size of the grid that would lead to a computationally feasible limit control model. The maximal grid size for the ACCPM-PI method remains identical for all instances, since the limiting factor, here is the convergence in the oracle.

The execution times reported in Table III show that ACCPM-PI is performing consistently
Table II

Characteristics of the equivalent LP formulation. (size reduced by the presolver).

<table>
<thead>
<tr>
<th>Problem</th>
<th># subproblems</th>
<th>rows</th>
<th>cols</th>
<th>nonz</th>
</tr>
</thead>
<tbody>
<tr>
<td>D10-2</td>
<td>2</td>
<td>245</td>
<td>8202</td>
<td>63036</td>
</tr>
<tr>
<td>D30-2</td>
<td>2</td>
<td>1925</td>
<td>67722</td>
<td>534396</td>
</tr>
<tr>
<td>D50-2</td>
<td>2</td>
<td>5205</td>
<td>184842</td>
<td>1466556</td>
</tr>
<tr>
<td>D70-2</td>
<td>2</td>
<td>10085</td>
<td>359562</td>
<td>2859516</td>
</tr>
<tr>
<td>D10-4</td>
<td>4</td>
<td>489</td>
<td>16404</td>
<td>134274</td>
</tr>
<tr>
<td>D30-4</td>
<td>4</td>
<td>3849</td>
<td>135444</td>
<td>1136514</td>
</tr>
<tr>
<td>D50-4</td>
<td>4</td>
<td>10409</td>
<td>369684</td>
<td>3117954</td>
</tr>
<tr>
<td>D10-6</td>
<td>6</td>
<td>733</td>
<td>24606</td>
<td>205512</td>
</tr>
<tr>
<td>D30-6</td>
<td>6</td>
<td>5773</td>
<td>203166</td>
<td>1738632</td>
</tr>
<tr>
<td>D40-6</td>
<td>6</td>
<td>10093</td>
<td>357246</td>
<td>3066792</td>
</tr>
<tr>
<td>D10-12</td>
<td>12</td>
<td>1465</td>
<td>49212</td>
<td>419226</td>
</tr>
<tr>
<td>D30-12</td>
<td>12</td>
<td>11545</td>
<td>406332</td>
<td>3544986</td>
</tr>
</tbody>
</table>

Table III

Execution times.

<table>
<thead>
<tr>
<th>Problem</th>
<th>ACCPM-PI</th>
<th>CPLEX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 proc.</td>
<td>mult-proc.</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>D10-2</td>
<td>4.8</td>
<td>3.4</td>
</tr>
<tr>
<td>D30-2</td>
<td>47.4</td>
<td>28.3</td>
</tr>
<tr>
<td>D50-2</td>
<td>297</td>
<td>187</td>
</tr>
<tr>
<td>D70-2</td>
<td>897</td>
<td>577</td>
</tr>
<tr>
<td>D10-4</td>
<td>16.2</td>
<td>6.6</td>
</tr>
<tr>
<td>D30-4</td>
<td>290</td>
<td>91</td>
</tr>
<tr>
<td>D50-4</td>
<td>1663</td>
<td>553</td>
</tr>
<tr>
<td>D10-6</td>
<td>35.4</td>
<td>15.3</td>
</tr>
<tr>
<td>D30-6</td>
<td>501</td>
<td>206</td>
</tr>
<tr>
<td>D40-6</td>
<td>1234</td>
<td>540</td>
</tr>
<tr>
<td>D10-12</td>
<td>93.9</td>
<td>32.5</td>
</tr>
<tr>
<td>D30-12</td>
<td>1264</td>
<td>420</td>
</tr>
</tbody>
</table>

Better than CPLEX with the simplex algorithm, whereas it does not always outperform CPLEX with an interior point method. The introduction of parallel computing gives a sensible advantage to ACCPM-PI over CPLEX-IPM.

The maximal grid sizes reported in Table V demonstrate the advantage of an implementation of ACCPM-PI. The use of an efficient policy improvement algorithm to solve each subproblem permits the implementation of a finer grid in the numerical approximation of the switching diffusion dynamic programming equations and this remains the same for any number of subproblems.
<table>
<thead>
<tr>
<th>Problem</th>
<th>calls</th>
<th>cuts</th>
<th>1 proc. time</th>
<th>2 proc. sp-up</th>
<th>3 proc. sp-up</th>
<th>4 proc. sp-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>D10-2</td>
<td>6</td>
<td>12</td>
<td>4.8</td>
<td>1.41</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D30-2</td>
<td>5</td>
<td>10</td>
<td>47.4</td>
<td>1.67</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D50-2</td>
<td>7</td>
<td>14</td>
<td>297</td>
<td>1.59</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D70-2</td>
<td>7</td>
<td>14</td>
<td>897</td>
<td>1.55</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D10-4</td>
<td>11</td>
<td>44</td>
<td>16.2</td>
<td>1.62</td>
<td>—</td>
<td>2.45</td>
</tr>
<tr>
<td>D30-4</td>
<td>10</td>
<td>40</td>
<td>290</td>
<td>1.90</td>
<td>—</td>
<td>3.19</td>
</tr>
<tr>
<td>D50-4</td>
<td>13</td>
<td>52</td>
<td>1660</td>
<td>1.77</td>
<td>—</td>
<td>3.01</td>
</tr>
<tr>
<td>D10-6</td>
<td>16</td>
<td>96</td>
<td>35.4</td>
<td>1.62</td>
<td>—</td>
<td>2.31</td>
</tr>
<tr>
<td>D30-6</td>
<td>14</td>
<td>84</td>
<td>501</td>
<td>1.62</td>
<td>2.43</td>
<td>—</td>
</tr>
<tr>
<td>D50-6</td>
<td>15</td>
<td>90</td>
<td>1234</td>
<td>1.60</td>
<td>2.29</td>
<td>—</td>
</tr>
<tr>
<td>D10-12</td>
<td>22</td>
<td>264</td>
<td>933</td>
<td>1.64</td>
<td>2.29</td>
<td>2.89</td>
</tr>
<tr>
<td>D30-12</td>
<td>19</td>
<td>118</td>
<td>1264</td>
<td>1.66</td>
<td>2.25</td>
<td>3.01</td>
</tr>
</tbody>
</table>

TABLE IV

SPEED-UP OF ACCPM-PI

<table>
<thead>
<tr>
<th># subproblems</th>
<th>ACCPM-PI</th>
<th>AMPL-CPLEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>200 × 200</td>
<td>75 × 75</td>
</tr>
<tr>
<td>4</td>
<td>200 × 200</td>
<td>55 × 55</td>
</tr>
<tr>
<td>6</td>
<td>200 × 200</td>
<td>40 × 40</td>
</tr>
<tr>
<td>12</td>
<td>200 × 200</td>
<td>30 × 30</td>
</tr>
</tbody>
</table>

TABLE V

MAXIMAL GRID SIZE.

(i.e. of slow modes i).

VI. CONCLUSION

In this paper we have presented a parallel implementation of a decomposition method for the computation of the solution of average cost MDPs with strong and weak interactions (associated with two time scales). We compared the ACCPM decomposition method, involving a policy improvement algorithm at the oracle level, with a direct LP method to solve the limit control problem. We observed (i) a sensible reduction of the execution time, (ii) a better accuracy of the policies, (iii) a sensible reduction of the RAM needed. This paper provides another interesting example where a convex optimization technique (here the analytic center cutting plane method for convex optimization) can contribute an important improvement in the numerical solution of difficult control problems. Indeed the nondifferentable convex optimization problem could be also
solved using other methods. However as reported in [25] ACCPM works efficiently on several instances of large scale optimization problems which could be tackled through a formulation as a nondifferentiable convex optimization. An interesting advantage offered by ACCPM-PI, in this particular control application, was to allow the use of policy improvement techniques to solve the subproblems at the oracle level.

REFERENCES

