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Abstract: Regression models have been in use for decades to explore and quantify the associa-
tion between a dependent response and several independent variables in environmental sciences,
epidemiology and public health. However, researchers often encounter situations in which some
independent variables exhibit high bivariate correlation, or may even be collinear. Improper statis-
tical handling of this situation will most certainly generate models of little or no practical use and
misleading interpretations. By means of two example studies, we demonstrate how diagnostic tools
for collinearity or near-collinearity may fail in guiding the analyst. Instead, the most appropriate
way of handling collinearity should be driven by the research question at hand and, in particular, by
the distinction between predictive or explanatory aims.

Keywords: correlated predictors; exposure-response association; collinearity; nonlinear effects;
multivariable modelling

1. Introduction

Correlation between independent variables in multiple regression modelling can have
a far-reaching impact on the accurate estimation of the model and, thus, its results and
interpretation [1]. This often neglected phenomenon has been recognised as ‘collinearity’,
but has rarely been addressed in data analyses with the adequate attention it deserves.
Strictly speaking, collinearity or ‘ill-conditioning’ (as termed by Draper and Smith [2]) refers
to linear dependence between two independent variables. The notion can be extended to
‘multicollinearity’, meaning that multiple independent variables are involved. The casual
use of ‘collinearity’ to denote a situation of strongly but not perfectly correlated variables
has led to a distinction between exact and near-collinearity, of which latter is indicated
by strong but not perfect correlation between a pair of independent variables [2]. Exact
collinearity leads to non-unique least-squares estimates of regression coefficients while
near-collinearity can cause numerical problems when fitting the model. Under the latter
condition, the least-squares estimates can have a substantially inflated variance [3], and
with increasing degree of collinearity, the least-squares solution becomes more and more
unstable, and regression coefficients more and more sensitive to small changes in the data.
In such a case, the interpretation of a regression coefficient in a multivariable model, which
is based on varying one variable while keeping the others constant, becomes more difficult
since variations in one variable are associated with dramatic shifts in another variable.
Small data samples are especially sensitive to collinearity as inflation of standard errors
of regression coefficients induced by collinearity adds up to a generally more unstable
estimation.

Exact collinearity may occur if variables are naturally related to each other. For exam-
ple, in blood analysis, white blood cells consist of five subtypes: neutrophils, eosinophils,
basophils, lymphocytes, and monocytes. If the concentrations of all five subtypes and of
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total white blood cells are measured and included as independent variables in a regression
model to predict C-reactive protein (CRP), a software package will ‘automatically’ detect
exact collinearity by linear programming and then arbitrarily choose one variable, often
simply the last one, to be omitted from the model (see Table 1 and Supplementary Ma-
terials). For near-collinearity, however, recommendations include the use of a summary
variable composed of several correlated independent variables in a regression model, or
the omission of one or several variables assuming the dropped variable does not hold
further valuable information. Hence, while collinearity has been studied in many articles
in the past (e.g., [4–8]), treatment of the problem in practice mostly targets the prevention
of symptoms (e.g., inflated variance, unstable parameter estimates). We propose a more
purposeful approach to dealing with collinearity in statistical modelling by distinguishing
description from prediction or explanation [9,10].

Table 1. Illustrative extract of the data of the study of Ratzinger et al. [11]. White blood cells consist of the five subtypes
neutrophils, eosinophils, basophils, lymphocytes, and monocytes and, hence, their sum equals the white blood cell count.
See Supplementary Materials for the full table and the analysis.

Observation Neutrophils
(G/L)

Eosinophils
(G/L)

Basophils
(G/L)

Lymphocytes
(G/L)

Monocytes
(G/L)

White Blood
Cell Count

(G/L)

C-Reactive
Protein
(mg/dL)

1 11.5 0.0 0.1 0.6 1.1 13.3 15.99
2 13.9 0.0 0.0 3.0 3.3 20.2 13.27
3 13.0 0.2 0.0 0.2 1.1 14.5 14.99
4 11.0 0.1 0.0 0.6 0.8 12.5 9.93
5 10.1 0.0 0.0 0.6 0.8 11.5 16.70

Therefore, the objective of this article is to revisit collinearity diagnostics and associated
recommendations to deal with collinearity by focusing on two simple case studies each
with two independent variables, but with different types of research aims: diagnostic
prediction and explanation. In particular, we will evaluate the use of the variance inflation
factor (VIF), the condition number and a more refined method to detect high, possibly
nonlinear correlation between independent variables using a generalised additive model.
The first illustrative example uses data from a study by Tang et al. [12] who have aimed at
identifying quantitative features derived from computer tomography (CT) chest images
of 176 confirmed COVID-19 cases in order to perform binary classification of disease
severity within this cohort. The second example is focused on the current anthropogenic
contribution to the progression of climate change.

The remainder of this work is organised as follows. In Section 2, we will review the
problem of collinearity in the context of model-building including well-known diagnostics
and remedies and will use the blood analysis example for illustration. The two case studies
will be presented in Section 3 to demonstrate how collinearity diagnostics would guide
further analyses. Some concluding remarks are given in Section 4.

2. Methods

Previous discussions of ill-conditioned data and their consequences have focused on
three key aspects: impact of collinearity on statistical estimation and inference, diagnostics
to detect it, and proposals to resolve it [2,4,5,7,13,14]. The following section will adhere to
this general structure with the intent to give insight into the basic considerations when
dealing with highly correlated variables in regression analysis.

2.1. The Problem of Collinearity

We will briefly describe exact and near-collinearity. Consider the classical multiple
linear regression model with p independent variables and sample size n given in matrix
notation by

y = Xβ + ε (1)
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where y ∈ Rn denotes the dependent variable, ε ∼ N
(
0, σ2 I

)
refers to the error term with

the n× n identity matrix I, and X ∈ Rn×(p+1) denotes the combination of the n× p design
matrix of the independent variables

(
x1, . . . , xp

)T and a unit vector xo = (1, . . . , 1)T in the

first column. The vector β =
(

β0, . . . , βp
)T represents the p + 1 regression parameters of

the model.
The standard estimation approach to minimise the residual sum of squares is the well-

known ordinary least-squares (OLS) estimation process aiming to minimise the residual
sum of squares (RSS)

RSS(β) = (y− Xβ)T(y− Xβ). (2)

The closed-form expression of the estimate for the true unknown regression coeffi-
cients can then be obtained by the first derivation of Equation (2).

β̂ =
(

XTX
)−1

XTy (3)

Suppose one variable of the design matrix X is exactly equal to a linear combination
of the remaining variables, e.g., white blood cell count exactly equals the sum of concentra-
tions of granulocytes (neutrophils, eosinophils, basophils), lymphocytes, and monocytes
(Table 1). Then, XTX is singular, i.e., has rank less than the number of its columns and
cannot be inverted. Hence, β̂ cannot be computed unless one of the variables in X is
omitted from the analysis.

The variance–covariance matrix of the OLS estimator can be written as:

Var
(

β̂
)
=
(

XTX
)−1

E
[
eTe
](

XTX
)−1

(4)

and reduces to
Var

(
β̂
)
= σ2

(
XTX

)−1
(5)

under the assumptions of homoscedasticity and no autocorrelation among the OLS resid-
uals

(
E
[
eTe
]
= σ2 I

)
. In the case of linear dependence among the columns in the design

matrix X, it is obvious that both Equations (4) and (5) cannot be numerically evaluated as
XTX cannot be inverted. Now suppose we just consider white blood cells and neutrophils
for the analysis. These two variables still have a correlation coefficient of 0.982 and XTX
is close to singularity. The term is invertible, but the variance of the estimated regression
coefficients of white blood cells and neutrophils will be outstandingly high. Hence, near-
collinearity is sufficient to cause inflated standard errors and wide confidence intervals
which, in turn, reflect that slight changes in the data can cause considerable variations in
the parameter estimates [15]. However, near-collinearity is mainly defined as a matter of
the degree of interrelation among the columns in the design matrix. Therefore, the question
arises at which threshold of bivariate correlation should remedies be considered.

2.2. Diagnostics for Collinearity

Identifying the degree of interrelations between the independent variables is an impor-
tant part of data screening prior to analysis [16]. Traditional diagnostics comprise checking
the pairwise sample correlation matrix and investigating the variance inflation factor (VIF).
As a pragmatic condition for ruling out near-collinearity, all pairwise correlations between
independent variables intended to be included in the model should be clearly smaller
than 1. According to Dohoo et al. [17], values above 0.9 almost certainly point towards the
presence of collinearity. However, the proposed requirements present sufficient conditions,
not necessary ones, for the presence of collinearity. In the blood analysis example, all pair-
wise correlations are smaller than 1, but still exact collinearity exists. Similarly, pairwise
correlation coefficients can only partly detect near-collinearity.

A stricter criterion is obtained by evaluating the multiple correlation between covari-
ates, i.e., the squared coefficient of determination R2

i of each model where one independent
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variable, xi, is regressed on all other independent variables Mi =
{

x1, . . . , xi−1, xi+1, . . . , xp
}

.
These numbers can be transformed into variance inflation factors [18] which express the
magnitude by which variances of regression coefficients inflate when independent variables
are correlated:

VIF(βi) =
1

1− R2
i

. (6)

If the independent variables in Mi are uncorrelated to xi, we will obtain R2
i = 0 and,

hence, VIF(βi) = 1. In the case of exact collinearity (as in the blood analysis example),
R2

i = 1 and VIF(βi) = ∞. A rule-of-thumb claims that VIF values should all be lower
than 10 (corresponding to R2

i < 0.9), while values between 5 and 10 are already considered
problematic [14,19]. However, O’Brien [15] argues that model specification should not end
with proving that the rule is met, and other issues with model building may also impact
the stability of the estimates. In the reduced model with only neutrophils and white blood
cells, VIF for both variables results as 1/

(
1− 0.9822) = 28.02 indicating problems with

near-multicollinearity according to this rule.
An alternative diagnostic proposed by Belsley et al. [1] is the condition number de-

fined as the square root of the ratio of the largest (λmax) to the smallest (λmin) eigenvalue of
the scaled design matrix. A condition number of around 10 gives evidence to weak depen-
dencies, a value in between 30 and 100 indicates moderate to strong interdependencies, and
a value above 100 points towards the presence of collinearity [20]. Condition indices and
the so-called ‘regression coefficient variance-decomposition proportions’ are extensions of
this metric that provide more insight into the variables responsible for collinearity in multi-
variable situations with more than two variables. The interested reader is referred to [1] for
further details. The condition number in the blood cell example was 23.28, confirming the
conclusion from investigating the VIF.

Additional potential indicators of collinearity less often mentioned in the literature
are obtained by checks of deviations from expected model behaviour against prior subject-
matter knowledge (e.g., unexpected signs of coefficients) or by observing a large change of
effect size caused by little alterations in the data matrix [2,14].

In addition, similarity checks of shared information considering non-monotone rela-
tionships among the independent variables can identify unnoticed patterns of association.
One such approach is redundancy analysis. In this approach, also, variable-specific R2

i
are estimated to investigate how well one variable can be predicted from the others, but
instead of linear regression, generalised additive regression models [21] are used where
continuous variables are modelled flexibly using restricted cubic splines instead of just
assuming a linear relation between variables. The most predictable variable is then omitted
in a stepwise manner. The approach is described in more detail in Harrell ([13], p. 80) and
has been implemented in the R-function redun of the package Hmisc [22].

2.3. Remedial Measures for Collinearity

Recommended solutions in the presence of highly correlated independent variables
involve (a) the omission of one of the affected variables from the analysis, (b) combining
the strongly correlated variables into a single composite score or (c) switching to more
adequate modelling approaches able to handle correlated variables such as principal com-
ponent analysis (PCA), ridge regression or partial least-squares (PLS) regression [2,4,7,14].
A widely recommended and applied solution to near-collinearity is the omission of a
“redundant” independent variable (data reduction). Tabachnick et al. [23] state that after
deletion of one of the two redundant variables, the problem of near and exact collinearity
can be considered solved when dealing with strong bivariate correlation such as 0.9 and
higher. However, the authors suggest the omission of one variable or the creation of a
composite score already for bivariate correlation around 0.7. The simplicity of variable
pruning is alluring to researchers seeking a quick and easy remedy for the issue at hand
because quite advanced approaches, such as PCA or ridge regression, may go beyond
the typical level of statistical knowledge of health researchers. Alternatively, an adequate
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transformation of the correlated variables into a single index is not always feasible, and the
latter approaches result in a loss of interpretability of the individual contribution of the
variables to the dependent variable [4,7].

In the blood analysis example, a simple solution that uses subject matter knowledge
is to reparametrise the model such that instead of neutrophils and total white blood cell
counts, neutrophils and the difference of white blood cell count and neutrophils are used
as independent variables. These two variables exhibit a correlation of 0.668 and a VIF of
only 1.806. In this way, the information contained in the two variables is fully retained,
and the interpretation of the regression coefficients of the new components is even more
appealing as before: for example, the regression coefficient of neutrophils now corresponds
to the expected difference in CRP corresponding to a difference of 1 G/L of neutrophils,
given equal concentration of other components of white blood cell count. The analysis of
this data set can be found in the Supplementary Materials.

3. Examples
3.1. Worked Example: COVID-19 Study

In the study by Tang et al. [12], a set of potentially disease-associated features was
extracted from 134 chest computer tomography (CT) images of 176 confirmed COVID-19
cases using machine learning techniques. These cases were classified as severe (N = 55) or
non-severe (N = 121) based on the clinical course of the disease. Two CT-derived features
were considered of higher importance: the volume of ground-glass opacity (GGO) regions
and the consolidation region defined by a specific Hounsfield unit (HU) spectrum of the
CT densities (GGO region: HU [−750,−300]; consolidation region: HU[−300,50]). Suppose
we are interested in predicting severity of the disease with these two continuous variables
using a logistic regression model. The joint distribution of the two relevant independent
variables is depicted in Figure 1. Both variables exhibit right-skewed distributions (and
hence, Figure 1 shows their square roots).

Figure 1. COVID-19 study: scatterplot of the square roots of GGO and consolidation by severity of COVID-19 disease
progression.
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The Pearson correlation coefficient between GGO and consolidation region is 0.76,
suggesting a strong linear relationship between the two variables. Hence, the VIF for both
variables is 1.75, indicating no issue with near or exact collinearity. Likewise, redundancy
analysis using generalised additive models results in R2 of 0.618 and 0.600 if GGO or
consolidation are predicted by the respective other variable. Similarly, the condition
number is 4. Hence, none of the three criteria would suggest omitting any of the two
variables in the model.

Table 2 contrasts the multivariable model with the two univariable models. The
regression coefficient of the variable consolidation changes by −102% and is no longer
significantly associated with the dependent variable disease severity when adjusted for
GGO in the multivariable model. Such a deletion of effect size could be another indicator of
multicollinearity as mentioned in Section 2.2. The model with GGO region alone achieves
a lower value of the Akaike information criterion (AIC) than the model with both variables,
and this comparison suggests omitting the consolidation region, contrary to the suggestion
of the collinearity detection criteria. Similarly, the C-index of the model with only GGO
region is not lower than that of the model with both variables. This example illustrated
that for models aiming at providing accurate predictions, information criteria such as AIC
may be useful quantities to guide model building, but collinearity checks are not sufficient
to make decisions on variable selection.

Table 2. Odds ratios with 95% confidence intervals (CI), Akaike information criteria (AIC), and the C-statistics for the two
fitted univariable logistic regression models and the multivariable model including both independent variables.

Model for Disease
Severity

Independent
Variable(s)

Odds Ratio Model Performance
Estimate 95% CI AIC C-Index

Univariable
model 1 GGO 1.82 (1.55, 2.22) 88.6 0.96

Univariable
model 2 Consolidation 1.94 (1.59, 2.47) 142.8 0.89

Multivariable
model

GGO
Consolidation

1.83
0.99

(1.48, 2.38)
(0.74, 1.33)

90.6 0.96

3.2. Worked Example: Carbon Emissions and Temperature Anomalies

Ill-conditioning in model building is often further complicated by nonlinear effects
or autocorrelation, both of which we will illustrate in our second illustrative example.
Research suggests that global temperature has been subject to long-term fluctuations in
the past already before the evolution of mankind but has recently been heavily influenced
by increasing carbon dioxide emissions (CO2). Here, we define a hypothetical study in
which we want to disentangle the two effects by means of analysis of time series of annual
global temperature anomalies and annual global CO2 emissions. In particular, we would
determine to which extent temperature anomalies can be explained by CO2 emissions, and
in the analysis, we will use temperature anomalies as the dependent variable and globally
emitted CO2 as the main independent variable. To separate the effect of emissions from
long-term fluctuations, we will adjust for calendar year. Calendar year itself probably
indirectly causes two anthropogenic drivers of CO2 emissions: advances in technology
and growth in world population size. If we assume that there are no other common
causes of temperature anomalies and carbon emissions than calendar year (exchangeability
assumption) and if, theoretically, any amount of CO2 emission could have been observed
in any calendar year (positivity and non-interference assumptions [24]), then the effect
of emissions on temperature could even be interpreted as causal effect. However, these
assumptions are probably not realistic. Hence, it is important to emphasise that this
illustrative data example is not intended as a reliable source to disentangle the effects of
anthropogenic and natural contributions to climate change but rather serves to demonstrate
problems related to (near-) collinearity. It goes well beyond the scope of this paper to
reveal the true relationship between released CO2 over the course of the last century and



Int. J. Environ. Res. Public Health 2021, 18, 4259 7 of 12

the currently observed climatic changes. We refer the interested reader to Manabe and
Wetherald [25] and the special report of the Intergovernmental Panel on Climate Change
(IPCC) on the impacts of global warming of 1.5 celsius degrees above pre-industrial levels
and related global greenhouse gas emission [26].

Our illustrative analysis is based on publicly available data on climate change dis-
tributed with the dslabs R package (data set ‘temp carbon’). The data set contains the
annual relative temperature anomalies in centigrade from 1880–2018 over land, ocean,
and globally with respect to the 20th century mean temperature [27] as well as the annual
cumulative emissions estimate of CO2 released to the atmosphere from fossil fuels and
cement production from 1751–2014 provided by Boden et al. [28]. In our analysis, global
temperature anomalies measured per year will be the dependent variable, and annual CO2
emissions given in millions of metric tons and calendar year of measurement constitute
the independent variables. In total, the data set contains 268 observations, but only 135
with both carbon emissions and global temperature anomalies (calendar years 1880–2014,
Figure 2), which we will be the basis of our analysis.

Figure 2. (a) Annual global temperature anomalies with respect to the 20th century mean and (b)
annual global carbon emissions, 1880−2014.

In Figure 2, the slopes of both time series reveal a sharply increasing trend from the
1950s onwards. In contrast to the fairly smooth time series of carbon emissions, temperature
anomalies exhibit severe annual fluctuations. The correlation coefficient between carbon
emissions and year is 0.93 and indicates a strong linear relationship. The corresponding
VIF is 7.071. As stated before, according to Dohoo et al. [17] and Tabachnick et al. [23], the
high correlation between the two independent variables very likely indicates the presence
of collinearity and suggests omission of one variable of the pair. Redundancy analysis
using generalised additive models suggests the removal of the variable carbon emissions
due to a higher adjusted R2 value of 0.988. The estimated R2 of the generalised additive
model regressing year on modelled carbon emission was 0.954. Further, the condition
number for this example is 303.3, indicating near-dependency.

Since the research aim was to explain temperature anomalies by changes in annual CO2
emissions while adjusting for time itself, none of the two univariable models considering
either calendar year or CO2 emissions alone is appropriate, despite the recommendation of
the collinearity detectors to remove one variable.

Equation (5) follows from Equation (4) only under the assumptions of homoscedastic-
ity and no autocorrelation of the error terms. If these prerequisites do not hold, inference
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based on Equation (5) will be biased. As the data stems from time series, there was evidence
for first-order autocorrelation (Durbin–Watson test: t = 0.71, p < 0.001). Hence, we used a
quadratic spectral kernel-based heteroscedasticity and autocorrelation consistent (HAC)
estimator as implemented in the R package sandwich [29,30] to compute the empirical
covariance matrix for the parameters of each model. The robust HAC estimator ensures
consistent estimates of the covariance of the model parameters year and CO2 emission
despite the slight deviations from the underlying model assumptions.

Natural cubic splines with varying degrees of freedom were used to model the non-
linear relationship between each of independent variables and the dependent variable,
and tested against a model assuming linear association using the AIC. The AIC criterion
suggested to include year without transformation and to use natural cubic splines with 5
degrees of freedom for annual CO2 emissions.

Figure 3 displays the partial effects of the two independent variables on temperature
anomalies [31]. The year 1975 was when the global temperature was closest to the 20th
century mean. Therefore, to describe the effect of year, we fixed global CO2 emission
of 4596 mt (the emission of 1975) [32]. Likewise, we fixed the year at 1975 to illustrate
the adjusted effect of CO2 emission on temperature anomalies. The model suggests that
temperature increases by 0.009 (95% CI: (0.003, 0.015); p-value = 0.006) centigrade each
year irrespective of the emitted CO2. Furthermore, temperature anomalies are related
to CO2 emissions in a nonlinear way. While temperature is negatively associated when
emissions increased from 0 to around 4000 mt, emissions above 4000 mt appear to be
positively associated with temperature, reaching a plateau at about 6500 mt. However,
sparse data support for such high CO2 emissions led to a wide confidence band which
precludes any clear conclusions in that area. Similarly, the confidence bands are also
wide at the lower extremes both for year and CO2 emissions, but can be explained by
the low variability in temperature anomalies of earlier years compared to years after the
1920s (see Figure 3). Our analysis assumes that there are no further common causes of
CO2 emissions and temperature anomalies (e.g., other types of emissions caused by the
constantly growing world population). Under this assumption, the described effect of year
is conceptionally interpreted as a controlled direct effect. However, the causal relation
between these variables is certainly more complex. Therefore, we once again emphasise the
illustrative purpose of this analysis: if a statistical model is fitted to disentangle different
causes of a dependent variable, then even near-collinearity between the independent
variables does not justify variable omission.

Figure 3. Partial effect plots of the independent variables year (left) and annual global CO2 emission (right). Shaded area
illustrates the 95% confidence interval of the partial effect curve.
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4. Discussion

In this article, we have demonstrated, using two examples, how the diagnostic tools
for collinearity and near-collinearity may fail in guiding the analyst in selecting the most
appropriate way of handling collinearity. In particular, the analysis of the examples
revealed that depending on the situation, misguidance may lead to keeping a clearly
redundant variable in a prediction model, or to omitting a variable that would be needed
for proper adjustment in an explanatory model. Hence, it is the aim of the analysis that
should guide decisions on keeping or omitting a variable in a model.

When statistical modelling is used to pursue a predictive aim, two highly correlated
independent variables will lead to high variance in the predictions, even if both variables
are relevant for prediction. In small samples, it may then be beneficial to omit one of the
pair in order to decrease that variance, even if this incurs some new bias in the predictions.
This variance–bias trade-off is often expressed as mean squared error (MSE), which is
defined as the expected squared deviation of an estimate from its estimand. It can also
be expressed as MSE = bias2 + variance [33]. Several factors are relevant for the trade-
off, the most important being the correlation between the two variables in question, the
strength of the association of the variables with the dependent variable, the sample size,
and the relative impact of noise (residual error). In the COVID-19 study, consolidation
region was hardly associated with the dependent variable once adjusted for GGO region.
Hence, despite its marginal association revealed by univariable analysis, the model fit of
the prediction model was not affected by its omission, and the AIC even indicated a better
fit. Nevertheless, one should not draw overly general conclusions from this result.

In explanatory models, one is usually interested in estimating one of the regression
coefficients with high precision or, more generally, to estimate what would happen to
the dependent variable if one changes the independent variable of main interest (the
‘exposure’) while other variables (the ‘confounders’) are held constant. Variable selection
for such models should be based on the classical assumptions of causal inference, such as
conditional exchangeability and positivity [24,34]. For our example, we have drastically
simplified possible causes of climate change (apart from CO2 emissions) into an assumed
association of calendar time with temperature anomalies. Such an association is plausible
given that there is evidence for temperature variation long before human beings appeared
in the history of the earth or, as put by Sun and Bryan [35], ‘if anything has been constant
with regard to the state of the climate system, it is that is has always been changing’. Hence,
we adjusted for calendar time to be able to disentangle anthropogenic from other effects
on temperature anomalies given our assumptions. In this scenario, by removing calendar
time from the model, it would not be possible to answer the study question.

Shmueli [10] and Hernan et al. [9] also mention a third purpose of modelling, descrip-
tive modelling. Here, a researcher is interested in providing a parsimonious description of
the main associations in the data sets, and the selection of variables could be more data-
driven than in explanatory modelling, where it is exclusively based on causal assumptions.
Recommendations for variable omission in case of near-collinearity may stem from that
descriptive point of view, but we agree with O’Brien [36] that variable omission in the case
of collinearity should not be seen as the default solution. We summarised options to handle
collinearity with respect to the research aim in Table 3.
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Table 3. Some options to deal with collinearity by research aim. With ‘symptoms’, we mean typical consequences of
collinearity such as inflated standard errors and unstable parameter estimates.

Method Explanation Remark

Descriptive research aim

Variable omission Omit one of the variables involved in the
collinearity

Removes the symptoms, but leads to different
interpretation of the model

Summary score
Combine several nearly collinear variables
into a summary score and include only the
summary score in the regression model

Removes the symptoms, retains most of the
predictive value of the model, but leads to
different interpretation of the model

Predictive research aim

Use information criteria Information criteria such as Akaike’s can be
used to guide model building

Information criteria guide the analyst in a search
for the most predictive model

Explanatory research aim

Use causal reasoning
Specification of variables (exposure of
interest, confounders) is necessitated by
causal reasoning

Neither exposure nor confounders should be
omitted as this violates assumptions needed to
identify the causal estimand of interest

Increased standard errors due to the inclusion of correlated independent variables
in the regression model sometimes have to be accepted in order to adequately answer a
research question. Excluding relevant variables will also lead to biased and inconsistent
parameter estimates if the analysis requires all variables to be included in the model. The
quick fix of variable omission provides an easy solution, but can lead to not answering the
actual research question at hand or be intentionally misleading by dropping variable(s)
such that the results of the presented final model support the researcher’s preferred hypoth-
esis. Therefore, variable omission should not be the default solution for strong correlation
between independent variables. O’Brien suggested to assess the “model influence” cri-
terion [36] by checking a few alternative models for deviations from the original model
with regards to sign and magnitude of the effect sizes of main interest and shifts in major
conclusions. This could be extended to predictions from the model. Substantial changes
would suggest keeping the dropped variable. If the set of variables to be included follows
from causal assumptions, such competing models may still differ in the way continuous
variables are parametrised (more or less flexible), or which interactions between variables
are considered. Even in the presence of near-collinearity, multiple regression can still be
carried out, and ambiguity regarding the interpretation of the regression coefficients can be
noted. However, this necessitates transparent reporting of the existing correlation structure
and its impact on the regression results should be stated as the analysis proceeds. Overall,
variable omission as a consequence of initial data analysis [16] should be avoided when
such omission would affect the ability to answer the research question of interest.

In some examples, as in the blood analysis study, it is possible to remove near-
collinearity by reparametrising the independent variables. This reparametrisation can
often be guided by domain expertise and, such as in our example, even lead to more at-
tractive interpretability of the regression coefficients. If reparametrisation is not an option,
ideal but often unattainable remedies of collinearity would consist of revising the study
design or repeating or extending the study such that dependency of variables is largely
avoided or that higher accuracy of the parameter estimates is obtained by collecting a
larger sample. However, these two suggestions are often not a viable option, and the course
of action should then be driven by the research question and not the complexity of the
remedy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph18084259/s1. Table S1: Full subset of the data from the study of Ratzinger et al. (2014)
used for the blood cell example in the paper. White blood cells consist of the five subtypes neutrophils
eosinophils, basophils, lymphocytes and monocytes and hence, their sum equals the white blood cell
count,; Table S1: Full subset of the data from the study of Ratzinger et al. (2014) used for the blood
cell example in the paper. White blood cells consist of the five subtypes neutrophils eosinophils,
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basophils, lymphocytes and monocytes and hence, their sum equals the white blood cell count., Table
S2: Results of the linear regression model for temperature anomalies adjusted for year linearly and
CO2 emission with natural cubic splines with 5 degrees of freedom. The 95% CI was computed using
the HAC estimator. Figure S1: Autocorrelation (left) and partial autocorrelation (right) function of
the residuals of the non-linear regression model for temperature anomalies adjusted by year and CO2
emission, Figure S2: Partial effect plots obtained by classical regression and the regression model
using ARMA errors to adjust for the serially correlated error terms.
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