
Design and Analysis of a Hardware CNN Accelerator

Kevin Kiningham
Stanford

kkiningh@stanford.edu

Michael Graczyk
Stanford

graczyk@stanford.edu

Athul Ramkumar
Stanford SCPD

athul@stanford.edu

Abstract

In recent years, Convolutional Neural Networks (CNNs)
have revolutionized computer vision tasks. However, infer-
ence in current CNN designs is extremely computationally
intensive. This has lead to an explosion of new accelerator
architectures designed to reduce power consumption and
latency [20].

In this paper, we design and implement a systolic array
based architecture we call ConvAU to efficiently accelerate
dense matrix multiplication operations in CNNs. We also
train an 8-bit quantized version of Squeezenet[14] and eval-
uate our accelerator’s power consumption and throughput.
Finally, we compare our results to the reported results for
the K80 GPU and Google’s TPU. We find that ConvAU
gives a 200x improvement in TOPs/W when compared to a
NVIDIA K80 GPU and a 1.9x improvement when compared
to the TPU.

1. Introduction
Since the remarkable success of AlexNet[17] on the

2012 ImageNet competition[24], CNNs have become the
architecture of choice for many computer vision tasks. In-
ference on a trained CNN can be highly computationally ex-
pensive. A typical model might require billions of multiply-
accumulate operations (MACs), load millions of weights,
and draw dozens of watts during inference (see table 1).
This computational cost can provide significant barriers to
deployment; in [16], Google projected in 2013 that three
minutes of voice search per user (implemented using deep
neural networks) would require Google to double its data-
center size at the time.

In order to decrease execution time and power con-
sumption, researchers and tech companies have investi-
gated and built special purpose hardware for CNN infer-
ence. We present and analyze our own CNN accelerator
ConvAU. Our architecture’s main feature is a 256×256 sys-
tolic array of multiply-accumulate cells, allowing fast dense
matrix-matrix and matrix-vector operations. We bench-
mark our system’s latency, power, and performance using

Figure 1: Final layout achieved after place-and-route

Squeezenet[14] trained on ImageNet[24] with Keras [4],
quantized to 8 bits and executed using Tensorflow™ [1]. Fi-
nally, we compare our accelerator’s throughput and power
consumption to a GPU and Google’s TPU.

Table 1: Influential CNNs Benchmarked on a GTX 1080

Model Total Weights FPS Avg Watts

InceptionV3 23,817,352 101.35 98
VGG16 138,357,544 169.65 120
ResNet50 25,583,592 207.05 100
SqueezeNet 1,235,496 388.76 80

2. Related Work
In recent years neural network accelerator design has

been a topic of enormous interest to the computer archi-

1



tecture community. CNNs were traditionally executed on
CPUs, GPUs, and even FPGAs [22], which can easily adapt
to new network architectures. However, this flexibility
comes at the price of efficiency. As a result, application
specific accelerators have been developed to maximize effi-
ciency.

Current approaches can mostly be classified into a com-
bination of four categories, described below.

Dense Linear Algebra Accelerator The most com-
mon approach for CNN accelerators is to accelerate dense
matrix-matrix and matrix-vector operations. Examples in-
clude DianNao[3] and Google’s TPU[16]. Since dense lin-
ear algebra operations dominate the computational cost of
CNN inference, these approaches have dramatically outper-
formed traditional CPUs and GPUs. However, one draw-
back is that many activations during inference are sparse,
which means that some computation is wasted.

Quantization Another approach is to quantize all op-
erations to a small number of bits[8, 28, 2]. Quantization
can be used on CPUs and GPUs, but is most powerful in
combination with hardware acceleration. Since small in-
teger operations can be significantly more efficient to im-
plement in hardware than floating point, this can dramati-
cally increase the overall efficiency of the accelerator. How-
ever, this increased efficiency comes at the cost of decreased
accuracy, although recent research has shown that by re-
training the network this decrease can be made acceptably
small[27, 6].

Sparse Linear Algebra Accelerators Some more re-
cent approaches take advantage of sparsity. The EIE[10]
and ESE[9] authors design an architecture that is able to
operate directly on a sparse form, which allows them to
avoid computation where the graph is zero. In addition, they
encode the weight matrix in an efficient compressed for-
mat, which allows them to avoid loading zero weights from
memory. In order to maintain accuracy, they perform prun-
ing during training by removing weights below a threshold
and then retraining, which allows the network to recover
and only nominally affects accuracy[11, 12].

Analog Accelerators Finally, another approach that
has gathered significant interest is to use mixed signal or
analog computation. In [23], the authors show that mixed
signal MAC operations can be performed efficiently using a
switched capacitor design. In [19], the authors use a similar
design to perform full matrix-matrix operations. Other ap-
proaches have included using resistive RAM elements [25]
and flash transistors [7].

Figure 2: Overview of our entire design

One drawback is that analog and mixed signal accelera-
tors require potentially expensive conversions between digi-
tal and analog representations. Additionally, analog designs
tends to be larger, more error prone, more difficult to imple-
ment, and more costly to manufacture than the equivalent
digital designs.

3. Accelerator Design
At it’s core, our accelerator is a dense matrix multiplica-

tion unit (MMU) that can perform 256 × 256 8-bit integer
multiply and 32-bit integer accumulate per cycle. Dense
matrix multiplication acceleration has been researched ex-
tensively as it has been used in GPUs and DSP algorithms,
with most common implementation methods being systolic
arrays, FFTs, or the Winograd algorithm.
ConvAU uses a systolic array loosely based on Google’s

TPU[16]. A systolic array is a homogeneous grid of pro-
cessing elements (PEs), each with a small amount of with
each element connected only to it’s neighbors. During ex-
ecution, each PE can optionally read from it’s neighbors,
compute a simple function, and store the result in it’s local
memory.

We decided to use simple pipelining concepts to increase
the throughput of the design. We have three main pipe
stages: input/weight loading, matrix multiplication and ac-
tivation (ReLu), and load results to output queue. Since the
three operations are independent, we can schedule our op-
erations to perform a matrix multiplication every operation
cycle.

We chose to use a systolic array since it’s easy to design
and allows for an extremely efficient implementation. It
also gives us a large amount of flexibility since it can accel-
erate any network architecture that uses dense matrix multi-
plication. For CNNs in particular, convolutions, batch nor-
malization, and fully connected layers can all be efficiently
implemented using dense matrix multiplications (see sec-
tion 4). Together, these represent the vast majority of the

2



Figure 3: Our systolic array design. During execution,
data flows in from the left and is multiplied by preloaded
weights. Each column computes a partial product oi =∑N

j=1 wij · dij after N · i cycles.

computation required during inference.

3.1. Systolic Array Design

In ConvAU, each PE has a multiplier and an accumu-
lator, and can compute a single MAC operation per cycle.
Weights are stored locally before execution begins. For an
N ×N matrix multiplication, it takes 2N − 1 clock cycles
for the output wave to propagate and complete the multipli-
cation. We use a 256 × 256 8-bit SRAM FIFO (64kB) to
feed the data into the systolic array[5]. Instead of padding
the data to synchronize data loading with the systolic array
multiplier, we use a valid bit on each row to synchronize the
data. This saves nearly 64kB of memory on the input and
output.

3.2. Weight Loading

One important aspect of our design is that the weights
must be preloaded into the array before multiplication can
take place. To do this, we load the weights similarly to how
we load the data, using a queue at the array edge and having
each PE pass it’s current weight to it’s neighbor. This take
256 cycles to complete, although it can be pipelined with a
matrix multiplication.

An alternative approach would be to instead flow the
weights vertically down the array and compute the partial
products at each node. However, this has the disadvantage
of stopping execution at the completion of a 256 × 256
multiplication. Additionally, we would have to reread the
weights from memory even if we wanted to reuse the same
weights as the previous operation. Since weights are fre-
quently shared (e.g. for filters in convolutional layers, or
across batches of input) our approach should result in fewer
memory accesses and pipeline stalls than the alternative.

3.3. Quantization

Artificial neural networks (ANNs) have been known for
decades to contain the expressive power to approximate ar-
bitrary real valued functions [13]. To run neural networks
on real hardware, we must represent real network weights
and activations in a finite way, amenable to efficient compu-
tation and storage. ANNs are typically implemented using
floating point. Floating point directly corresponds to real
numbers and handles large dynamic ranges without concep-
tual complexity. However, simplicity and elegance come
at a cost. Large floating point matrix multiplies are more
complex and less efficient in hardware than analogous inte-
ger operations. Companies using ANNs at scale have been
exploring ways to use quantization to improve inference ef-
ficiency since at least 2011 [26].

Experiments have shown that the dynamic range and pre-
cision afforded by floating point are unnecessary for many
deep learning applications. In particular, ANN inference
can be performed using fixed-point matrix multiplies with-
out significant loss of accuracy [6]. Other experiments have
found seemingly contradictory results [18] when consider-
ing GPU computation. Still, since ANN inference can be
executed in fixed point with little loss of precision and since
fixed point hardware is simpler to design than floating point,
we decided to only support quantized networks.

We chose our quantization strategy by deciding on im-
plementation requirements, then finding a technique which
met them and was simple to design. First, we decided
against implementing floating point hardware for the rea-
sons mentioned above. Any floating point computation must
be off-chip. This guided us toward a design which in-
volved precomputing quantization metadata at train time,
then loading that metadata onto the chip along with the
weights.

Second, we considered how best to avoid losses of accu-
racy during quantization. Uniform quantization can waste
precision because weights are typically not distributed uni-
formly throughout their dynamic range. Although research
into non-uniform quantization shows promise [11], we
found that MAC operations on uniformly quantized values
could be implemented using a systolic design. MACs on
non-uniformly quantized values would require special oper-
ations and would have severely complicated the hardware.
Use uniform quantization with static representations.

Finally, we decided to represent quantization metadata
for each matrix as a 32-bit scale and 16-bit signed offset.
We take our representation from the Google library gemm-
lop [15] in order to keep our hardware compatible with the
quantization used in Tensorflow™ (which uses gemmlowp
for quantized operations) and because of several important
facts about CNNs identified in the gemmlowp documenta-
tion. First, CNNs often require zero-padding, so the real
value zero must be exactly representable in any quantized

3



activations. Second, our hardware supports ReLU activa-
tions, often used by CNNs. ReLUs can be implemented
simply and efficiently in hardware using the gemmlowp
quantization strategy. ReLU must be efficient to compute.

In the next few sections, we describe our quantization
strategy in detail. We will use a simple two-layer feed for-
ward ReLU network as an example. We assume this net-
work has already been trained to arbitrarily high floating
point precision. Specifically, let X ∈ RN be the real valued
neural net input, W1, b1,W2, b2 the weights and biases of
the first and second layers. The outputs y are

h = max(0, xW1 + b1)

y = hW2 + b2
(1)

3.3.1 Quantizing a Network

Activations and weights must be quantized to use 8-bit
arithmetic. Each real value ξ in the network is represented
by 8-bit value ξq through the formula

ξ = ξs(ξq − ξz), (2)

where ξs is the scale parameter and ξz the zero point for ξ.
This formula applies to both weights and activations.

The values for zs and zz are specific to each weight or acti-
vation matrix. In our example, we choose values

(xs, xz), (hs, hz), (ys, yz)

(W1q,W1s,W1z), (b1s, b1z)

and
(W2q,W2s,W2z), (b2s, b2z).

We constrain the bias scale to equal the products
of the weight and activation matrix scales, bns =
xnsWns for all layers n.

For our experiments, we used the Tensorflow™ tool
quantize graph to choose these quantization parame-
ters. This tool uses execution traces to determine parame-
ters that determine the dynamic of activations and chooses
parameters to quantize parameters into those ranges. More
sophisticated methods which globally optimize for accu-
racy, as in [21] could possibly yield better results, but these
simple quantized results were close enough to baseline in
our tests.

3.3.2 Quantized Computation

ConvAU uses 8-bit multiplies and uses 32-bit accumulators
for all intermediate values. The host device loads the quan-
tized weights and all quantization metadata listed above to
ConvAU for processing. The scale parameters are not sent
directly. Instead, a derived quantity hnsws

h(n+1)s
is computed for

the boundary between each layer and represented by a 32-
bit multiply followed by a right shift. The floating point
inputs x must also be quantized to xq = x/xs + xz before
sending. On the device, we need to compute hq . Letting w
denote the ith column of W1 and h̃ := xW1,

h̃i = x · w =
∑

(xs(xq − xz))(ws(wq − wz))

= xsws

∑
(xq − xz)(wq − wz)

= xsws

(∑
xqwq −

∑
xzwq −

∑
xqwz +

∑
xzwz

)
= xsws

(∑
xqwq − xz

∑
wq − wz

∑
xq +Nxzwz

)
,

so letting Ki = −xz
∑

wq +Nxzwz − bz

hiq = hz +
1

hs
max(0, b+ x · w),

= hz +
xsws

hs

(
bq +max

(
−bq,

∑
xqwq − wz

∑
xq +Ki

))
.

The device treats the sum
∑
xq as a special systolic column.

We precompute Ki off-device and represent xsws

hs
as 32-bit

multiply followed by a shift. Note that the simple form of
the result is due to our restriction on the scales bs. This form
allows the hardware to compute the entire ”layer” operation
using 8-bit multiplies with 32-bit accumulators.

3.3.3 Dequantized Results

ConvAU computes the operation described in the previous
section for each layer in the network. The 8-bit outputs of
the last layer must be downloaded from the device and con-
verted on the host to the final floating point values. The
work done by the host is minimal and can be skipped en-
tirely for tasks where only the relative values of outputs are
required, for example when performing classification with
logits.

4. Mapping CNN Layers to Matrix Multiply
In order to actually perform inference on ConvAU, each

operation in the network must be mapped to a dense ma-
trix multiplication or activation operation. In this section
we briefly explain how common network operations are
mapped.

4.1. Fully Connected Layers

Fully connected layers are the easiest layers to imple-
ment as dense matrix multiplication, since they correspond
almost directly. Each activation of a fully connected layer
is the result of a dot product of the input values and the
weights plus a bias. Thus, the entire layer can be imple-
mented as directly as a matrix multiplication between the
input and the weights, plus a bias term. In order to imple-
ment the addition of the bias term, we reduce the threshold

4



of the activation function by the bias, and add the bias to
the offset value during quantization (see section 3.3.2 for
details on this transformation).

4.2. Convolutional Layers

A convolutional layer is made up of a convolution be-
tween the input and filter weights, plus a bias term. The
convolution operation can be reduced to a matrix multipli-
cation between input ”patches” (where patch i is the portion
of the image that would be multiplied by the filter at step i of
the convolution) and the filter weights. This transformation
from input to patches is commonly known as ”im2col”. We
handle the bias term as we did in the fully connected layers
by incorporating it into the activation and quantization steps
(see section 3.3.2).

4.3. Batch Normalization

A batch normalization layer simply shifts and scales the
input by two learned values (both constant at inference
time), µ and σ. Since batch norm typically succeeds a con-
volution or fully connected layer, we can combine both lay-
ers together by shifting and scaling the weights and biases
of the previous layer, and then treating the previous layer as
normal.

Let h be the output of a layer with input x that feeds into
a batchnorm layer. Then the output of the batchnorm layer
is given by y as follows.

h =Wx+ b

y =
h− µ√
σ2 + ε

We can then transform the learned weights, W , and bias,
b, to include the batch norm terms by computing W ′ and b′

as follows.

W ′ =
γ√
σ2 + ε

W

b′ =
γ√
σ2 + ε

(b+ µ)

After this transform, we can compute the output after
both layers as follows.

y =W ′x+ b′

Note that this transformation must be done before infer-
ence (i.e. during or after training); we do not support batch
normalization where the statistics change during inference.

5. Evaluation

To evaluate our design, we implemented ConvAU as
an RTL model in SystemVerilog. The RTL model was
then simulated executing inference on the 8-bit quantized
Squeezenet model described in section 3.3 using Synopsys
VCS M-2017.03. After executing, the simulation produced
a Value Change Dump (VCD) file that recorded information
about the state of the RTL model at each time step.

The dataset used during this simulation was the
ILSVRC2016 CLS-LOC validation dataset [24] provided
by the ImageNet project. Unless otherwise noted, we ran-
domly sampled JPEG files from the 50000 validation set
then resized them the 224× 224 pixels using bilinear inter-
polation. No additional preprocessing or feature extraction
was applied.

We then synthesized the RTL model using the Synopsys
Design Compiler M-2016.12-SP2, targeting the 32/28nm
Synopsys educational libraries, and performed place and
route with Synopsys ICC L-2016.03-SP5-2 (final layout
shown in figure 1). Our area numbers are as reported by
Synopsys ICC after place and route. Our reported clock fre-
quency is the maximum estimated clock frequency reported
by Synopsys ICC after place and route.

To estimate our power consumption, we randomly sam-
pled a representative set of matrix operations from each
layer of inference during the simulation described above.
We then converted the VCD file produced by our simu-
lation into a Switching Activity Interface Format (SAIF)
file that records the statistical properties of each register in
the design during each of the sampled operations. These
switching activities were then propagated to the final placed
and routed design using using PrimeTime F-2011.06-SP3-
4. Using PrimeTime, we then estimated our total power
consumption by source and the power consumption of each
operation.

5.1. Results

An overview of our final results compared to other exist-
ing architectures is listed in table 2. We found that ConvAU
is able to achieve a peak throughput of 93.6 TOPs while
only consuming 21W, for a ratio of 4.4 TOPs/W.

This significantly out performs the NVIDIA K80 GPU,
which achieves only 2.8 TOPs at 98W for a ratio of 0.022
TOPs/W. Note that because the K80 does not natively sup-
port 8-bit integer operations, we compare it’s floating point
performance to ConvAU’s integer performance; since float-
ing point operations are more complex (and require more
energy to compute) a version of the K80 that allows integer
operations may be more competitive.

The TPU achieves a similar throughput to ConvAU at
92.0 TOPs at a higher power consumption of 40W for a
ratio of 2.3 TOPs/W. One possible reason that the TPU’s

5



Table 2: Overview comparison between existing architectures and ConvAU

Measured W TOPs TOPs/W

Model µm2 nm MHz Idle Busy 8b Int Float Total Ratio

Haswell1,2 662 22 2300 41 145 2.6 1.3 0.018 244x
K80/die2 561 28 560 25 98 - 2.8 0.022 200x
TPU/die2 ≤3314 28 700 28 40 92.0 - 2.3 1.9x
ConvAU3 77 32 714 - 21 93.6 - 4.4 1x

1 Haswell E5-2699 v3
2 As reported in [16], see paper for more experimental details.
3 Power from inference on 8-bit quantized Squeezenet.
4 Area reported as ”less than half the Haswell die size”.

power consumption is higher is that the TPU has signifi-
cantly more on chip memory than ConvAU; the TPU has 28
MiB of on chip memory compared to ConvAU which has
4 MiB. We chose to use only 4MiB since the network we
were evaluating with (SqueezeNet) did not require a large
activation cache.

To investigate how our performance would scale if we
increased the amount of memory on chip, we analyzed the
power consumption down by cell type (listed in table 3).
Here we see that memory accounts for only about 16% of
the total power consumption, with the majority going to reg-
isters and combinational logic (35% and 44% respectively).

If we assume that power is linear with the amount of
memory, we can calculate that for a memory size similar
to the TPU (28 MiB) ConvAU would consume a total of
42.8W, with a TOPs/W ratio of 2.2. Thus, while our design
outperforms the TPU on an absolute scale, the two designs
are competitive when adjusted for memory size.

Table 3: Breakdown of power consumption by cell type.

Cell Type W %

Memory 3.2 15.7
Clock 1.1 5.4
Register 7.3 35.3
Combinational 9.1 44.0

Total 20.7

6. Future Work

We would like to investigate several possible improve-
ments as future work. The first is to allow ConvAU to take
advantage of sparsity in both the weight matrix and the dy-
namic activations. Recent work by S. Han [10] shows that
exploiting these sparse structures can significantly reduce
the total number of operations, allowing for more efficient
inference.

Second, we would like to extend ConvAU to allow for
training. Since training typically requires more precision
than inference, this would require us to increase the number
of bits each MAC can operate on, as well as possibly sup-
port floating point operations. In addition, training requires
updating the weights each cycle, which breaks our design
assumption the weights will be frequently reused. As a re-
sult, supporting training may require changing how weights
are loaded into the array.

Third, in this paper we have assumed a large enough off-
chip memory bandwidth to feed the array each clock cy-
cle. However, in practice memory bandwidth can constrain
the throughput of inference depending on the computation
needed by the particular model. As a result, we would like
to investigate how different memory bandwidth constraints
effect our results, and increase both the total memory band-
width and the effective memory bandwidth by reducing the
size of the weights and activations.

7. Conclusion

In this paper we introduce the design of ConvAU, a CNN
inference accelerator. The core of ConvAU’s design is a
256x256 systolic array structure that can efficiently exe-
cute the dense matrix multiplies found in CNNs. We then
train a 8-bit quantized version of Squeezenet, and evalu-
ate ConvAU’s throughput, latency, and power consumption
during inference.

We find that ConvAUgives a 200x improvement in
TOPs/W when compared to a NVIDIA K80 GPU and a
1.9x improvement when compared to the TPU. When power
consumption is adjusted to memory size, we find that the
TPU and ConvAUhave similar TOPs/W at a slightly higher
clock rate. Thus, ConvAUis able to accelerate typical CNN
workloads with comparable efficiency and performance to
existing architectures.

6



Figure 4: Waveform of full operation of our entire design

A. Appendix - Example Operation
An example waveform of ConvAU performing inference

on a single layer is given in figure 4. First weights and
inputs are loaded into the system. Then the actual matrix
multiplication is executed, taking 512 cycles. Next activa-
tions are executed and the output is fed back into the input
queue. Optionally, the activations may be read out to off
chip memory. The total process takes 1024 cycles, or 1.4 µs
at the maximum clock frequency of 714 MHz.

Note that matrices being multiplied by the same weight
matrix can be pipelined together, meaning that N succes-
sive matrix multiplications only have latency N · 512+512
instead of N · 1024 cycles.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[2] R. Andri, L. Cavigelli, D. Rossi, and L. Benini. Yodann:
An architecture for ultra-low power binary-weight cnn ac-
celeration. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2017.

[3] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam. Diannao: A small-footprint high-throughput ac-
celerator for ubiquitous machine-learning. In ACM Sigplan
Notices, volume 49, pages 269–284. ACM, 2014.

[4] F. Chollet et al. Keras. https://github.com/
fchollet/keras, 2015.

[5] A. Claros. Asynchronous fifo.
[6] M. Courbariaux, Y. Bengio, and J.-P. David. Training deep

neural networks with low precision multiplications. arXiv
preprint arXiv:1412.7024, 2014.

7

https://github.com/fchollet/keras
https://github.com/fchollet/keras


[7] L. F. et al. Floating-gate transistor array for performing
weighted sum computation, August 2014. US Patent Ap-
plication US14459577.

[8] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan.
Deep learning with limited numerical precision. In ICML,
pages 1737–1746, 2015.

[9] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo,
S. Yao, Y. Wang, H. Yang, and W. J. Dally. ESE: Efficient
Speech Recognition Engine with Sparse LSTM on FPGA.
ArXiv e-prints, Dec. 2016.

[10] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally. EIE: efficient inference engine on com-
pressed deep neural network. CoRR, abs/1602.01528, 2016.

[11] S. Han, H. Mao, and W. J. Dally. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[12] S. Han, J. Pool, S. Narang, H. Mao, E. Gong, S. Tang,
E. Elsen, P. Vajda, M. Paluri, J. Tran, et al. Dsd: Dense-
sparse-dense training for deep neural networks. 2016.

[13] K. Hornik. Approximation capabilities of multilayer feed-
forward networks. Neural Networks Volume 4, Issue 2, page
251257, 1991.

[14] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and¡ 0.5 mb model size. arXiv
preprint arXiv:1602.07360, 2016.

[15] G. Inc.
[16] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,

R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, et al.
In-datacenter performance analysis of a tensor processing
unit. arXiv preprint arXiv:1704.04760, 2017.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[18] L. Lai, N. Suda, and V. Chandra. Deep convolutional neu-
ral network inference with floating-point weights and fixed-
point activations. arXiv preprint arXiv:1703.03073, 2017.

[19] E. H. Lee and S. S. Wong. 24.2 a 2.5 ghz 7.7 tops/w
switched-capacitor matrix multiplier with co-designed lo-
cal memory in 40nm. In Solid-State Circuits Conference
(ISSCC), 2016 IEEE International, pages 418–419. IEEE,
2016.

[20] C.-Y. Lin. E6895 advanced big data analytics lecture 10:,
2015.

[21] D. Lin, S. Talathi, and V. Annapureddy. Fixed point quan-
tization of deep convolutional networks, arxiv. org cs. LG,
nov, 2015.

[22] Y. Ma, N. Suda, Y. Cao, J.-s. Seo, and S. Vrudhula. Scal-
able and modularized rtl compilation of convolutional neu-
ral networks onto fpga. In Field Programmable Logic and
Applications (FPL), 2016 26th International Conference on,
pages 1–8. IEEE, 2016.

[23] B. Murmann, D. Bankman, E. Chai, D. Miyashita, and
L. Yang. Mixed-signal circuits for embedded machine-
learning applications. In Signals, Systems and Computers,

2015 49th Asilomar Conference on, pages 1341–1345. IEEE,
2015.

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[25] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar. Isaac:
A convolutional neural network accelerator with in-situ ana-
log arithmetic in crossbars. In Proceedings of the 43rd Inter-
national Symposium on Computer Architecture, pages 14–
26. IEEE Press, 2016.

[26] A. S. V. Vanhoucke and M. Z. Mao. Improving the speed of
neural networks on cpus. Proc. Deep Learning and Unsu-
pervised Feature Learning NIPS Workshop, 2011.

[27] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized
convolutional neural networks for mobile devices. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4820–4828, 2016.

[28] C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary
quantization. arXiv preprint arXiv:1612.01064, 2016.

8


