
DISCRETE AND CONTINUOUS Website: www.aimSciences.org
DYNAMICAL SYSTEMS
Supplement 2013 pp. 587–596

EFFICIENT RECURRENCE RELATIONS FOR UNIVARIATE

AND MULTIVARIATE TAYLOR SERIES COEFFICIENTS

Richard D. Neidinger

Davidson College

Box 7002

Davidson, NC 28035-7002, USA

Abstract. The efficient use of Taylor series depends, not on symbolic differen-

tiation, but on a standard set of recurrence formulas for each of the elementary
functions and operations. These relationships are often rediscovered and re-

stated, usually in a piecemeal fashion. We seek to provide a fairly thorough

and unified exposition of efficient recurrence relations in both univariate and
multivariate settings. Explicit formulas all stem from the fact that multiplica-

tion of functions corresponds to a Cauchy product of series coefficients, which

is more efficient than the Leibniz rule for nth-order derivatives. This princi-
ple is applied to function relationships of the form h’=v*u’, where the prime

indicates a derivative or partial derivative. Each standard (calculator button)

function corresponds to an equation, or pair of equations, of this form. A geo-
metric description of the multivariate operation helps clarify and streamline the

computation for each desired multi-indexed coefficient. Several research com-
munities use such recurrences including the Differential Transform Method to

solve differential equations with initial conditions.

1. Introduction. Taylor polynomials for function expressions, and functions given
by differential equations, are most efficiently computed by recurrence relations that
capture how to combine series. Incomplete glimpses of this idea are encountered

in calculus, where a series for ex
2

about 0 is found by substituting into the known
series instead of differentiating; in series solutions for simple ordinary differential
equations (ODEs) where the goal is a recurrence relation; and in numerical ODE
solutions where a higher-order Taylor series method is considered as a theoretical
possibility. A complete set of recurrence relations for operations and standard func-
tions can change the symbolic parts of these methods into practical computational
algorithms. Several current research communities use series recurrences as a pri-
mary tool: Automatic Differentiation (AD) seeks derivatives or series for functions
specified by a computer program (see [4], [8]); Polynomial Methods for Differen-
tial Equations was a special session of the conference of this proceedings (e.g. [9]);
and the Differential Transform Method is a perspective on directly transforming an
ODE (and sometimes a partial differential equation) into a recurrence relation found
in some publications (e.g. [5] and the 1986 Chinese textbook referenced therein).
Many of the works within these communities recreate or cite piecemeal results for

2010 Mathematics Subject Classification. Primary: 65D25, 41A58; Secondary: 41A63, 65L05,

65D15.
Key words and phrases. Series, automatic differentiation, recurrence, multivariable series, dif-

ferential transform method.

587

588 RICHARD D. NEIDINGER

operations on series. We seek a fairly thorough and unified treatment of both
univariate and multivariate recurrence relations for such operations.

The core ideas of series recurrence developed over centuries. In 1247, a Chinese
(root-finding) algorithm converted coefficients of a polynomial about 0 to coefficients
about x0 [10]. Euler (1707 – 1783) was a master at manipulating series [3]. Franz
Mertens (1840 – 1926) proved convergence of the Cauchy product of series [2]. In
1962, the Ph.D. thesis of R.E. Moore used series recurrences (equivalent to many of
the univariate rules herein) for error analysis in digital computing [6]. Still, a fairly
complete set of univariate rules with derivations is rare [11] and multivariate rules
are very hard to find, except possibly as code within specific computing languages
[7]. This mathematical presentation is rigorous and self-contained. Although the
univariate is a special case of the multivariate, they are treated in succession so that
algorithmic ideas for both can be developed simply and then subtle features of the
multivariate case can be distinguished.

2. Univariate recurrences. For every function h : R → R analytic in a neigh-
borhood of a, we will associate the Taylor coefficient function H : N0 → R such
that

h(x) =

∞∑
k=0

H(k)(x− a)k. (1)

The lower case and upper case notation will be used consistently. In the other
direction,

H(k) =
1

k!

(
d

dx

)k

h (x)

∣∣∣∣∣
x=a

. (2)

This can be thought of as a transform method, where (2) is the Taylor Coefficient
Transform (or Differential Transform) and (1) is the inverse transform. Actu-
ally, H(k) values are rarely computed by differentiating as in (2); instead, special
cases are tabulated and combinations or recurrences are used on the transform side.
Specifically, Taylor coefficients of elementary functions can be built starting from
only the two most basic cases:

• If h(x) = c ∈ R, then H(0) = c and H(k) = 0 otherwise.
• If h(x) = x, then H(0) = a, H(1) = 1 and H(k) = 0 otherwise.

Suppose the transforms U(k) and V (k) are already known (as in the above
two cases) or have been computed for u(x) =

∑∞
k=0U(k)(x − a)k and v(x) =∑∞

k=0V (k)(x− a)k, at least up to some degree k ≤ m. If h(x) is some function or
operation on u and/or v, we seek H(k) in terms of U , V and/or preceding values of
H. The nature of U , V and H depends on perspective. We will be specifying these
by recurrence formulas. In practical application, computers form arrays of floating
point doubles U = (U(0), U(1), U(2), . . . , U(m)), V = (V (0), V (1), V (2), . . . , V (m))
and H = (H(0), H(1), H(2), . . . ,H(m)). In object-oriented programming, these
can be instances of a class (such as the series class in [8]) and operations or stan-
dard functions applied to such objects can implement the recurrence formulas to
produce the resulting Taylor coefficients. This ability to custom define the action
of usual operator symbols or function names, such as ∗ and sin, is called overload-
ing. We now seek recurrence relations for each of the arithmetic operations and
standard (calculator button) functions.

TAYLOR RECURRENCE RELATIONS 589

2.1. Arithmetic operations. The Taylor coefficient transform is linear, by either
(1) or (2). If h(x) = αu(x) + β v(x), then H = αU + βV , as in vector algebra.

The transform of a product is the Cauchy product of transforms: If h(x) =
u(x) v(x), then

h(x) =

 ∞∑
j=0

U(j)(x− a)j

(∞∑
i=0

V (i)(x− a)i

)

=

∞∑
k=0

 k∑
j=0

U(j)V (k − j)

 (x− a)k.

Thus, H(k) =

k∑
j=0

U(j)V (k − j) (3)

over all nonnegative integers k. This sum of U and V values has been called
a discrete convolution and this combination of series has been called a Cauchy
product. Variations of this rule will be the source of all of our recurrence formulas.

The Leibniz rule for the kth-order derivative of a product introduces binomial
coefficients in each term and is less efficient than the Cauchy product. An alter-
native approach to this paper would apply the Leibniz rule to arrays of derivative
values at a, which are larger by a factorial factor from the U and V coefficient val-
ues. Computing with such large derivative values has been seen to produce more
cumulative roundoff error than using Taylor coefficient values.

The transform of a quotient follows from the product. If h(x) = u(x)/v(x),
then u(x) = h(x) v(x), so

U(k) =

k∑
j=0

H(j)V (k − j)

= H(k)V (0) +

k−1∑
j=0

H(j)V (k − j).

Thus, H(k) =
1

V (0)

U(k)−
k−1∑
j=0

H(j)V (k − j)

 . (4)

This recurrence relation, for nonnegative integers k, can be used to divide by any
v (x) where V (0) = v(a) 6= 0. It may be generalized to deal with analytic functions

such as sin(x)
x or ex−1

x about a = 0. If U(0) = V (0) = 0, then h(x) = u(x)/(x−a)
v(x)/(x−a)

is a quotient of two power series with the coefficient values simply shifted to the
left. Unfortunately, if coefficients in U and V are only known up to order m, then
coefficients in H are only produced up to order m− 1. Subsequent shifts could be
implemented if further terms vanish in both numerator and denominator.

2.2. Composition & the DE theorem. Consider a composition h(x) = f(u(x))
where f : R → R is one of the standard functions found on a typical scientific
calculator, including exponential and trigonometric functions and their inverses.
Then

h′(x) = f ′(u(x))u′(x) or

h′(x) = v(x)u′(x).

590 RICHARD D. NEIDINGER

For a simple v(x) = f ′(u(x)), we use U and generate V along with H. For example,
if h(x) = exp(u(x)), then v = h and V = H. In other cases, we get one, or a system
of two, differential equations of the above form although the roles of u, v, and h
may be switched. Examples of this appear in Section 2.3. The point is that we
will be using the specific form h′(x) = v(x)u′(x) resulting from a specific f . We
avoid the use of a higher-order chain rule for arbitrary (symbolic) function f , the
Faà di Bruno formula, which involves significant combinatorial complications.

For h′(x) = v(x)u′(x), consider a Cauchy product involving derivatives of the
corresponding series

∞∑
k=1

H(k) k(x− a)k−1 =

(∞∑
i=0

V (i)(x− a)i

) ∞∑
j=1

U(j) j(x− a)j−1

 .

Collecting the coefficient of (x− a)k−1 on each side yields

kH(k) =
∑

i+j=k

jU(j)V (i) =

k∑
j=1

jU(j)V (k − j).

For our recurrence rules, we pull out the j = k term and divide by k:

H(k) = V (0)U(k) +
1

k

k−1∑
j=1

jU(j)V (k − j). (5)

For repeated application to the differential equation (DE) form h′(x) = v(x)u′(x)
and to facilitate a multivariate generalization, we encapsulate (5), without the iso-
lated term, as a computational function ddot and state the resulting principle as a
theorem.

Theorem 2.1 (DE Theorem). If h′(x) = v(x)u′(x) (on a neighborhood of a where
all these functions are analytic) and k ∈ N, then H(k) = V (0)U(k) + ddot(V,U, k)
where

ddot(V,U, k) =
1

k

k−1∑
j=1

jU(j)V (k − j).

Notice that ddot(V,U, k) uses V and U coefficients only from 1 to k − 1, which
is important in order to avoid a self-referential definition of H(k), even if H plays
the role of V and/or U . Recall that jU(j) comes from the derivative of u, so this
“derivative dot product” is a kind of Cauchy product of v and the derivative of u.
It will be convenient to use the principle with a scalar multiple:

if h′(x) = α v(x)u′(x)

then H(k) = α (V (0)U(k) + ddot(V,U, k)) . (6)

2.3. Standard functions. Using the DE Theorem, each standard (calculator but-
ton) function results in a recurrence relation for the series coefficients when the
function is composed with one whose series coefficients are already known.

If h(x) = exp(u(x)), H(0) = exp(U(0)) and h′(x) = h(x)u′(x), so for k ∈ N,

H(k) = H(0)U(k) + ddot(H,U, k). (7)

If h(x) = ln(u(x)), H(0) = ln(U(0)). Since h′(x) = u′(x)/u(x), we write
u′(x) = u(x)h′(x). By the DE Theorem U(k) = U(0)H(k) + ddot(U,H, k) for

TAYLOR RECURRENCE RELATIONS 591

k ∈ N, and we conclude

H(k) = (U(k)− ddot(U,H, k)) /U(0).

Trigonometric functions and inverse trigonometric functions produce coupled re-
currence relations from the DE Theorem. From now on, we will assume that the
zero term is initialized as the function value and that the recurrence relation applies
for k ∈ N.

If s(x) = sin(u(x)) and c(x) = cos(u(x)), s′(x) = c(x)u′(x) and c′(x) =
−s(x)u′(x), so

S(k) = C(0)U(k) + ddot(C,U, k) and

C(k) = −S(0)U(k)− ddot(S,U, k).

If t(x) = tan(u(x)), let v(x) = sec2(u(x)) = 1 + tan2(u(x)). Then t′(x) =
v(x)u′(x) and v′(x) = 2t(x) t′(x), so

T (k) = V (0)U(k) + ddot(V,U, k) and

V (k) = 2 (T (0)T (k) + ddot(T, T, k)) .

If h(x) = arctan(u(x)), let v(x) = 1 + (u(x))2. Then h′(x) = u′(x)/v(x),
so u′(x) = v(x)h′(x), and U(k) = V (0)H(k)+ddot(V,H, k). Solving for H(k) and
using v′(x) = 2u(x)u′(x), we conclude

H(k) = (U(k)− ddot(V,H, k))/V (0) and

V (k) = 2 (U(0)U(k) + ddot(U,U, k)) .

If h(x) = arcsin(u(x)), u(x) = sin(h(x)). Let v(x) = cos(h(x)). Then u′(x) =
v(x)h′(x), so U(k) = V (0)H(k)+ddot(V,H, k). Solving for H(k) and using v′(x) =
−u(x)h′(x),

H(k) = (U(k)− ddot(V,H, k))/V (0) and

V (k) = −U(0)H(k)− ddot(U,H, k).

Surprisingly, h(x) = sec(u(x)) seems to require three such operations. We can
compute S and C for c(x) = cos(u(x)) and apply (4) to h(x) = 1/c(x). Likewise,
many functions, can be built from operations above. Hyperbolic functions can be
built from exp operations but sometimes it is more efficient to derive the coupled
recurrence relations from the DE Theorem by mimicking the above derivations.

2.4. Exponents. For the most general exponentiation h(x) = u(x)v(x) with posi-
tive u(x), one would use h(x) = exp(v(x) ln (u(x))). For each step we have recur-
rences using three generalized Cauchy products:

h1(x) = lnu(x) H1(k) = (U(k)− ddot(U,H1, k)) /U(0)

h2(x) = v(x)h1(x) H2(k) =
∑k

j=0H1(j)V (k − j)
h(x) = exp(h2(x)) H(k) = H(0)H2(k) + ddot(H,H2, k)

If U and V are completely known, operations in exp(V ∗ ln(U)) could be over-
loaded to perform three loops, one on each line the above recurrences; once com-
puted, intermediate results can be discarded. However, for a differential equation
like u′ = uv, once through the sequence of three recurrences would return the next
series coefficient and the process would be repeated saving intermediate results.

The above uses three generalized Cauchy products, but many important special
exponent cases use only one such product:

• h(x) = u(x)2 is h(x) = u(x)u(x) or use h′(x) = 2u(x)u′(x).

592 RICHARD D. NEIDINGER

• h(x) =
√
u(x) can use u(x) = h(x)h(x) or u′(x) = 2h(x)h′(x).

• h(x) = u(x)−1 can use h(x) = 1/u(x) or, equivalently, h(x)u(x) = 1.
• h(x) = ru(x) is h(x) = e(ln r)u(x) or use h′(x) = (ln r)h(x)u′(x).

For h(x) = u(x)r, the important case of constant exponent, we use only two
generalized Cauchy products. Since h′(x) = r u(x)r−1u′(x), we have u(x)h′(x) =
r h(x)u′(x). Using the DE Theorem (for F (k) where f ′(x) = both sides of above),
we get U(0)H(k) + ddot(U,H, k) = r [H(0)U(k) + ddot(H,U, k)]. Thus

H(k) = {r [H(0)U(k) + ddot(H,U, k)]− ddot(U,H, k)} /U(0).

3. Multivariate recurrences. Every h : Rn → R analytic in a neighborhood of
a, transforms to H : Nn

0 → R, the Taylor coefficient function, such that

h(x) =
∑

kH(k)(x− a)k

=
∑

kH(k)(x1 − a1)k1(x2 − a2)k2 · · · (xn − an)kn

over all multi-indices k = (k1, k2, . . . , kn) of nonnegative integers. We rarely use
the Taylor coefficient formula

H(k) =
1

k1!k2! · · · kn!

(
∂

∂x1

)k1
(

∂

∂x2

)k2

. . .

(
∂

∂xn

)kn

h (a) .

As in univariate, transforms of elementary functions can be built from opera-
tions on the most basic cases, where ei denotes the multi-index with 1 in the ith
coordinate and zeros in all others:

• If h(x) = α ∈ R, then H(0) = α and H(k) = 0 otherwise.
• If hi(x) = xi, then Hi(0) = ai, Hi(ei) = 1 and Hi(k) = 0 otherwise.

Each transform can be represented in a computer language as an object holding
an array of coefficient values over some finite restriction of the multi-index domain,
usually a box or corner as shown in Figure 1, using |j| = j1 + j2 + j3. For a fixed

0
1

2
3

4

0 1 2 3
0

2

4

6

(a) H(j) for j ≤ (6, 3, 4)

0
2

4

0

2

4

0 2 4

(b) H(j) for |j| ≤ 5

Figure 1. Three variable multi-indices for Taylor coefficients.

number of variables, many languages allow working with a multi-dimensional box
array, although these can grow huge very quickly. Figure 1(a), with multi-indices
≤ (6, 3, 4) coordinatewise, represents Taylor coefficients that correspond to at most
6 derivatives in x1, 3 derivatives in x2, and 4 derivatives in x3. Computing up to a
fixed order, as in Figure 1(b), is probably best implemented by a linear array, where

TAYLOR RECURRENCE RELATIONS 593

each linear index corresponds to a multi-index. This is the biggest complication
in multivariate work. We will focus on the conceptually simple task of finding
recurrence relations to compute H(k), assuming H(j) have already been computed
for all multi-indices j ≤ k coordinatewise with j 6= k. Processing array entries in
such an order is easy, but linear indexing makes it more difficult to access needed
subsets of previous values.

3.1. Arithmetic operations. The multivariate Taylor coefficient transform is also
linear: if h(x) = αu(x) + β v(x), then H = αU + βV , as in matrix algebra.

For a product h(x) = u(x) v(x),

h(x) =
(∑

kU(k)(x− a)k
) (∑

kV (k)(x− a)k
)

=
∑

k

∑
j≤k

U(j)V (k− j)

 (x− a)k

so
H(k) =

∑
j≤k

U(j)V (k− j) (8)

summing over all multi-indices j ≤ k coordinatewise. This is a multivariate gen-
eralization of the Cauchy product. If k = (6, 3, 4), the sum is over the whole box
of entries, shown in Figure 1(a), with U and V arrays processed in opposite order.
For k = (2, 1, 2) (in Figure 1(a) or (b)), the sum would be over the 3×2×3 sub-box
of entries.

For a quotient h(x) = u(x)/v(x), write u(x) = h(x) v(x), so

U(k) =
∑
j≤k

H(j)V (k− j)

= H(k)V (0) +
∑
j�k

H(j)V (k− j)

summing over all multi-indices j ≤ k coordinatewise with j 6= k. Thus

H(k) =
1

V (0)

U(k)−
∑
j�k

H(j)V (k− j)

 .

3.2. Multivariate DE theorem. For the composition h(x) = f(u(x)) where f :
R→ R is one of the standard (calculator button) functions that generate the set of
elementary functions,

∂h

∂xi
(x) = f ′(u(x))

∂u

∂xi
(x) or

∂h

∂xi
(x) = v(x)

∂u

∂xi
(x), for each i,

which plays the same role as h′(x) = v(x)u′(x) in univariate derivations.

Theorem 3.1 (Multivariate DE Theorem). If ∂h
∂xi

(x) = v(x) ∂u
∂xi

(x) for each i

(on a neighborhood of a where all these functions are analytic) and k 6= 0, choose
a coordinate p such that kp = min{ki : ki 6= 0}. Then H(k) = V (0)U(k) +
ddot(V,U,k) where

ddot(V,U,k) =
1

kp

∑
ep≤j�k

jpU(j)V (k− j)

594 RICHARD D. NEIDINGER

summing over all multi-indices with coordinates jp = 1, 2, . . . , kp and all other ji =
0, 1, . . . , ki except that j = k is omitted.

Proof. For k 6= 0, we may choose any coordinate p such that kp 6= 0. We suggest
kp = min{ki : ki 6= 0}, in order to minimize the number of terms in the ddot

summation that results. By hypothesis ∂h
∂xp

(x) = v(x) ∂u
∂xp

(x). Thus

∂

∂xp

(∑
kH(k)(x− a)k

)
=
(∑

iV (i)(x− a)i
) ∂

∂xp

(∑
jU(j)(x− a)j

)
and∑

kH(k) kp(x− a)k−ep =
(∑

iV (i)(x− a)i
) (∑

jU(j) jp(x− a)j−ep

)
.

Collecting the coefficient of (x− a)k−ep on each side yields

kpH(k) =
∑

i+j=k

jpU(j)V (i) so

H(k) =
1

kp

∑
ep≤j≤k

jpU(j)V (k− j)

= V (0)U(k) +
1

kp

∑
ep≤j�k

jpU(j)V (k− j)

= V (0)U(k) + ddot(V,U,k).

Geometrically, ddot can be envisioned by considering the sub-box of U for j ≤ k,
sliced by fixed p-coordinate. Drop the first such face, then other slices are dotted
with the reverse of the opposite slice of V , results are multiplied by jp and summed.
For example, if n = 2 and k = (6, 3), the entries needed in V and U are shown in
Figure 2. By choosing kp = k2 = 3, we drop the largest face of this box (which could

0 1 2 kp
0 V (0) � ⇓ ·
1 ↓ � ⇓ ·
2 ↓ � ⇓ ·
3 ↓ � ⇓ ·
4 ↓ � ⇓ ·
5 ↓ � ⇓ ·
6 ↓ � ⇓ V (k)

ddot

jp : 0 1 2 kp
0 U(0) ⇑ � ↑
1 · ⇑ � ↑
2 · ⇑ � ↑
3 · ⇑ � ↑
4 · ⇑ � ↑
5 · ⇑ � ↑
6 · ⇑ � U(k)

Figure 2. Visualizing ddot(V,U,k).

extend into even more dimensions for larger n). Entries are multiplied and summed
as indicated by the arrows. When each slice is finished the result is multiplied by
jp and the final total is divided by kp.

The ddot operation and Cauchy product can be made very efficient by storing a
large global reference list (of matrices of indices) that depends only on the number
of variables n and the highest order m of desired Taylor coefficients, as in Figure
1(b). A linear index can progress through entries corresponding to each multi-index
k. For each linear index, the global reference can store linear indices corresponding
to the sub-box of all j ≤ k, divided into slices; making a 2D matrix of indices for
each k, regardless of n. Then ddot simply runs through the matrix of indices, as

TAYLOR RECURRENCE RELATIONS 595

diagrammed in Figure 2. Assuming the linear ordering of the n-dimensional multi-
indices is increasing either lexically and/or in |k| order, values on the sub-box will
be computed before a value for k. This process is implemented in MATLAB in [1],
where the global reference of sub-boxes was much faster to compute by recurrence,
than with direct search.

3.3. Standard functions. After details are encapsulated in ddot, the multivariate
DE theorem looks exactly like the univariate version in (6);

if
∂h

∂xi
(x) = α v(x)

∂u

∂xi
(x) for all i,

then H(k) = α (V (0)U(k) + ddot(V,U,k)) . (9)

With this understanding, all of the standard (calculator button) functions have the
same transform rules when applied to multivariate functions.

Consider h(x) = exp(u(x)) where u : Rn → R and the multivariate transform
U is known. In order to see how this starts, consider u(x, y, z) = xyz about
(a, b, c). The basic arrays X, Y , and Z would have just two nonzero entries, like
Y ((0, 0, 0)) = b, Y ((0, 1, 0)) = 1. The Cauchy product rule (8) is used twice to find
U = X ∗ Y ∗ Z. For any u and h(x) = exp(u(x)), we have ∂h

∂xi
(x) = h(x) ∂u

∂xi
(x)

for all i, playing the same role as h′(x) = h(x)u′(x) in the univariate case. Then
H(0) = exp(U(0)) and all other H(k) values are given by (9), specifically

H(k) = H(0)U(k) + ddot(H,U,k). (10)

Just as the only difference between (7) and (10) is that the index arguments
are multivariate, all of the ddot rules of Sections 2.3 and 2.4 apply to multivariate
arguments as well, and will not be repeated here. Of course, the implementation of
indexing, arrays, and ddot are more complicated but the standard function rule is
just the same. There is a new motivation in the multivariate case: a ddot rule (9)
can be more efficient than a Cauchy product rule (8) since ddot omits an entire face
from of each sum of products, as described at the end of the last section. While
h(x) = u(x)2 could use either h(x) = u(x)u(x) or h′(x) = 2u(x)u′(x), the latter
would be preferred for multivariate work. The square root function would be done
in a similar way.

If h(x) = u(x)2, then ∂h
∂xi

(x) = 2u(x) ∂u
∂xi

(x), so

H(k) = 2 (U(0)U(k) + ddot(U,U,k)) .

If h(x) =
√
u(x), then ∂h

∂xi
(x) = 1

2h(x)
∂u
∂xi

(x), or ∂u
∂xi

(x) = 2h(x) ∂h
∂xi

(x). By

the multivariate DE theorem, U(k) = 2 (H(0)H(k) + ddot(H,H,k)), so

H(k) = (U(k)/2− ddot(H,H,k))/H(0).

4. Application to an ODE. To see how these rules are used to compute a high-
order solution to an ordinary differential equation with initial condition, we return
to the univariate setting and consider the example problem y′ = −xy − sin(y),
y(x0) = y0. Initial values specify the transform (or Taylor coefficients) for X =
(x0, 1, 0, 0, . . .) and the first two terms Y (0) = y0, Y (1) = −x0y0 − sin(y0). To
produce further terms of Y , we break the right-hand-side of the differential equation
into steps with one variable name for each product (division) or standard function
and any trigonometric cofunctions as in Section 2.3. Let p = xy, s = sin(y),
c = cos(y), and y′ = −p−s, which is called a code list in AD. The transform of each
of these variables is initialized: P (0) = x0y0, S(0) = sin(y0), C(0) = cos(y0). The

596 RICHARD D. NEIDINGER

differential equation transforms to (k+1)Y (k+1) = −P (k)−S(k), where P (k) and

S(k) are computed by Section 2.3 rules. In this case, P (k) =
∑k

j=0X(j)Y (k− j) =

x0Y (k) + Y (k − 1). For k ≥ 1, compute arbitrarily many terms of Y by iterating
through

P (k) = x0Y (k) + Y (k − 1),

S(k) = C(0)Y (k) + ddot(C, Y, k),

C(k) = −S(0)Y (k)− ddot(S, Y, k),

Y (k + 1) = (−P (k)− S(k))/(k + 1),

which could be simplified by substitution for P (k) in the last step. Such a sequence
of recurrence relations is the Differential Transform Method solution. The solution
function y(x) ≈

∑m
k=0 Y (k)(x − x0)k gives y almost to the radius of convergence

for large m. Calculation for y(−1) = 2 shows the 50th order Taylor polynomial
visually agreeing with the ode45 MATLAB solution for a radius of 1.5, and the 10th
order for over radius 1.0. Numerical or a-priori error estimates could detect such a
radius and use it as a large step to a new point, where the recurrence is restarted
and another series is found. This algorithmic version of a high-order Taylor series
method does not require symbolic differentiation.

REFERENCES

[1] B. Altman, “Higher-Order Automatic Differentiation of Multivariate Functions in MATLAB,”

Undergraduate Honors Thesis, Davidson College, 2010.
[2] F. Dangello and M. Seyfried, “Introductory Real Analysis,” Houghton Mifflin, 2000, Section

7.4.

[3] W. Dunham, “Euler: The Master of Us All,” MAA, 1999, Chapter 3.
[4] A. Griewank and A. Walther, “Evaluating Derivatives,” 2nd edition, SIAM, 2008, Section

13.2.

[5] M-J. Jang, C-L. Chen and Y-C. Liu, Two-dimensional differential transform for partial dif-
ferential equations, Appl. Math. Computation, 121 (2001), 261–270.

[6] R.E. Moore, “Methods and Applications of Interval Analysis,” SIAM, 1979, Section 3.4.

[7] R.D. Neidinger, Computing multivariable Taylor series to arbitrary order,, APL Quote Quad,
25 (1995), 134–144.

[8] R.D. Neidinger, Automatic differentiation and MATLAB object-oriented programming, SIAM

Review, 52 (2010), 545-563.
[9] G.E. Parker and J.S. Sochacki, Implementing the Picard iteration, Neural, Parallel and Sci-

entific Computation, 4 (1996), 97-112.
[10] L.B. Rall, Early automatic differentiation: the Ch’in-Horneralgorithm, Reliable Computing,

13 (2007), 303-308.
[11] J. Waldvogel, Der Tayloralgorithmus, J. Applied Math. and Physics (ZAMP), 35 (1984),

780-789.

Received July 2012; revised April 2013.

E-mail address: rineidinger@davidson.edu

http://www.ams.org/mathscinet-getitem?mr=MR1669154&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2454953&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1830873&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0551212&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2680545&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1381852&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2313145&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0777861&return=pdf

	1. Introduction
	2. Univariate recurrences
	2.1. Arithmetic operations
	2.2. Composition & the DE theorem
	2.3. Standard functions
	2.4. Exponents

	3. Multivariate recurrences
	3.1. Arithmetic operations
	3.2. Multivariate DE theorem
	3.3. Standard functions

	4. Application to an ODE
	REFERENCES

