Relative coherent modules and semihereditary modules

Lixin Mao

Department of Mathematics and Physics, Nanjing Institute of Technology, China

The Eighth China-Japan-Korea International Symposium on Ring Theory Nagoya University, Japan August 26–31, 2019

Contents

Contents

Introduction

It is well known that coherent rings and semihereditary rings play important roles in ring theory. Recall that R is a left coherent ring (resp. left semihereditary ring) if every finitely generated left ideal of R is finitely presented (resp. projective).

Later, for a given positive integer *n*, the concepts of *n*-coherent rings and *n*-semihereditary rings were introduced.

R is called a left *n*-coherent ring (Shamsuddin, 2001) (resp. left *n*-semihereditary ring) (Zhu-Tan, 2005) if every *n*-generated left ideal of *R* is finitely presented (resp. projective).

n-coherent rings and *n*-semihereditary rings were also furthermore studied by Zhang-Chen (2007).

In particular, a left 1-coherent ring coincides with a left *P*-coherent ring, a left 1-semihereditary ring is exactly a left *PP* ring (Rickart ring).

Main results

Introduction

In this talk, we will generalize the concepts of *n*-coherent rings and *n*-semihereditary rings to the general setting of modules.

Main results

Definition 1

Let *R* be a ring. For a fixed positive integer *n*, a left *R*-module *M* is called *n*-coherent if every *n*-generated submodule of *M* is finitely presented.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Main results

Definition 1

Let *R* be a ring. For a fixed positive integer *n*, a left *R*-module M is called *n*-coherent if every *n*-generated submodule of *M* is finitely presented.

・ロト・(日)・(日)・(日)・(日)・

Remark 2

(1) $_{R}R$ is an *n*-coherent left *R*-module if and only if *R* is a left *n*-coherent ring. $_{R}R^{m}$ is an *n*-coherent left *R*-module if and only if *R* is a left (m, n)-coherent ring (Zhang-Chen-Zhang, 2005). (2) *M* is a coherent left *R*-module if and only if *M* is *n*-coherent for any positive integer *n*. *M* is a *P*-coherent left *R*-module (Mao, 2010) if and only if *M* is 1-coherent. (3) It is easy to see that every submodule of an *n*-coherent left *R*-module is *n*-coherent. In particular, any left ideal of a left *n*-coherent ring *R* is an *n*-coherent left *R*-module.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

(ロ) (日) (日) (日) (日) (日) (日)

Remark 2

(1) $_{R}R$ is an *n*-coherent left *R*-module if and only if *R* is a left *n*-coherent ring. $_{R}R^{m}$ is an *n*-coherent left *R*-module if and only if *R* is a left (m, n)-coherent ring (Zhang-Chen-Zhang, 2005).

(2) M is a coherent left R-module if and only if M is n-coherent for any positive integer n. M is a P-coherent left R-module (Mao, 2010) if and only if M is 1-coherent.

(3) It is easy to see that every submodule of an *n*-coherent left R-module is *n*-coherent. In particular, any left ideal of a left *n*-coherent ring R is an *n*-coherent left R-module.

Proposition 3

If R is a left coherent ring and n is a positive integer, then the class of n-coherent left modules is closed under direct sums.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proposition 3

If R is a left coherent ring and n is a positive integer, then the class of n-coherent left modules is closed under direct sums.

Theorem 4

Given a positive integer *n*, the following conditions are equivalent for a left *R*-module *M*:

If M^n is an *n*-coherent left *R*-module.

2) $M^{n \times n}$ is a *P*-coherent left $M_n(R)$ -module.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● のへで

(日)

Theorem 4

Given a positive integer *n*, the following conditions are equivalent for a left *R*-module *M*:

- M^n is an *n*-coherent left *R*-module.
- 2 $M^{n \times n}$ is a *P*-coherent left $M_n(R)$ -module.

Proposition 5

The following conditions are equivalent for a left *R*-module *M*:

- I M is a coherent left *R*-module.
- Mⁿ is a P-coherent left M_n(R)-module for any positive integer n.
- (a) $M^{n \times n}$ is a *P*-coherent left $M_n(R)$ -module for any positive integer *n*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Proposition 5

The following conditions are equivalent for a left *R*-module *M*:

- M is a coherent left *R*-module.
- 2 M^n is a *P*-coherent left $M_n(R)$ -module for any positive integer *n*.
- 3 $M^{n \times n}$ is a *P*-coherent left $M_n(R)$ -module for any positive integer *n*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The following conditions are equivalent for a ring *R*:

- R is a left Noetherian ring.
- Every left *R*-module is *n*-coherent for some positive integer *n*.
- Every injective left *R*-module is *n*-coherent for some positive integer *n*.

▲口 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

(日)

Corollary 6

The following conditions are equivalent for a ring *R*:

- R is a left Noetherian ring.
- Every left *R*-module is *n*-coherent for some positive integer *n*.
- Severy injective left *R*-module is *n*-coherent for some positive integer *n*.

Definition 7

A left *R*-module *M* is called pseudo-coherent if the left annihilator of any finite subset of *M* in *R* is a finitely generated left ideal.

M is said to be a left *AFG R*-module if the left annihilator of any non-empty subset of *M* in *R* is a finitely generated left ideal.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition 7

A left *R*-module *M* is called pseudo-coherent if the left annihilator of any finite subset of *M* in *R* is a finitely generated left ideal.

M is said to be a left *AFG R*-module if the left annihilator of any non-empty subset of *M* in *R* is a finitely generated left ideal.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Proposition 8

The following conditions are equivalent for a left *R*-module *M*:

 \bigcirc *M* is a pseudo-coherent left *R*-module.

- **2** $\oplus_{i \in \Lambda} M$ is a *P*-coherent left *R*-module for any index set Λ .
- Mⁿ is a P-coherent left R-module for any positive integer n.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Proposition 8

- M is a pseudo-coherent left *R*-module.
- **2** $\oplus_{i \in \Lambda} M$ is a *P*-coherent left *R*-module for any index set Λ .
- \bigcirc M^n is a *P*-coherent left *R*-module for any positive integer *n*.

Proposition 9

- ① M is an AFG left R-module.
- 2 $\prod_{i \in \Lambda} M$ is a *P*-coherent left *R*-module for any index set Λ .

Proposition 9

- $\bigcirc M \text{ is an } AFG \text{ left } R \text{-module.}$
- **2** $\prod_{i \in \Lambda} M$ is a *P*-coherent left *R*-module for any index set Λ .

Definition 10

Let R be a ring. For a fixed positive integer n, a left R-module M is called *n*-semihereditary if every *n*-generated submodule of M is projective.

Definition 10

Let *R* be a ring. For a fixed positive integer *n*, a left *R*-module *M* is called *n*-semihereditary if every *n*-generated submodule of *M* is projective.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remark 11

(1) $_RR$ is an *n*-semihereditary left *R*-module if and only if *R* is a left *n*-semihereditary ring.

(2) Clearly, M is a semihereditary left R-module if and only if M is n-semihereditary for any positive integer n. M is a PP left R-module if and only if M is 1-semihereditary.

Remark 11

(1) $_{R}R$ is an *n*-semihereditary left *R*-module if and only if *R* is a left *n*-semihereditary ring.

(2) Clearly, M is a semihereditary left R-module if and only if M is n-semihereditary for any positive integer n. M is a PP left R-module if and only if M is 1-semihereditary.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

Proposition 12

Given a positive integer *n*, the class of *n*-semihereditary left *R*-modules is closed under direct sums.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proposition 12

Given a positive integer *n*, the class of *n*-semihereditary left *R*-modules is closed under direct sums.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Sac

Theorem 13

Given a positive integer *n*, the following conditions are equivalent for a left *R*-module *M*:

- If M is an *n*-semihereditary left *R*-module.
- ② $\oplus_{i \in \Lambda} M$ is an *n*-semihereditary left *R*-module.
- 3 M^n is an *n*-semihereditary left *R*-module.
- If $M^{n \times n}$ is a *PP* left $M_n(R)$ -module.

(日)

Theorem 13

Given a positive integer *n*, the following conditions are equivalent for a left *R*-module *M*:

- M is an *n*-semihereditary left *R*-module.
- 2 $\oplus_{i \in \Lambda} M$ is an *n*-semihereditary left *R*-module.
- **3** M^n is an *n*-semihereditary left *R*-module.
- $M^{n \times n}$ is a *PP* left $M_n(R)$ -module.

Proposition 14

The following conditions are equivalent for a left *R*-module *M*:

- M is a semihereditary left R-module.
- 3 M^n is a PP left $M_n(R)$ -module for any positive integer n.
- 3 $M^{n \times n}$ is a *PP* left $M_n(R)$ -module for any positive integer *n*.

▲口 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

(日) (日) (日) (日) (日) (日) (日)

Proposition 14

- M is a semihereditary left *R*-module.
- 2 M^n is a *PP* left $M_n(R)$ -module for any positive integer *n*.
- 3 $M^{n \times n}$ is a *PP* left $M_n(R)$ -module for any positive integer *n*.

The following conditions are equivalent for a ring *R*:

- R is a left semihereditary ring.
- Every projective left *R*-module is *n*-semihereditary for any positive integer *n*.
- If $M_n(R)$ is a left *PP* ring for any positive integer *n*.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - のへで

(日)

Corollary 15

The following conditions are equivalent for a ring *R*:

- R is a left semihereditary ring.
- Every projective left *R*-module is *n*-semihereditary for any positive integer *n*.
- $M_n(R)$ is a left *PP* ring for any positive integer *n*.

Proposition 16

- The following conditions are equivalent for a ring *R*:
 - R is a semisimple Artinian ring.
 - Every left *R*-module is *n*-semihereditary for some positive integer *n*.
 - Every injective left *R*-module is *n*-semihereditary for some positive integer *n*.

・ロト・(四ト・(ヨト・(四ト・(ロト)))

Proposition 16

The following conditions are equivalent for a ring *R*:

- R is a semisimple Artinian ring.
- Every left *R*-module is *n*-semihereditary for some positive integer *n*.
- Severy injective left *R*-module is *n*-semihereditary for some positive integer *n*.

Definition 17

Let *M* be a left *R*-module. For a fixed positive integer *n*, a right *R*-module *N* is called *n*-*M*-flat if the induced sequence $0 \rightarrow N \otimes K \rightarrow N \otimes M$ is exact for any *n*-generated submodule *K* of *M*.

A left *R*-module *L* is said to be *n*-*M*-injective if the induced sequence $\text{Hom}(M,L) \rightarrow \text{Hom}(K,L) \rightarrow 0$ is exact for any *n*-generated submodule *K* of *M*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(ロ) (日) (日) (日) (日) (日) (日)

Definition 17

Let *M* be a left *R*-module. For a fixed positive integer *n*, a right *R*-module *N* is called *n*-*M*-flat if the induced sequence $0 \rightarrow N \otimes K \rightarrow N \otimes M$ is exact for any *n*-generated submodule *K* of *M*.

A left *R*-module *L* is said to be *n*-*M*-injective if the induced sequence $\text{Hom}(M, L) \rightarrow \text{Hom}(K, L) \rightarrow 0$ is exact for any *n*-generated submodule *K* of *M*.

Remark 18

We observe that an n- R^m -flat right R-module is exactly an (m, n)-flat right R-module (Zhang-Chen-Zhang, 2005), and an n- R^m -injective left R-module is exactly an (m, n)-injective left R-module (Chen-Ding-Li-Zhou, 2001).

In particular, an *n*-*R*-flat right *R*-module is exactly an *n*-flat right *R*-module (Shamsuddin, 2001). An *n*-*R*-injective left *R*-module is exactly an *n*-injective left *R*-module (Shamsuddin, 2001).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ⑦�?

(ロ) (日) (日) (日) (日) (日) (日)

Remark 18

We observe that an n- R^m -flat right R-module is exactly an (m, n)-flat right R-module (Zhang-Chen-Zhang, 2005), and an n- R^m -injective left R-module is exactly an (m, n)-injective left R-module (Chen-Ding-Li-Zhou, 2001).

In particular, an *n*-*R*-flat right *R*-module is exactly an *n*-flat right *R*-module (Shamsuddin, 2001). An *n*-*R*-injective left *R*-module is exactly an *n*-injective left *R*-module (Shamsuddin, 2001).

Let C be a class of R-modules and M an R-module.

A morphism $\phi : C \to M$ is a *C*-precover of *M* if $C \in C$ and the Abelian group homomorphism $\text{Hom}(C', \phi) : \text{Hom}(C', C) \to \text{Hom}(C', M)$ is surjective for every $C' \in C$.

A *C*-precover $\phi : C \to M$ is said to be a *C*-cover of *M* if every endomorphism $g : C \to C$ such that $\phi g = \phi$ is an isomorphism.

Dually we have the definitions of a C-preenvelope and a C-envelope.

Lemma 19

Let *M* be a left *R*-module.

- The class of *n*-*M*-injective left *R*-modules is closed under direct sums, direct products and direct summands.
- The class of *n-M*-flat right *R*-modules is closed under pure submodules, pure quotients, direct summands, direct limits and direct sums. Consequently, every right *R*-module has an *n-M*-flat cover.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣 ● つへぐ

(日) (日) (日) (日) (日) (日) (日)

Lemma 19

Let *M* be a left *R*-module.

- The class of *n*-*M*-injective left *R*-modules is closed under direct sums, direct products and direct summands.
- The class of *n-M*-flat right *R*-modules is closed under pure submodules, pure quotients, direct summands, direct limits and direct sums. Consequently, every right *R*-module has an *n-M*-flat cover.

Lemma 20

Let M be an n-coherent left R-module. Then the class of n-M-flat right R-modules is closed under direct products and every right R-module has an n-M-flat preenvelope.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Lemma 20

Let M be an n-coherent left R-module. Then the class of n-M-flat right R-modules is closed under direct products and every right R-module has an n-M-flat preenvelope.

Theorem 21

- The following conditions are equivalent for a finitely presented left *R*-module *M*:
 - M is an n-coherent left R-module.
 - The class of *n*-*M*-flat right *R*-modules is closed under direct products.
 - Every right *R*-module has an *n-M*-flat preenvelope.
 - The class of *n*-*M*-injective left *R*-modules is closed under pure quotients.
 - The class of *n-M*-injective left *R*-modules is closed under direct limits.

Theorem 21

The following conditions are equivalent for a finitely presented left *R*-module *M*:

- M is an *n*-coherent left *R*-module.
- The class of *n*-*M*-flat right *R*-modules is closed under direct products.
- Severy right *R*-module has an *n*-*M*-flat preenvelope.
- The class of *n*-*M*-injective left *R*-modules is closed under pure quotients.
- The class of *n*-*M*-injective left *R*-modules is closed under direct limits.

If M is a finitely presented n-coherent left R-module, then every left R-module has an n-M-injective preenvelope and n-M-injective cover.

If M is a finitely presented n-coherent left R-module, then every left R-module has an n-M-injective preenvelope and n-M-injective cover.

The following conditions are equivalent for a ring *R*:

- If R is a left (m, n)-coherent ring.
- 2 Every left *R*-module has an (m, n)-injective cover.
- 3 Every right *R*-module has an (m, n)-flat preenvelope.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲□▶▲□▶▲□▶▲□▶ = のへで

Corollary 23

The following conditions are equivalent for a ring *R*:

- **1** *R* is a left (m, n)-coherent ring.
- 2 Every left *R*-module has an (m, n)-injective cover.
- Solution Every right *R*-module has an (m, n)-flat preenvelope.

Proposition 24

The following conditions are equivalent for a finitely presented *n*-coherent left *R*-module *M*:

- $\mathbb{O}_{R}R$ is *n*-*M*-injective.
- Every right *R*-module has a monic *n-M*-flat preenvelope.
- Every left *R*-module has an epic *n-M*-injective cover.

(日)

Proposition 24

The following conditions are equivalent for a finitely presented *n*-coherent left *R*-module *M*:

- \bigcirc _{*R*}*R* is *n*-*M*-injective.
- 2 Every right *R*-module has a monic *n*-*M*-flat preenvelope.
- Severy left *R*-module has an epic *n*-*M*-injective cover.

Theorem 25

The following conditions are equivalent for a flat *n*-coherent left *R*-module *M*:

- If M is an *n*-semihereditary left *R*-module.
- 2 Every right *R*-module has an epic *n*-*M*-flat preenvelope.
- Every left *R*-module has a monic *n-M*-injective cover.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(日)

Theorem 25

The following conditions are equivalent for a flat *n*-coherent left *R*-module *M*:

- M is an *n*-semihereditary left *R*-module.
- 2 Every right *R*-module has an epic *n*-*M*-flat preenvelope.
- Severy left *R*-module has a monic *n*-*M*-injective cover.

References

- J.L. Chen, N.Q. Ding, Y.L. Li, Y.Q. Zhou, On (*m*, *n*)-injectivity of modules, Comm. Algebra **29** (2001), 5589-5603.
- E.E. Enochs and O.M.G. Jenda, Relative Homological Algebra; Walter de Gruyter: Berlin-New York, 2000.
 - L.X. Mao, Properties of *P*-coherent and Baer modules, Period. Math. Hungar. **60** (2010), 97-114.
- A. Shamsuddin, *n*-injective and *n*-flat modules, Comm. Algebra, **29** (2001), 2039-2050.
- X.X. Zhang, J.L. Chen, On *n*-semihereditary and *n*-coherent rings, Inter. Electronic J. Algebra **1** (2007), 1-10.
- X.X. Zhang, J.L. Chen, J. Zhang, On (*m*,*n*)-injective modules and (*m*,*n*)-coherent rings, Algebra Colloq. **12** (2005), 149-160.
- Z.M. Zhu, Z.S. Tan, On *n*-semihereditary rings, Sci. Math. Jpn. **62** (2005), 455-459.

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○