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9. Hebbian Learning and Plasticity
The elementary processing units in the brain are neurons (see Chapter 2)

which are connected to each other via cable-like extensions, called axons and
dendrites (see Chapter 3). The contact points between an axon terminal of a
neuron A and the dendrite of another neuron B are called synapses. The most
important synapses are chemical synapses, but there exist also electrical synapses
which we will not consider further. When an action potential of neuron A arrives
at the axon terminating at a chemical synapse, a chemical signal (neurotransmit-
ter) is ejected into the synaptic cleft and taken up by receptors sitting on the
membrane of the dendrite of the receiving neuron. Upon transmitter binding,
an ion channel opens, ions flow into the cell and cause a change in the proper-
ties of neuron B. This change can be measured as an Excitatory or Inhibitory
Postsynaptic Potential (EPSP or IPSP) at the soma of the receiving neuron (see
Chapter 3). The strength of an excitatory synaptic connection can be quantified
by the amplitude of the EPSP. The most important insight for all the rest of
chapter is that the strength of a synapse is not fixed, but can change.

9.1 Introduction to Hebbian Plasticity

Changes of synapses in the network of neurons in the brain are called synaptic
plasticity. These changes are thought to be the basis of learning.

9.1.1 What is Learning?

A small child learns to unscrew the lid of a bottle. An older child learns to ride
a bicycle, to ski, or to skateboard. Learning activities such as in these examples
typically uses an internal reward system of the brain: it hurts if we fall from the
bicycle and we are happy if we achieve for the first time a slalom slope with the
skies.

Learning is also the basis of factual and episodic memories: we know the
name of the current president of the United States because we have heard it often
enough; we know the date of the French Revolution because we have learned it in
school etc. These are examples of factual memories. We can remember the first
day we went to school; we can recall a beautiful scene encountered during our
last vacation. These are examples of episodic memories, that have been generated
most often without explicit learning, but are still acquired (as opposed to inborn)
and have therefore been ’learned’ in the loose sense of the word.

Finally, it is the result of learning if a musician is able to distinguish between
tones that sound absolutely identical to the ear of a normal untrained human.
In experiments with monkeys measurable differences were found between the
auditory areas of animals exposed to specific tones and others living in a normal
environment (Recanzone et al., 1993). More generally, it is believed that the
cortex adapts itself such that more neurons are devoted to stimuli that appear
more frequently or are more important and less neurons to less relevant ones
(Buonomano and Merzenich, 1998). This adaptation of cortex (see Chapter 14,
Neural Maps) is also subsumed under the term of ’learning’ in the wider sense.

Most likely, all the different forms of learning that we have mentioned (action
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Fig. 9.1: A. Two neurons, a presynaptic neuron j and a postsynaptic neuron i are connected
by a synapse with weight wij . The weight is determined by the amplitude of the excitatory
postsynaptic potential (EPSP) that is measured as the response of the postsynaptic neuron to
an isolated input spike (inset lower right). The synapse itself functions via a chemical signaling
chain (inset lower left). The weight of the synapse is changed if the two neurons are activated
in the sequence pre- before postsynaptic neuron. B. Short-Term plasticity recovers rapidly
whereas Long-Term plasticity persists for a long time.

learning, formation of factual or episodic memories, adaptation of cortical orga-
nization) are in one way or other related to changes in the strength of synapses.

9.1.2 Classification of Synaptic Plasticity

Changes in synaptic strength can be induced in a controlled way in preparations
of neuronal brain slices. First, the strength of the connection is measured by gen-
erating a single test spike in the presynaptic (=signaling) neuron while recording
the postsynaptic potential (or postsynaptic current) in the postsynaptic (=re-
ceiving) neuron. Then an appropriate stimulus is given to induce a change of the
synapse. Finally, a second test spike is evoked in the presynaptic neuron and the
change in the amplitude of the postsynaptic potential is noted; see Fig. 9.1.

An appropriate stimulus, for example, a sequence of 10 spikes at 100 Hz in
the presynaptic neuron, can increase or decrease the amplitude of the measured
EPSP by a factor of two or more. However, if another test pulse is given 5
seconds later, this change has disappeared (Markram et al., 1998; Abbott et al.,
1997). Since this type of plasticity lasts only for one or a few seconds, it is called
short-term plasticity (Fig. 9.1B).

We now consider a different stimulus. The presynaptic neuron is stimulated
so as to produce 60 spikes at 20Hz. In parallel the postsynaptic neuron is also
stimulated to produce 60 spikes at 20Hz, but the two stimulation protocols are
slightly shifted so that the postsynaptic neuron fires always 10ms after the presy-
naptic one (Fig. 9.1A). Note that the stimulus only lasts three seconds in total.
Nevertheless, it introduces an increase in the EPSP that persists for minutes
or hours. Hence it is an example of persistent plasticity, also called Long-Term
Potentiation (LTP). If the relative timing is reversed so that the presynaptic neu-
ron fires always after the postsynaptic one, the protocol with 60 spikes induces
Long-Term Depression (LTD).

The specific protocol discussed here is called Spike Timing Dependent Plas-
ticity (STDP) (Markram et al., 1997; Abbott and Nelson, 2000), but it is only
one example of a much broader class of stimulation protocols that are all suitable
to induce LTP and LTD. Instead of driving the postsynaptic neuron to firing, it
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can also be held at weakly or strongly depolarized level. If the depolarization is
combined with presynaptic spike arrival, this causes LTD or LTP (Artola et al.,
1990; Ngezahayo et al., 2000). Instead of controlling both presynaptic and post-
synaptic neurons precisely, one can also stimulate many presynaptic fibers by a
high-frequency sequence of extracellular current pulses while recording (intracel-
lularly or extracullarly) from postsynaptic neurons. If enough presynaptic fibers
are stimulated, the postsynaptic neuron is depolarized or even firing, and LTP
can be induced. Such an extracellular stimulation protocol is particularly useful
to confirm that changes induced by LTP or LTD indeed last for many hours (Frey
and Morris, 1998).

The first and most important classification is that between short-term plas-
ticity and long-term plasticity; see Fig. 9.1B. In the following we will focus
on persistent plasticity (LTP and LTD) and neglect short-term plasticity. But
within the realm of long-term plasticity further classifications are possible. We
mentioned already a distinction between spike-timing based protocols on one side
and traditional protocols on the other side.

Another important distinction is the presence or absence of neuromodulators
during the plasticity inducing protocol. We will come back to this distinction in
Section 4 of this chapter.

9.1.3 Long-Term Potentiation as Hebbian Learning

LTP and LTD are thought to be the synaptic basis of learning in the brain. Many
experiments on LTP and LTD, and nearly all synaptic theories of learning, have
been inspired by a formulation of Hebb (Hebb, 1949) which has roots that can
in fact be traced back much further in the past (Makram et al., 2011). It states
that it would be useful to have a rule that synapses are modified whenever the
two neurons that are connected to each other are active together. It is sometimes
summarized in the slogan ’fire together - wire together’, but the exact wording is
worth a read:

When an axon of cell A is near enough to excite cell B or repeatedly or per-
sistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the cells firing B, is
increased.

In contrast to the compressed slogan it contains a ’causal’ tone, because ’tak-
ing part in firing’ the postsynaptic neuron implies that the presynaptic neuron
is, at least partly, causing the spike of the postsynaptic one. We will come back
to this aspect when we speak more about STDP.

At the moment, two aspects are important. First, for the connection from A
to B only two neurons are important, namely A and B, but not any other neuron
C that might make a connection onto A or B. We summarize this insight by
saying that the learning rule is ’local’: only information that is available at the
location of the synapse can be used to change the weight of that synapse. Second,
the wording ’cell A ... takes part in firing’ cell B implies that both cells have to
be active. We summarize this insight by saying that the learning rule must be
sensitive to the correlations between the action potentials of the two neurons.

With these two aspects in mind, let us now return to the plasticity protocols
for LTP that we discussed in the previous subsection. Indeed, the STDP protocol
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Fig. 9.2: A novel percept causes simultaneous activity of a subset of neurons, e.g. those
numbered as 4,5,6, and 9 (left). Under the assumption of Hebbian learning the connections
between these neurons will be strengthened. A partial cue later (right) is sufficient to recall the
complete memory item, since neurons that are not activated by the sensory cue will be excited
by the strong lateral connections.

makes both neurons, the presynaptic neuron A and the postsynaptic neuron B,
fire together (and therefore induces correlations), while other neurons C do not
play a role (and therefore we have locality). Hence, it is a Hebbian protocol. The
traditional extracellular stimulation protocol excites many presynaptic fibers to
generated spikes at high frequencies and these presynaptic spikes are likely to fire
the postsynaptic neuron, too. Therefore, again a Hebbian protocol. One may
argue that postsynaptic firing can be replaced by strong postsynaptic depolariza-
tion, so that the other protocols mentioned above fall also into the category of
Hebbian protocols.

Why should Hebbian Learning be Useful?

Suppose that, somewhere in the brain, we have a network of neurons that can
mutually excite each other. The network could consist of 10 000 neurons or more,
but only a few of these are depicted in Fig. 9.2. We assume now that, while a
human or animal sees for the first time a banana, a subset of these neurons are
active. The neurons may represent in an abstract form the different sensations
associated with the percept, such as form, color or the smell of the banana. May-
be somebody standing nearby says in addition the word banana, or breaks it open
and starts to eat it.

If the brain has a Hebbian learning rule, the result of the co-activation of
different neurons in our network, all the connections between the simultaneously
active neurons are strengthened. The claim is that this means that the item
’banana’ has now been memorized. The memory concept ’banana’ has been
formed.

How can we check that the memory concept ’banana’ works? Let us suppose
that, the next day, the subject sees a banana, partly hidden behind another
object. The banana as a whole is not visible, but there are some yellow cues,
organized into a slightly bent structure. Let us now suppose that seeing part of
the banana stimulates again a subset of the neurons that have been active the
day before when the banana was seen for the first time. Because of the previously
established strong connections, the neurons that are part of the ’banana concept’
but are currently inactive will now be activated by neighboring neurons that
send spikes across the strong connections. As a result, after a few iteration, the
memory concept ’banana’ is fully activated and the memory item is retrieved.
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The basic idea of memory retrieval discussed here is at the heart of models of
working memory and long-term memory (see Chapter 13).

A Family of Hebbian Rules

Hebb was a theoretically inclined psychologist, who developed the essential in-
sights of why the principle, which we now call the Hebb-rule, would be useful; but
he was not a mathematician and never wrote down a mathematical formulation
of his rule. Finding an appropriate mathematical description is our task now. In
this subsection we follow closely the treatment in Chapter 10.2 of Gerstner and
Kistler (2002).

In order to find a mathematically formulated learning rule based on Hebb’s
postulate we focus on a single synapse with efficacy wij that transmits signals
from a presynaptic neuron j to a postsynaptic neuron i. For the moment we
focus on a description in terms of mean firing rates. In the following, the activity
of the presynaptic neuron is denoted by νj and that of the postsynaptic neuron
by νi.

As mentioned before, there are two aspects in Hebb’s postulate that are partic-
ularly important, viz. locality and cooperativity. Locality means that the change
of the synaptic efficacy can only depend on local variables, i.e., on information
that is available at the site of the synapse, such as pre- and postsynaptic firing
rate, and the actual value of the synaptic efficacy, but not on the activity of other
neurons. Based on the locality of Hebbian plasticity we can make a rather general
ansatz for the change of the synaptic efficacy,

d

dt
wij = F (wij; νi, νj) . (9.1)

Here, dwij/dt is the rate of change of the synaptic coupling strength and F is a
so far undetermined function.

We may wonder whether there are other local variables (e.g., the membrane
potential ui) that should be included as additional arguments of the function
F . It turns out that in standard rate models this is not necessary, since the
membrane potential ui is uniquely determined by the postsynaptic firing rate,
νi = g(ui), with a monotone gain function g.

The second important aspect of Hebb’s postulate, cooperativity, implies that
pre- and postsynaptic neuron have to be active simultaneously for a synaptic
weight change to occur. We can use this property to learn something about the
function F . If F is sufficiently well-behaved, we can expand F in a Taylor series
about νi = νj = 0,

d

dt
wij = c0(wij) + cpost

1 (wij)νi + cpre
1 (wij) νj

+cpre
2 (wij) ν

2
j + cpost

2 (wij) ν
2
i + ccorr

2 (wij) νi νj +O(ν3) . (9.2)

The term containing ccorr
2 on the right-hand side of (9.2) is bilinear in pre- and

postsynaptic activity. This term implements the AND condition for cooperativity
which makes Hebbian learning a useful concept.
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The simplest choice for our function F is to fix ccorr
2 at a positive constant and

to set all other terms in the Taylor expansion to zero. The result is the prototype
of Hebbian learning,

d

dt
wij = ccorr

2 νi νj . (9.3)

The dependence of F on the synaptic efficacy wij is a natural consequence
of the fact that wij has to be bounded. If F were independent of wij, then
the synaptic efficacy would grow without limit if the same potentiating stimulus
is applied over and over again. Explosion of weights can be avoided by ’hard
bounds’: ccorr

2 (wij) = γ2 > 0 for 0 < wij < 1 and zero otherwise. A more subtle
saturation of synaptic weights can be achieved, if the parameter ccorr

2 in Eq. (9.2)
tends to zero as wij approaches its maximum value, say wmax = 1, e.g.,

ccorr
2 (wij) = γ2 (1− wij) (9.4)

with a positive constant γ2. An interpolation between the soft bounds and hard
bounds can be implemented by writing ccorr

2 (wij) = γ2 (1−wij)η with a parameter
0 ≤ η ≤ 1. For η = 0 we retrieve the hard bounds while for η = 1 we are back to
the linear soft bounds.

Obviously, setting all parameters except ccorr
2 to zero is a very special case of

the general framework developed in Eq. (9.2). Are there other ’Hebbian’ learning
rules in this framework?

First we note that a learning rule with ccorr
2 = 0 and only first-order terms

(such as cpost
1 6= 0 or cpre

1 6= 0) would be called non-Hebbian plasticity, because
pre- or postsynaptic activity alone induces a change of the synaptic efficacy.
Hence these learning rules miss the correlation aspect of Hebb’s principle. Thus
a learning rule in the family of Eq. (9.2) needs a term ccorr

2 > 0 so as to qualify as
Hebbian. But more complicated learning rules can be constructed if in addition
to the linear terms, and the terms nu2

i or nu2
j other terms in the expansion of

Eq. (9.2), such as νi ν
2
j , ν2

i νj, ν
2
i ν

2
j , etc., are included as well. A learning rule

with a positive coefficient in front of ν2
i νj would also qualify as Hebbian, even if

ccorr
2 vanishes or is negative, because at high postsynaptic firing rates the positive

correlations dominate the dynamics, as we will see further below in the context
of the Bienenstock-Cooper-Munro rule.

Hebb’s original proposal does not contain a rule for a decrease of synaptic
weights. In a system where synapses can only be strengthened, all efficacies
will finally saturate at their upper maximum value. An option of decreasing the
weights (synaptic depression) is therefore a necessary requirement for any useful
learning rule. This can, for example, be achieved by weight decay, which can be
implemented in Eq. (9.2) by setting

c0(wij) = −γ0wij . (9.5)

Here, γ0 is (small) positive constant that describes the rate by which wij decays
back to zero in the absence of stimulation. Our formulation (9.2) is hence suffi-
ciently general to allow for a combination of synaptic potentiation and depression.
If we combine (9.4) and (9.5) we obtain the learning rule

d

dt
wij = ccorr

2 (wij) νi νj − γ0wij . (9.6)
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The last term leads to an exponential decay to wij = 0 in the absence of stimu-
lation, only one of the two neurons is active.

Another interesting aspect of learning rules is competition. The idea is that
synaptic weights can only grow at the expense of others so that if a certain sub-
group of synapses is strengthened, other synapses to the same postsynaptic neuron
have to be weakened. Competition is essential for any form of self-organization
and pattern formation. Practically, competition can be implemented in simula-
tions by normalizing by an explicit algebraic step the sum of all weights converging
onto the same postsynaptic neuron (Miller and MacKay, 1994). Though this can
be motivated by a limitation of common synaptic resources such a learning rule
violates locality of synaptic plasticity. Much more elegant, however, is a formula-
tion that remains local, but makes use of the second-order term ν2

i in Eq. (9.2).
Specifically, we take ccorr

2 = γ > 0 and cpost
2 = −γ wij and set all other parameters

to zero. The learning rule

d

dt
wij = γ [νi νj − wij ν2

i ] (9.7)

is called Oja’s rule (Oja, 1982). If combined with a linear model neuron, Oja’s rule
converges asymptotically to synaptic weights that are normalized to

∑
j w

2
ij = 1

while keeping the essential Hebbian properties of the standard rule of Eq. (9.3).
We note that normalization of

∑
j w

2
ij implies competition between the synapses

that make connections to the same postsynaptic neuron, i.e., if some weights grow
others must decrease.

9.1.4 The Bienenstock-Cooper-Munro Rule as an Exam-
ple of Hebbian Learning

Higher terms in the expansion on the right-hand side of Eq. (9.2) lead to more
intricate plasticity schemes. As an example, let us consider the Bienenstock-
Cooper-Munro rule

d

dt
wij = η φ(νi) νj − γ wij (9.8)

with a nonlinear function φ(νi) which we take as φ(νi) = νi (νi − θ) and a pa-
rameter θ as a reference rate (Bienenstock et al., 1982). A simple calculation
shows that Eq. (9.8) can be classified in the framework of Eq. (9.2) with a term
ccorr
2 = −ηνθ and a higher-order term proportional to ν2

i νj that comes with a
positive coefficient η > 0. What does this learning rule do? If the presynaptic
neuron is inactive (νj = 0), the synaptic weight does not change. Let us now
suppose that the presynaptic neuron is active (νj > 0) while at the same time the
postsynaptic neuron is firing at a high rate νi > θ (see Fig. 9.3). The synaptic
weight increases since both neurons are jointly active. Hence it is a Hebbian rule.
If the presynaptic neuron is firing while the postsynaptic neuron is only weakly
active (νi < θ), then the synaptic weight decreases. Thus the parameter θ marks
the transition point between the induction of LTD and LTP.

In order to get an understanding of how Hebbian plasticity works, the reader
is asked to turn now to the first exercise.

Two important insights can be derived from an analysis of Eq. (9.8) [see also
Exercise 1 for an intuitive approach].
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Fig. 9.3: Learning in the Bienenstock-Cooper-Munro model of synaptic plasticity. A. A
postsynaptic neuron i receives input from several presynaptic neurons, one of them is marked
with the index j. The connection wij from j to i increases or decreases as a function of the
postsynaptic firing rate νi (bottom), provided that the presynaptic neuron j is active. The
activity of presynaptic neurons (top left) switches from time to time (vertical lines) between
two groups of correlated inputs. B. During learning one of the input groups develops strong
synapses, while the synapses of the others a weakened.

First, we can convince ourselves that the postsynaptic rate has a fixed point
at θ, but that this fixed point is unstable. In order to avoid that the postsynaptic
firing rate blows up or decays to zero, it is therefore necessary to turn θ into
an adaptive variable (Bienenstock et al., 1982). More precisely, θ must have a
super-linear dependence upon the averaged firing rate ν̄i. A good choice is to set
θ = (ν̄i)

2/νtarget where νtarget is a parameter that plays the role of a target rate.
Second, if the input is structured into two groups and if the parameter θ

is in an appropriate regime, then the learning rule separates the weights into
two groups: Some weights increase toward the upper bound at the expense of
other weights that decrease to zero (Fig. 9.3B). Thus the learning rule exhibits
competition.

Competition is the key ingredient to understand the development of receptive
fields: because of synaptic plasticity the postsynaptic neuron becomes special-
ized to a subset of the inputs. Functional consequences of Hebbian learning, in
particular the development of receptive fields, is the topic of the next section.

9.2 Functional Consequences of Hebbian Learn-
ing

In the previous section, a family of Hebbian Learning rules has been introduced.
We will now study functional consequences of Hebbian plasticity. One particularly
intriguing result is that Hebbian learning can lead to the development of receptive
fields.

9.2.1 What are Receptive Fields?

A given neuron in cortex does not respond to all stimuli, but only to a small subset
of potential stimuli. For example, a neuron in primary visual cortex responds to
visual stimuli - but not all of them. Suppose a monkey fixates on a red cross
in the center of a gray computer screen while an electrophysiologist records the
activity of one single neuron in visual cortex of the monkey (Fig. 9.4A). On the
screen localized light blobs are switched on at various locations, in some random
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Fig. 9.4: A The receptive field of a visual neuron is the zone on the gray screen (left) in which
a small light blob evokes a response. The response is measured with an electrode in proximity
of the neuron (right). B If model neurons are stimulated with spatially correlated input so
that neighboring presynaptic neurons change their activity together, the postsynaptic neurons
develop localized receptive field as a result of Hebbian synaptic plasticity.

sequence. For most possible locations the neuron remains quiet. However, if the
light blob occurs in one specific small region of the screen, the neuron becomes
active. The zone in the visual field where the neuron is responsive is called the
(visual) receptive field. Receptive fields occur not only in vision, but also in other
modalities such as audition or touch.

To understand the concept of receptive fields from the point of view of mod-
eling, let us consider a group of 10 postsynaptic neurons, each being connected
to the same set of 100 presynaptic neurons. The presynaptic neurons play the
role of potential locations of a stimulus.

Suppose that you test the response properties of one specific postsynaptic neu-
ron by giving an input to a single presynaptic neuron. Before plasticity started
all presynaptic neurons were connected with the same weak weight to this post-
synaptic neuron. Therefore the postsynaptic neuron responds unspecifically to
all possible input locations. After learning, however, the postsynaptic neuron
responds only to a small subset of the presynaptic neurons. Hence, the neuron
has developed a receptive field.

Exercises 1c has highlighted competition and receptive field development for
the case where there are two input groups which differ in their firing rates. Input
pattern A consisted of a group of neurons firing at 10 Hz while input pattern B
consisted of another group of neurons firing at 30 Hz. However, this looks some-
what artificial. Why should there be such a difference? One would expect that
input in nature is balanced, so that averaged over all potential input patterns,
all inputs should be more or less equally often active.

In order to construct a first example with balanced inputs, let us again consider
a sequence of inputs that alternates between two patterns. In pattern A, a first
group of 50 presynaptic neurons fires at 20Hz and a second group of 50 presynaptic
neurons fires at 15Hz. In pattern B, the first group of neurons fires again at 20Hz
while the second group now fires at 25 Hz. Averaged across both patterns, all
neurons have the same mean rate ν̄j = 20Hz. Nevertheless Hebbian learning
rules will still prefer one input group over the other, so that the postsynaptic
neuron will specialize and develop a receptive field. The reason is, that Hebbian
learning is sensitive to correlations in the input.
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9.2.2 Correlations and Principal Component Analysis

We now turn to a formal derivation of the functional properties of Hebbian learn-
ing rules. We show mathematically that simple models of Hebbian learning are
sensitive to correlations in the input. More precisely, a standard Hebb rule com-
bined with a linear rate model for the postsynaptic neuron performs Principal
Component Analysis, also called PCA. This section follows closely the text in
Chapter 11.1 of Gerstner and Kistler (2002).

We analyze the evolution of synaptic weights using the simple Hebbian learn-
ing rule Eq. (9.3) and then generalize to the Oja’s rule (9.7). For the analysis,
we consider a highly simplified scenario consisting of an analog neuron that re-
ceives input from N presynaptic neurons with firing rates νpre

i via synapses with
weights wi; cf. Fig. 9.5. We think of the presynaptic neurons as ‘input neurons’,
which, however, do not have to be sensory neurons. The input layer could, for
example, consist of neurons in the lateral geniculate nucleus (LGN) that project
to neurons in the visual cortex. We will see that the statistical properties of the
input control the evolution of synaptic weights.

For the sake of simplicity, we model the presynaptic input as a set of static
patterns. Let us suppose that we have a total of p patterns {~ξµ; 1 ≤ µ ≤ p}.
At each time step one of the patterns ~ξµ is selected at random and presented to
the network by fixing the presynaptic rates at νpre

i = ξµi . We call this the static-
pattern scenario. The presynaptic activity drives the postsynaptic neuron and the
joint activity of pre- and postsynaptic neurons triggers changes of the synaptic
weights. The synaptic weights are modified according to a Hebbian learning rule,
i.e., according to the correlation of pre- and postsynaptic activity; cf. Eq. (9.3).
Before the next input pattern is chosen, the weights are changed by an amount

∆wj = γ νpost νpre
j (9.9)

Here, 0 < γ � 1 is a small constant called ‘learning rate’. Since there is only
one postsynaptic neuron, we have suppressed the index i of the postsynaptic cell.
The learning rate in the static-pattern scenario is closely linked to the correlation
coefficient ccorr

2 in the continuous-time Hebb rule introduced in Eq. (9.3). In order

to highlight the relation, let us assume that each pattern ~ξµ is applied during an
interval ∆t. For ∆t sufficiently small, we have γ = ccorr

2 ∆t.
In a general rate model, the firing rate νpost of the postsynaptic neuron is

given by a nonlinear function of the total input νpost = g (
∑

iwi ν
pre
i ) but for

the sake of simplicity, we restrict our discussion in the following to a linear rate
model with

νpost =
∑
j

wj ν
pre
j . (9.10)

Obviously, this is a highly simplified neuron model, but it will serve our purpose
of gaining some insights in the evolution of synaptic weights.

If we combine the learning rule (9.3) with the linear rate model of Eq. (9.10)

we find after the presentation of pattern ~ξµ the synaptic weight wi connecting
the presynaptic neuron i to the postsynaptic cell is changed by an amount

∆wi = γ
∑
j

wj ν
pre
j νpre

i = γ
∑
j

wj ξ
µ
j ξ

µ
i . (9.11)
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Fig. 9.5: A. Patterns ~ξµ are applied as a set of presynaptic firing rates νj , i.e., ~ξµj = νµj for
1 ≤ j ≤ N . The output rate of the postsynaptic neuron is taken as a linear function of the
total input, an approximation to a sigmoidal gain function. Adapted from Gerstner and Kistler
(2002). B Patterns are applied one after the other in a sequence.

The evolution of the weight vector ~w = (w1, . . . , wN) is thus determined by the
iteration

wi(n+ 1) = wi(n) + γ
∑
j

wj ξ
µn

j ξµn

i , (9.12)

where µn denotes the pattern that is presented during the nth time step.
We are interested in the long-term behavior of the synaptic weights. To this

end we assume that the weight vector evolves along a more or less deterministic
trajectory with only small stochastic deviations that result from the randomness
at which new input patterns are chosen. This is, for example, the case if the
learning rate is small so that a large number of patterns has to be presented in
order to induce a substantial weight change. In such a situation it is sensible to
consider the expectation value of the weight vector, i.e., the weight vector 〈~w(n)〉
averaged over the sequence (~ξµ1 , ~ξµ2 , . . . , ~ξµn) of all patterns that so far have been
presented to the network. From (9.12) we find

〈wi(n+ 1)〉 = 〈wi(n)〉+ γ
∑

j

〈
wj(n) ξ

µn+1

j ξ
µn+1

i

〉
= 〈wi(n)〉+ γ

∑
j 〈wj(n)〉

〈
ξ
µn+1

j ξ
µn+1

i

〉
= 〈wi(n)〉+ γ

∑
j Cij 〈wj(n)〉 . (9.13)

The angular brackets denote an ensemble average over the whole sequence of input
patterns (~ξµ1 , ~ξµ2 , . . . ). The second equality is due to the fact that input patterns
are chosen independently in each time step, so that the average over wj(n) and
(ξ
µn+1

j ξ
µn+1

i ) can be factorized. In the final expression we have introduced the
correlation matrix Cij,

Cij =
1

p

p∑
µ=1

ξµi ξ
µ
j =

〈
ξµi ξ

µ
j

〉
µ
. (9.14)

Expression (9.13) can be written in a more compact form using matrix notation,

〈~w(n+ 1)〉 = (1I + γ C) 〈~w(n)〉 = (1I + γ C)n+1 〈~w(0)〉 , (9.15)

where ~w(n) = (w1(n), . . . , wN(n)) is the weight vector and 1I is the identity
matrix.
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If we express the weight vector in terms of the eigenvectors ~ek of C,

〈~w(n)〉 =
∑
k

ak(n)~ek , (9.16)

we obtain an explicit expression for 〈~w(n)〉 for any given initial condition ak(0),
viz.,

〈~w(n)〉 =
∑
k

(1 + λk)
n ak(0)~ek . (9.17)

Since the correlation matrix is positive semi-definite all eigenvalues λk are real and
positive. Therefore, the weight vector is growing exponentially, but the growth
will soon be dominated by the eigenvector with the largest eigenvalue, i.e., the
first principal component,

〈~w(n)〉 n→∞−−−→ (1 + λ1)
n a1(0)~e1 ; (9.18)

Recall that the output of the linear neuron model (9.10) is proportional to the

projection of the current input pattern ~ξµ on the direction ~w. For ~w ∝ ~e1, the
output is therefore proportional to the projection on the first principal component
of the input distribution. A Hebbian learning rule such as (Eq. (9.11)) is thus
able to extract the first principal component of the input data; see Fig. 9.6A.

From a data-processing point of view, the extraction of the first principle
component of the input data set by a biologically inspired learning rule seems
to be very compelling. There are, however, a few drawbacks and pitfalls. First,
the above statement about the Hebbian learning rule is limited to the expecta-
tion value of the weight vector. We will see below that, if the learning rate is
sufficiently low, then the actual weight vector is in fact very close to the expected
one.

Second, principal components are only meaningful if the input data is normal-
ized, i.e., distributed around the origin. This requirement is not consistent with
a rate interpretation because rates are usually positive. This problem, however,
can be overcome by learning rules with appropriately chosen linear terms cpre and
cpost in Eq. (9.2).

Third, while the direction of the weight vector moves in the direction of the
principal component, the norm of the weight vector grows without bounds. How-
ever, we can use additional terms in the expansion indicated in Eq. (9.2) so as to
guarantee a normalization of the weight vector. Let us recall Oja’s rule from Eq.
(9.7). After the presentation of n patterns the weight vector has a weight wj(n)
and the next update step is

∆wj = γ νpost νj − γ wj(n)
(
νpost

)2
. (9.19)

In order to see that Oja’s learning rule selects the first principal component we
show that the eigenvectors {~e1, . . . , ~eN} of C are fixed points of the dynamics. For
any fixed weight vector ~w we can calculate the expectation of the weight change
in the next time step by averaging over the whole ensemble of input patterns
{~ξ1, ~ξ2, . . . }. With 〈∆ ~̃w(n)〉 = γ C ~w we find from Eq. (9.19)

〈∆~w〉 = γ C ~w − γ ~w [~w · C ~w] , (9.20)

We claim that any eigenvector ~ei of the correlation matrix C is a fixed point of
Eq. (9.20). Indeed, if we substitute ~w = ~ei in the above equation we find that
〈∆~w〉 = 0.
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Fig. 9.6: A. A cloud of data points ~ξµ, the third data point is labeled. The principal
component, i.e., the eigenvector of the correlation matrix with the largest eigenvalue, points in
the direction of maximal variance of the data distribution. B. Receptive fields (small squares)
of 64 cortical neurons (large grid). Each small square shows the distribution of weights for one
of the cortical neurons. The receptive field of the neuron in the upper left corner of the grid is
enlarged and the interpretation of the receptive field schematically indicated in the upper left
part of the figure [adapted from Wimbauer et al. (1998)].

9.2.3 Application to Receptive Field Development

During Hebbian learning, neurons become sensitive to a subset of the inputs, viz.
those inputs that show the strongest correlations. So far the analysis has been
restricted to a single postsynaptic neuron. However, it is possible to repeat the
essential mathematical steps for a model with a large number of output neurons
located on a grid. We assume that model neurons are linear and have locally
restricted lateral connectivity. Moreover, we assume that because of genetically
encoded chemical gradients, a rough first arrangement is pre-wired at the begin-
ning of cortical development, so that neurons in the upper left corner of the grid
have receptive fields located in the the upper left region of the input space. How-
ever, even the rather rich genetic code does not contain enough information to
tell all the billions of potential synapses between pre- and postsynaptic neurons
where to form. Rather synaptic plasticity rules are in place during development
that control the formation, strengthening, and weakening of synapses. There-
fore we assume in the model that the synaptic weights from the input layer to
the grid of postsynaptic neurons are subject to a Hebbian learning rule with a
normalization term as in Oja’s rule.

An analysis of such a model is possible (MacKay and Miller, 1990; Wimbauer
et al., 1998). Here, however, we will just summarize some results from a computer
simulation consisting of an array of 8× 8 cortical neurons and two times 20× 20
LGN neurons. Figure 9.6 shows a typical outcome of such a simulation after
stimulation of local clusters of presynaptic neurons at random locations. Each
of the small rectangles shows the receptive field of the corresponding cortical
neuron. A bright color means that the neuron responds with an increased firing
rate to a bright spot at that particular position within its receptive field; dark
colors indicate inhibition.

There are two interesting aspects. First, the evolution of the synaptic weights
has lead to asymmetric receptive fields, which give rise to orientation selectivity.
Second, the structure of the receptive fields of neighboring cortical neurons are
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can be defined by a learning window which could be symmetric and square (top) asymmetric
(middle) or even contain two phases (bottom). B Experimentally found STDP window; figure
adapted from Bi and Poo (1998).

similar; neuronal response properties thus vary continuously across the cortex.
The neurons are said to form a map for, e.g., orientation. The formation of
cortical maps is the topic of Chapter 14.

9.3 Spike Timing Dependent Plasticity

Traditional models of Hebbian learning have been formulated at the level of fir-
ing rates or abstract variables describing the activity of pre- and postsynaptic
neuron. However, neuronal activity consists of spikes, short electrical pulses (ac-
tion potentials). We show that the formulation of Hebbian learning rules on the
level of spikes necessarily leads to the notion of Spike Timing Dependent Plas-
ticity (STDP) with a window of simultaneity that describes the co-occurrence of
spikes.

Models of STDP can be formulated on several levels. We do not discuss the
description of detailed biophysics based models, mostly based on calcium, but
focus directly on phenomenological or ’minimal’ models. Spike timing dependent
plasticity can be understood as a causal interaction between traces left at the
synapses by spikes of presynaptic neurons (e.g. neurotransmitter) and backprop-
agating action potentials in the dendrite of the postsynaptic neuron. However,
the voltage plays also an important role, when there is no backpropagating action
potential.

9.3.1 Spikes versus Rates: The learning window

At the beginning of the chapter we emphasized two aspect of Hebbian learning:
locality and correlation. When we formulated Hebbian learning on the level of
rates, this led us a family of Hebbian rules. Locality implied that the rule can
depend only on pre- and postsynaptic activity; correlation implied that post- and
presynaptic firing rates are important together.

What does change if we turn to spikes? In a spiking neuron model, there
are many more local variables than just the rate (see Chapter 2). There is the
postsynaptic voltage, there are postsynaptic spikes, there may also be explicit
variables for postsynaptic calcium. The local voltage at the synapse might be
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different from that at the soma and the same is true for calcium, and all of
these aspects may play a role. But let us keep things simple and focus on just
postsynaptic spikes. Spikes are events that can be defined, e.g., as the onset of
an action potential in real neurons or at the moment of threshold crossing in an
integrate-and-fire neuron. As far as locality is concerned, a Hebbian learning rule
could then depend on the spike timings tfj and tfi of a presynaptic neuron j and
a postsynaptic neuron i.

Let us now turn to the second aspect, the notion of ’correlation that we sub-
stituted for Hebb’s wording ’takes part in firing it’. A first, naive, approach would
be to say that a synaptic change happens if pre- and postsynaptic firing occurs
’at the same time’. However, since firing times are threshold crossing events, they
are infinitely short so that it never happens that two firings occur at the same
time. To solve this issue, we need to set, somewhat arbitrarily, a time window or
temporal resolution for our definition of simultaneity: If pre- and postsynaptic
spikes occur within less than yms, then we call the event simultaneous and a
synaptic change occurs.

Such a definition can be visualized as a rectangular time window of width 2y
centered symmetrically around the postsynaptic spike. However, why should the
window be rectangular? And why should it be symmetrical? In fact, the Hebbian
formulation that the presynaptic neuron ’takes part in firing’ the postsynaptic
one, suggest a causal relation and corresponds to a temporal order ’pre-before-
post’. Hence, simultaneity in the Hebbian sense should be defined as a temporal
window that is shifted slightly to the left as depicted in Fig. 9.7.

In the context of rate models of Hebbian learning, we have already seen that
Hebb did not specify any conditions for depression of synapses. We are therefore
free to complement the asymmetric learning window by a negative part for post-
before-pre timing (Fig. 9.7), and this is indeed what has been postulated by
theoreticians (Gerstner et al., 1996) and found in experiments (Markram et al.,
1997; Bi and Poo, 1998; Caporale and Dan, 2008). Hebbian plasticity at the level
of spikes as been termed Spike-Timing Dependent Plasticity (STDP).

STDP with an asymmetric learning window can be described mathematically
as a window function W (s) that is positive for s < 0 and negative for s > 0 and
decays exponentially with time constants τ+ and τ−, respectively

W (s) =

{
A+ exp(s/τ+) , if s < 0

A− exp(−s/τ−) , if s > 0
(9.21)

with A+ > 0 and A− < 0.
Apart from the novel learning window, synaptic plasticity on the level of spikes

is implemented analogous to rate-based plasticity. Let us describe a presynaptic
spike train Sj(t) =

∑
f δ(t − t

f
j ) as the sequence of presynaptic firing times and

analogously the postsynaptic spike train as Si(t) =
∑

f δ(t−t
f
i ). Synaptic weights

change whenever presynaptic spikes arrive or when postsynaptic action potentials
are triggered,

d

dt
wij(t) = a0 + apre

1 Sj(t) + apost
1 Si(t)

+ Sj(t)

∫ ∞
0

W (s)Si(t− s) ds+ Si(t)

∫ ∞
0

W (−s)Sj(t− s) ds ; (9.22)
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In analogy to the rate picture, presynaptic spikes alone could cause a change
proportional to apre

1 and postsynaptic spikes along proportional to apost
1 and there

could be a spontaneous decay or increase proportional to a0. The essential feature
of STDP is implemented by the two terms containing the learning window W .
The first one accounts for post-before-pre timings, the second one for pre-before-
post.

9.3.2 A minimal model of STDP

The correlation condition in Hebb’s postulate suggests that at least two biochem-
ical components are involved in the induction of LTP. We do not wish to speculate
on the nature of these components, but simply call them a and b. We assume
that the first component is generated by a chemical reaction chain triggered by
presynaptic spike arrival. In the absence of further input, the concentration [a]
decays with a time constant τa back to its resting level [a] = 0. A simple way to
describe this process is

d

dt
[a] = − [a]

τa
+ α+

∑
f

δ(t− tfj ) , (9.23)

where the sum runs over all presynaptic firing times tfj . Equation (9.23) states
that [a] is increased at each arrival of a presynaptic spike by an amount α+. Since
it is a linear equation, it can be integrated

[a](t) =
∑
tfj

α+ exp(−
t− tfj
τa

) =

∫ ∞
0

α+ exp(− s

τa
)Sj(t− s) ds (9.24)

A high level of [a] sets the synapse in a state where it is susceptible to changes
in its weight. The variable [a] by itself, however, does not yet trigger a weight
change.

To generate the synaptic change, another substance b is needed. The produc-
tion of b is controlled by a second process triggered by postsynaptic spikes,

d

dt
[b] = − [b]

τb
+

1

τb

∑
f

δ(t− tfi ) , (9.25)

where τb is another time constant. The sum runs over all postsynaptic spikes tfi .
Note that the second variable [b] does not need to be a biochemical quantity; it
could, for example, be the electrical potential caused by the postsynaptic spike
itself. In the following, we assume that the time constant τb � τa is so short,
that the process [b] can be considered as instantaneous. In the limit τb → 0, the
process [b] can be approximated by a sequence of short pulses at the moment of

the postsynaptic spikes, [b](t) = Si(t) =
∑

f δ(t− t
f
i ).

Hebbian learning needs both ‘substances’ to be present at the same time, thus

d

dt
wcorr
ij = γ [a(t)] [b(t)] , (9.26)
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with some rate constant γ. The upper index corr is intended to remind us that
we are dealing only with the correlation term on the right-hand side of Eq. (9.22).
If the process b is fast, then the process [b] simply ’reads’ out the value of [a(t)]
at the moment of each postsynaptic spike:

d

dt
wcorr
ij = γ [a(t)] Si(t) (9.27)

Using our previous result for [a(t)] we have

d

dt
wcorr
ij = Si(t)

∫ ∞
0

γ α+ exp(− s

τa
)Sj(t− s) ds (9.28)

which corresponds to the pre-before-post term in Eq. (9.22). It does not need a
lot of work to convince ourselves that we need another set of substances [c] and
[d] so as to construct a process with post-before-pre timing (see Exercise 3).

9.3.3 Voltage and spike timing

The learning window shows the amount of plasticity as a function of the time
difference between pre- and postsynaptic spikes. The typical STDP plot, however,
overemphasizes the role of pairs of spikes.

There are several important aspects that need to be highlighted. First, in
experiments a single pair of one presynaptic spike followed by one postsynaptic
spike has no measurable effect. Even fifty or sixty pairs of pre-before-post, if
given at a a repetition frequency of 1Hz or less, causes no potentiation of the
synapses (Senn et al., 2001; Sjöström et al., 2001). Hence, one should consider
models where the basic element is not a pair of spikes, but triplets of spikes such
as post-pre-post or pre-post-post (Pfister and Gerstner, 2006).

Second, even in the absence of postsynaptic spikes potentiation of synapses is
possible, if the postsynaptic neuron is sufficient depolarized (Artola et al., 1990;
Ngezahayo et al., 2000). Moreover, isolated pairs of pre-post timing do induce
potentiation, if they are preceded by a weak depolarization of the postsynaptic
membrane (Sjöström et al., 2001). Hence, the more fundamental quantity is
probably not spike timing but postsynaptic voltage. Indeed, A model where the
local variable at the postsynaptic site of the synapse is not spike timing, but
low-passed filtered voltage is capable of explaining a large body of experimental
results (Clopath et al., 2010). Since action potentials correspond to short, but
very pronounced peaks of the postsynaptic voltage, the spike-timing dependence
of Hebbian plasticity follows from these models.

The exact signal processing chain that biophysically generates the change of
the synapse is still a mystery. It is clear, however, that the time course of the
postsynaptic calcium concentration plays a role which has led to several calcium
based models of synaptic plasticity (Shouval et al., 2002; Lisman and Zhabotin-
sky, 2001; Rubin et al., 2005).

9.3.4 Functional Consequences of STDP

For stationary Poisson firing, STDP models can be mapped exactly to rate-based
models. The main difference is that STDP models have a causal effect at the level
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of spikes: if the presynaptic neuron fires, an EPSP is triggered in the postsynaptic
neuron which makes the postsynaptic neuron more likely to fire. This additional
effect can be included in the rate rate model. For a mathematical treatment see
Chapter 11 in Gerstner and Kistler (2002).

If neurons do not fire in a stationary Poisson fashion, but in a precise temporal
order, the main effect of STDP can be easily understood. Consider a network
of 10 neurons with all-to-all connectivity and weight values distributed randomly
between 0.5 and 1.5. Suppose an external input makes the neurons fire in the
order 1 → 2 → 3 → ...10 → 1.... In this case lateral connections between these
neurons develop a unidirectional ring structure. Thus the temporal order defined
by a coding scheme with millisecond precision is reflected in the directionality of
the connections (Clopath et al., 2010). In a pure rate picture of Hebbian learning,
where rates are defined as the number of spikes in a time window of 100ms, the
same stimulus would strengthen all the weights symmetrically.

9.4 Reward-Modulated Learning

9.4.1 Learning Depends on Feedback

At the beginning of this chapter we mentioned different types of tasks. Learning
to ski, to skateboard or to ride a bicycle: all three tasks involve feedback. It hurts
if you fall down from the skateboard, and you get the praise of your peers if you
succeed a new trick.

Hebbian learning, as discussed in this chapter, is an unsupervised learning
rule: There is no notion of good or bad, successful or unsuccessful, rewarding
or painful. Hebbian learning is suitable to detect correlations in the input, and
can therefore be used to explain developmental processes such as the formation
of receptive fields.

Most tasks where you learn a novel activity, however, have the notion of
success or reward attached to them. Therefore learning these tasks leaves the
realm of Hebbian learning.

9.4.2 Unsupervised versus Reinforcement Learning

In the field of machine learning, one often distinguishes three types of learning
tasks: unsupervised learning, supervised learning, and reinforcement learning.
Unsupervised learning allows to detect correlations in the stream of input signals.
The output of unsupervised learning can be to find the first principal component
of the signal, an independent component, or the center of a cluster of data points.
Hebbian learning falls into the class of unsupervised learning rules.

In supervised learning the neural network or artificial machine has to give,
for every input signal, an output which is as close as possible to a target output
(and it should generalize to novel inputs, too).

Reinforcement learning shares with supervised learning that there is a target
output. In contrast to supervised learning, the feedback given to the learning
system, however, is scarce. If we take the task of riding a bicycle, in supervised
learning the supervisor would show how to turn the handle at every moment in
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time whereas in reinforcement learning the only feedback consists in telling the
learning when it failed (i.e., it hurts when you fall). Reinforcement learning is
the topic of Chapter 15.

9.4.3 Reward-based Hebbian Learning

Supervised learning methods, as studied in machine learning, suffer from the fact
that it is difficult to see how they cold be implemented biologically. Reinforcement
learning methods, however, can be envisaged to be realized in the brain.

The basic idea is that we take a Hebbian learning rule which has two lo-
cal factors (i.e. presynaptic and postsynaptic activity) and make the weight
change proposed by the Hebbian learning rule subject to the presence of a neuro-
modulator signal S. The neuromodulator can signal ’reward’ or more generally
’success S’ defined as reward minus expected reward. Indeed, the neuromodu-
lator dopamine which is diffusively transmitted across broad areas of the brain,
transmits a reward-related signal (Schultz et al., 1997). Experimental evidence
indicates that Hebbian Plasticity and STDP are under the influence of neuro-
modulators (Reynolds and Wickens, 2002; Pawlak and Kerr, 2008; Seol et al.,
2007; Pawlak et al., 2010).

It has been shown in many modeling studies that Hebbian learning can be
used for reward-based learning, if the Hebbian learning rule, or STDP, is mod-
ulated by neuromodulatory signals (Sheynikhovich et al., 2009; Fremaux et al.,
2010; Legenstein et al., 2008; Loewenstein and Seung, 2006; Loewenstein, 2008;
Izhikevich, 2007). However, to achieve successful learning of nontrivial tasks, it is
important that the success signal S defined as ’reward minus expected reward’ be
perfectly balanced, i.e., the brain needs an internal module capable of precisely
estimating the reward expected for a given stimulus (Loewenstein, 2008; Fremaux
et al., 2010).

9.4.4 Learning Novel Items

Finally, let us return to the question of how to form memories of facts or events
and reconsider the example of the banana discussed at the beginning of the chap-
ter. The Hebbian learning rules discussed in this chapter are capable of forming
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an internal memory trace of the banana, but they will also form memory traces
of everything else we see or feel or think: our direction of gaze changes two or
three times per second so that even during a single day more than a hundred
thousand perceived images would have to be stored. It can be shown that such a
continued bombardment with sensory items leads to rapid overwriting of memo-
ries, with the result that what we have memorized earlier is quickly washed out
and forgotten (Fusi, 2002). In order to make memory storage and retrieval sta-
ble, one needs to postulate a gating mechanism which decides which perception
is novel or interesting and worth storing. Similar to the situation discussed for
reward-based Hebbian learning, neuromodulators could play the role of global,
brain-wide gating signal (Pawlak et al., 2010) Hebbian learning of a synapse from
neuron j to i depends then not only on the activities of those two neurons, but
also on the presence of a more global neuromodulator that enables the initiation
or stabilization of Hebbian weight changes (Hasselmo, 1999; Clopath et al., 2008;
Frey and Morris, 1998). The topics sketched here in the last few paragraphs
will be discussed in greater depth in Chapter 15 (Reinforcement Learning) and
Chapter 9 (Neuromodulation).

9.5 Core Set of Readings:

a) Spiking Neuron Models, by W. Gerstner and W. Kistler, chapters 10-12 (Cam-
bridge Univ. Press, 2002)

b) Theory of Cortical Plasticity by L.N. Cooper, N. Intrator, B.S. Blais and
H.Z. Shouval, (World Scientific, 2004)

c) Timing is not everything: neuromodulation opens the STDP gate, V.
Pawlak and J.R. Wickens and A. Kirkwood and J.N.D. Kerr, Front. Synaptic
Neurosci. (2010)

d) J. Sjöström and W. Gerstner, Spike-Timing Dependent Plasticity, Schol-
arpedia (2010)
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9.6 Exercises

Exercise 1:
Assume that plasticity is controlled by the learning rule (9.8) with a parameter

θ = 20Hz. The postsynaptic neuron is described as a rate neuron with firing rate
νi = g(

∑
j wijνj). For the sake of simplicity we assume that g is linear, i.e.

g(x) = x. All synaptic weights and firing rates are positive.
a) Consider a single presynaptic neuron j that is connected with a weight wij

to the postsynaptic neuron. Show that the postsynaptic rate has a fixed point at
νi = θ.

b) Show that this fixed point is unstable.
c) Suppose that there are 20 presynaptic neurons. The input alternates between

two patterns. In the first pattern, the first half of neurons 1 ≤ j ≤ 10 fires at
a rate of νj = 1Hz while the other presynaptic neurons are silent. In the second
pattern, the first half of neurons is silent while the other neurons 11 ≤ j ≤ 20 fire
at a rate of νj = 3Hz. The input switches several times back and forth between the
two patterns. Suppose that initially all weights have the same value wij = 1. How
do the weights evolve in the presence of the sequence of input patterns? Allow for
hard bounds at wij = 0 and wij = 2

d) As in c, but suppose that during the first pattern the first group fires at
2.5Hz. What happens?

Exercise 2.
All eigenvectors of the correlation matrix are fixed points under Oja’s learning

rule. Show that only the eigenvector corresponding to the largest eigenvalue is
stable.

To do so, assume that the current weight vector is close to eigenvector ~ei, but
has a small perturbation in the direction of ~ej. Hence, write

~w = ~ei + c~ej where |c| � 1 is the amplitude of the perturbation and analyze
whether the perturbation grows or decays.

Exercise 3.
a) Derive the exponential learning window (9.21) assuming four substances

with concentrations [a], [b], [c], [d] and time constants τa, τb, τc, τd respectively and
dynamics analogous to (9.23), where τc is a second presynaptic process and τd a
further postsynaptic process. To do so, take the limit τb → 0 and τc → 0.

b) What happens if you do not take the two limits, but keep τb and τc in the
range of a few milliseconds. Show that the resulting learning window is a smooth
function that does not necessarily go through the origin.
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