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Connolly AT, Jensen AL, Baker KB, Vitek JL, Johnson MD.
Classification of pallidal oscillations with increasing parkinsonian
severity. J Neurophysiol 114: 209–218, 2015. First published April
15, 2015; doi:10.1152/jn.00840.2014.—The firing patterns of neurons
in the basal ganglia are known to become more oscillatory and
synchronized from healthy to parkinsonian conditions. Similar
changes have been observed with local field potentials (LFPs). In this
study, we used an unbiased machine learning approach to investigate
the utility of pallidal LFPs for discriminating the stages of a progres-
sive parkinsonian model. A feature selection algorithm was used to
identify subsets of LFP features that provided the most discriminatory
information for severity of parkinsonian motor signs. Prediction errors
�20% were achievable using 28 of the possible 206 features tested.
For all subjects, a spectral feature within the beta band was chosen
through the feature selection algorithm, but a combination of features,
including alpha-band power and phase-amplitude coupling, was nec-
essary to achieve minimal prediction errors. There was large variabil-
ity between the discriminatory features for individual subjects, and
testing of classifiers between subjects yielded prediction errors �50%.
These results suggest that pallidal oscillations can be predictive
biomarkers of parkinsonian severity, but the features are more com-
plex than spectral power in individual frequency bands, such as the
beta band. Additionally, the best feature set was subject specific,
which highlights the pathophysiological heterogeneity of parkinson-
ism and the importance of subject specificity when designing closed-
loop system controllers dependent on such features.

Parkinson’s disease; machine learning; support vector machine;
phase-amplitude coupling

THE PATHOPHYSIOLOGY of Parkinson’s disease (PD) has been
associated with a diverse set of changes in firing rate and
pattern of individual neurons throughout the basal ganglia
(Bergman et al. 1994; Filion and Tremblay 1991; Miller and
DeLong 1987). Spectral features of local field potential (LFP)
activity have also been associated with PD (Avila et al. 2010;
George et al. 2013; Kuhn et al. 2009; Weinberger et al. 2006)
and provide a signal modality for translation to chronic human
recordings (Rosa et al. 2011) given the signal’s relative robust-
ness to changes in the neural interface around the implanted
electrodes (Buzsaki et al. 2012). Such LFP-based biomarkers
have gained recent attention in the context of aiding the
targeting of deep brain stimulation (DBS) implants (Priori et al.
2003; Wong et al. 2009), assisting in the titration of medication
(Priori et al. 2004), programming DBS therapies (Yoshida et
al. 2010), and diagnosing disease phenotype, monitoring pro-
gression of disease, or providing internal feedback for the

implementation of adaptive DBS systems (Little et al. 2013;
Priori et al. 2013).

Several theories have emerged that suggest changes in indi-
vidual frequency bands are correlated with severity levels of
specific parkinsonian motor signs. Increased activity in the beta
band (13–30 Hz) in the subthalamic nucleus (STN) has been
correlated with bradykinesia levels (Ray et al. 2008) and in
some cases with rigidity (Little et al. 2012). Similar patterns
have been found in clinical studies of globus pallidus (GP)
(Brown et al. 2004; Silberstein et al. 2003). Tremor activity has
been associated with oscillations at the tremor frequency (3–6
Hz) (Reck et al. 2009), in the theta (�5 Hz) and beta bands
(Tass et al. 2010), or in the gamma band (35–55 Hz) (Wein-
berger et al. 2009) of subthalamic LFPs.

However, other human studies and animal models of PD
have challenged these theories through confounding or incon-
sistent results. For example, the presence of large beta-band
oscillations was observed in 100% of one cohort of STN-DBS
lead implants (Little et al. 2012), while others showed robust
beta peaks in �70% of cases (Bronte-Stewart et al. 2009) and
other studies have reported beta-band peaks in less than half of
all cases (Rosa et al. 2011). In a primate study, Devergnas
found increased power below the beta band and decreased
power in the beta band in the pallidum and cortex with
increasingly more severe parkinsonism in nonhuman primates,
but STN beta activity was unchanged (Devergnas et al. 2014).
In a similar primate study, Leblois et al. did not see changes in
oscillatory activity of pallidal neurons with initial induction of
a parkinsonian state, indicating that these beta oscillations may
not be causal to the emergence of parkinsonian motor signs
(Leblois et al. 2007).

These results among human and animal studies should not
be overly surprising given the wide variety of symptomatology
within the PD population. In the search for a biomarker of the
disease, however, this variability indicates that such an oscil-
latory feature would not be robust across patients or potentially
also over time, rendering it inadequate for clinical applications
such as assisted DBS programming or closed-loop DBS
therapies. In this study, we used supervised machine learn-
ing algorithms to classify parkinsonian severity based on
LFP recordings from the pallidum of three nonhuman pri-
mates rendered progressively parkinsonian through staged
treatments of the dopaminergic cell neurotoxin 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP). We then used
feature selection techniques to identify a subset of LFP
features whose combination would better classify parkinso-
nian severity for individual subjects and across the small
cohort of subjects.
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MATERIALS AND METHODS

Subjects. The data set was collected from three adult rhesus
monkeys [Macaca mulatta; P1 (female, 5.2 kg, 11 yr old), P2 (male,
9.4 kg, 12 yr old), and P3 (female, 8.4 kg, 23 yr old)]. All procedures
were performed in compliance with the US Public Health Service
policy on the humane care and use of laboratory animals. Study
protocols were approved by the Institutional Animal Care and Use
Committees at the Cleveland Clinic and the University of Minnesota.
Animals were implanted with titanium cephalic recording chambers
(Crist Instruments, Bethesda, MD) oriented toward the pallidum and
a stainless steel headpost for head fixation (Elder et al. 2005). Animals
were rendered progressively parkinsonian through intracarotid (0.2–
0.6 mg/kg in 20 ml of solution, �15-min infusion) and intramuscular
(0.2–0.6 mg/kg, 1–2 mg/ml solution) injections of MPTP. Parkinso-
nian motor signs were evaluated with a modified Unified Parkinson’s
Disease Rating Scale (mUPDRS), which was used to rate joint
rigidity, akinesia, bradykinesia, tremor, and other parkinsonian signs
individually on a scale of 0–3 (Vitek et al. 2012). Subscale scores for
the arm and leg contralateral to the cephalic recording chamber were
averaged to form the composite score that defined the parkinsonian
state (mild: 3–13, moderate: 18–28, and severe: 32–42).

Electrophysiology. Two epoxy-coated tungsten microelectrodes
(impedance 0.8–1.2 M� measured at 1 kHz; FHC, Bowdoin, ME)
were advanced into the brain with a chamber-mounted multichannel
microdrive system (AlphaEPS, AlphaOmega). The pallidum was
identified by characteristic firing rates and patterns (Boraud et al.
2002; Filion and Tremblay 1991) and by cross-referencing the elec-
trode location with monkey Cicerone (Miocinovic et al. 2007). Spon-
taneous neural activity through each microelectrode was band-pass
filtered into a LFP channel (0.075–390 Hz), which was sampled at
781.3 Hz and referenced to the recording chamber. In total, 669 paired
recordings were made across the three subjects in the naive, mild,
moderate, and severe parkinsonian states with at least one microelec-
trode in the GP (Table 1). The data set was also used in a previous
report (Connolly et al. 2015).

To justify combining all pallidal recordings for a given subject in
a given state, we first tested for differences among power spectra
among three groups, globus pallidus externus (GPe; GPe/GPe and
GPe/other), globus pallidus internus (GPi; GPi/GPi and GPi/other),
and GPe/GPi, based on jackknifing U-statistics (Arvesen 1969) with a
Bonferroni-corrected � � 0.05/3 � 0.0167. This method produced a
test statistic that was normally distributed with mean of 0 and standard
deviation of 1, which means that a statistic with absolute value
exceeding 2.128 would indicate that the two populations had different
power spectra. For all three comparisons across all subjects and
parkinsonian states, the test statistic did not exceed significance at any
frequency value. Therefore, we combined the recordings for the
analysis.

Feature extraction. Data processing was performed in MATLAB
2014a (MathWorks, Natick, MA) with custom scripts and the machine
learning toolbox. Each 30- to 120-s paired recording was converted
into a single bipolar LFP by subtracting the two individual LFPs,
removing the common far-field signal contributed by the chamber
reference electrode. The multitaper method was used to calculate a

spectrogram of the LFP using a 2-s window with 10% window steps,
resulting in a 1-Hz frequency resolution (Bokil et al. 2010). Time
windows containing movement artifacts were visually identified and
removed. The spectrogram was averaged over the remaining windows
to produce a single power spectral density (PSD) for each paired
recording. This PSD was normalized by the power in the frequencies
above 5 Hz and excluding 55–65 Hz to account for variability in
signal amplitude between recordings. The primary spectral feature set
was comprised of the average power in 1-Hz bands from 1 to 58 Hz,
2-Hz bands from 62 to 100 Hz, and 5-Hz bands from 100 to 390 Hz.

An additional feature set was created with phase-amplitude cou-
pling (PAC) in order to capture modulations across frequency bands
with parkinsonian severity (Tort et al. 2008). The bipolar LFP was
filtered into frequency bands and was Hilbert transformed into the
signal H�t�. The continuous phase was calculated by taking the angle
of signal H�t�,

��t� � tan�1���H�t�� ⁄ ��H�t���
and the continuous amplitude was calculated by taking the magnitude
of the signal H�t�,

A�t� � �H�t��2

Phase signals spanned frequency bands of base �2 from 2 to 2.8 Hz,
from 2.8 to 4 Hz, ... from 64 to 91 Hz, and from 91 to 128 Hz, and
amplitude signals spanned frequency bands from 64 to 91 Hz, from 91
to 128 Hz, ... from 256 to 362 Hz, and from 362 to 390 Hz. A
modulation index (MI) was calculated for each phase-amplitude pair
by parsing the phase signal into 20 bins of 18° width from 0 to 360°
and taking the average of the amplitude signal over all time points
with corresponding phase in that bin, denoted

�
A(�). This distribution

of average amplitudes across phase bins was normalized to

p �
�
A��� ���

�
A���

and the entropy of the distribution was calculated as

H � ��
�

p ln p

The entropy was compared to that of 200 time-shuffled surrogates to
calculate a z score. The magnitudes of these z scores were used as a
secondary feature set.

Classification. An unbiased machine learning classifier was used to
identify discriminant features of GP LFPs consistent with parkinso-
nian state. Parkinsonian severity, determined by the mUPDRS on or
near the day of each recording, was used to train three classifiers and
determine the accuracy of classification results. Linear discriminant
analysis (LDA) (Duda et al. 2001), support vector machine (SVM)
using a linear kernel (Cristianini and Shawe-Taylor 2000), and SVM
using a radial basis function kernel (RBF) were considered as classi-
fiers (Vapnik 2000). SVMs perform binary classification by projecting
the feature set into a high-dimensional space in which there exists a
linear separation between the two groups. In the space of the original
feature set, this separation is called the hyperplane. The classification
problem proposed here involves four groups: naive, mild, moderate,
and severe. To generalize the binary SVM for this problem, four
classifiers were trained to discriminate recordings that were “in”
versus those that were “out” of each group (i.e., naive vs. mild,
moderate, and severe combined). To use the four SVMs to predict the
group of an observation, the score was calculated for each of the four
classifiers as the weighted sum of the dot product between the features
and the support vectors (positive indicates in group, negative indicates
out of group). The observation was predicted to be from the group
with the highest score.

Preliminary analysis was done to select the best-performing ma-
chine learning algorithm for the pallidal LFP data set. The classifiers
were trained to discriminate the parkinsonian state based on the
spectral features for all subjects pooled together. The three classifiers

Table 1. Count of pallidal LFP recordings across subjects and
parkinsonian states

P1 P2 P3 Total

Naive 103 118 55 276
Mild 71 51 27 149
Moderate 39 43 75 157
Severe 47 40 87
Total 260 252 157 669

LFP, local field potential.
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were statistically compared with the 5 � 2 cross-validated paired
t-test (Dietterich 1998) with a Bonferroni-corrected significance level
of � � 0.05/3 � 0.01667. We found that the SVM using an RBF
kernel performed significantly better than the SVM using a linear
kernel and the LDA. The RBF SVM was used for the remainder of the
study.

Classifiers were evaluated with 10-fold cross-validation, where
90% of the data was used for training and the remaining 10% was
used for testing, and this was repeated on all ten 10% subsets of data.
In addition, the cross-validation was performed 10 times to account
for variability in the random selection of the cross-validation subsets.
The prediction error was calculated as the number of observations that
were classified into the wrong group by the algorithm. The error was
summed across the 10 subsets for each cross-validation run, divided
by the total number of observations, and then averaged across the 10
repeats. In addition, the sensitivity of the classifier in categorizing
each group was calculated as

Se �
true positive

true positive � false negative

and this value was averaged across the 10 cross-validation repeats.
Similarly, the specificity was calculated as

Sp �
true negative

true negative � false positive

The entire feature set including both spectral and PAC components
contained 206 features. Having a large number of features in com-
parison to the size of the data set can lead to overfitting of the
algorithm and nongeneralizable results. Feature selection was per-
formed to 1) reduce the number of features used for the classification
to avoid overfitting and yield a more robust algorithm and 2) identify
which particular features were necessary to discriminate parkinsonian
severity. The lasso regularization technique with 10-fold cross-vali-
dation was used to perform feature selection through least-squares
regression with a penalty on the size of the estimated coefficients

(Tibshirani 1996). This procedure finds the combination of features
that produces the minimum mean-square error (MSE). Lasso regular-
ization was performed separately for the spectral and PAC feature
sets. For this study, we selected the feature set containing the mini-
mum number of features with a MSE within one standard error of the
minimum possible MSE. New SVMs were trained with the minimum
feature set and were compared to the SVMs trained on the entire
feature set. Finally, the intersubject variability was probed by training
classifiers and testing classifiers on different subjects.

RESULTS

Changes in spectral and PAC features in globus pallidus
were inconsistent across subjects. A total of 669 LFPs within
the sensorimotor GP were recorded across three nonhuman
primates in the naive state and at three levels of parkinsonian
severity (Table 1). Beta oscillations were present in the naive
state and did not change in amplitude as parkinsonism pro-
gressed (Fig. 1). While the amplitude was stable in the overall
beta band (11–32 Hz) as well as the low (11–22 Hz) and high
(22–32 Hz) beta bands, the peak oscillatory frequency within
the beta band shifted to lower frequencies in all subjects as
parkinsonian severity increased, and the time point of this
change and the median frequency of beta oscillations were
found to vary among subjects (Fig. 1, arrows). In subject P1
the median frequency of oscillations in the beta band shifted
between the naive and mild states, while in subject P2 the
median frequency shifted between the mild and moderate
states. Subject P3 demonstrated a shift toward a lower median
frequency between the naive and mild states, but the LFPs in
the moderate state contained very little beta oscillatory activity.
Subject P3 was not carried through to the severe state because
of confounding medical complications.
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Fig. 1. A: power spectral densities (PSDs)
for each subject across the naive, mild,
moderate, and severe parkinsonian states.
Solid lines show population means, and
shaded areas represent �1 SD. Arrows
indicate median frequency of oscillations
in the beta band for the naive, mild, mod-
erate, and severe states. B: boxplots of
average power in the low (11–22 Hz), high
(22–32 Hz), and overall (11–32 Hz) beta
bands across observations for a given sub-
ject and parkinsonian state. Black dots rep-
resent values for individual observations
and are displayed with a jitter on the x-axis
for improved visualization.
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Spontaneous coupling between the gamma phase (45–64
Hz) and high-frequency oscillation (HFO) amplitude (256–362
Hz) existed in all three subjects in the naive state and did not
change with severity (Fig. 2A). In two of the three subjects,
aberrant coupling between the beta phase (11–16 Hz) and HFO
amplitude developed in the mild (subject P1) and moderate
(subject P2) states and persisted as severity increased. As
parkinsonian severity worsened, the number of recordings with
significant beta-HFO coupling increased, but there was still a
large proportion of recordings with no significant beta-HFO
coupling (Fig. 2B). Subject P3 did not demonstrate strong
coupling between the beta phase and HFO amplitude in any
state. Neither the spectral nor the PAC analysis revealed a set
of biomarkers that obviously discriminated LFPs by parkinso-
nian severity and was consistent with the features from the
other two subjects. Therefore, machine learning algorithms
were used to identify the combination of features that best
discriminated LFPs by parkinsonian severity on an individual-
subject basis in an unbiased manner.

Support vector machine using a radial basis kernel outper-
formed other classifiers. Before investigation of the influence
of feature sets and intersubject variability on classification, the
proposed machine learning algorithms were tested against each
other to choose the best one for this application. The algo-
rithms were trained to discriminate parkinsonian severity based
on the spectral features from recordings from all subjects. The
LDA performed the worst with 38.47% error, the linear SVM
was second with 29.34% error, and the SVM using the RBF
kernel performed the best with 24.25% error. With the 5 � 2

cross-validated t-test, the linear SVM did not outperform the
LDA after Bonferroni correction (t5 � 2.8328, P � 0.021475).
The RBF SVM outperformed both the LDA (t5 � 4.8031, P �
0.002145) and the linear SVM (t5 � 4.3091, P � 0.003625).
The linear boundaries in the LDA and linear SVM were not
able to discriminate parkinsonian severity as well as the non-
linear hyperplane of the RBF SVM.

Spectral features were more informative than PAC features
in globus pallidus. RBF SVMs were trained to discriminate
parkinsonian severity for each subject individually and for the
pooled data (Fig. 3, Table 2). When only spectral features were
used the prediction error was 19% for the pooled population,
whereas the use of only PAC features resulted in 61% errors.
For subjects P1 and P2 and pooled data, the PAC sensitivity
was high for the naive state but low for the mild and moderate
states, indicating that many mild and moderate observations
were incorrectly predicted as being naive. The spectral feature
set was nearly twice as large as the PAC feature set (134
compared with 72 features), and larger numbers of features
may lead to more accurate fitting of the classifier. However,
when the two feature sets were combined (206 features), the
prediction error was 28% for the pooled data, larger than the
error rate with only spectral features. Again, the sensitivity
for the naive state was larger compared with the mild,
moderate, and severe cases. Adding more features to the
spectral feature set did not improve the overall prediction.
Instead, the inclusion of PAC features added variability that
contradicted the spectral features and reduced the accuracy
of the classifier. This trend was consistent when the SVM
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Fig. 2. Phase-amplitude coupling (PAC) be-
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bands. A: z scores were averaged across ob-
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quency band pairs. B: scatterplots show the
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was trained and tested on LFPs from individual subjects.
Prediction errors were between 9% and 14% for individual
subjects with only spectral features, and the error rate was
the lowest for subject P1.

Features spanning multiple frequency bands were relevant
for classification. The lasso feature selection revealed that
different combinations of spectral and PAC features were
discriminatory for individual subjects and for the pooled data.
Mean spectral power above 100 Hz was never included in the
lasso results, but power in bands from 1 to 35 Hz and from 47
to 57 Hz did have nonzero regression coefficients across
multiple subjects (Fig. 4A). For subject P1, the regression
coefficient for 22–23 Hz was 
1.84, indicating that the mean
power in this band decreased as parkinsonism increased, while
the regression coefficient for 13–14 Hz was 2.09, indicating
that power in this band increased with parkinsonian severity.
This aligns with the observation that the median oscillatory
frequency in the beta band decreased with increased severity.
For subject P2, the regression coefficient for 19–20 Hz was

1.62 and the coefficient for 11–12 Hz was 0.54. The coeffi-
cients in the beta range were smaller for subject P3 except for
a coefficient of 
1.36 in the 11–12 Hz band. A coefficient in

the theta-alpha range 7–8 Hz was 2.27, indicating an increase
power at this frequency with parkinsonian severity. While
gamma-HFO PAC was present in subject P3, there were no
changes in any phase-amplitude pairs across parkinsonian
states, and this was reflected in the lack of nonzero regression
coefficients for PAC features for this subject (Fig. 4B). Five
PAC features had nonzero coefficients for P1 and three had
nonzero coefficients for P2, but they did not directly overlap.
For the pooled data, three features had nonzero coefficients,
involving the beta phase (8–11 Hz and 11–16 Hz) and the HFO
amplitude (256–362 Hz and 362–390 Hz).

The reduced feature sets were used to train new RBF SVMs.
First, the 28 lasso-selected features based on the pooled data
were used to train and test RBF SVMs with data from indi-
vidual subjects and pooled data (Table 3). Prediction errors
were improved over the classifier that used all 206 features for
subjects P1 (10% compared with 19%) and P2 (13% compared
with 21%) and were similar for subject P3 (21% compared
with 22%). The prediction error for the pooled data was also
improved (18% compared with 28%). When the subset of
features selected by subject-specific lasso analyses was used to
train a classifier for that subject, the prediction error improved
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Fig. 3. Top: modified Unified Parkinson’s
Disease Rating Scale (mUPDRS) for subjects
P1 (A), P2 (B), and P3 (C) associated with
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for subject P3 (17%), stayed the same for P2 (12%), and
worsened for P1 (15%).

Figure 5 shows confusion matrices that display the counts of
observations that were known for each group (rows) against the
counts of observations that were predicted to be in each group
(columns) from a single run using 10-fold cross-validation.
Counts along the diagonal were correctly classified, whereas
counts off the diagonal were incorrectly classified. These
confusion matrices display the results from individual subjects
and pooled data (Fig. 5A) using RBF SVMs that were trained
with the 28 lasso-selected features based on the pooled data.
For subject P1, six observations from the mild state were
misclassified as being in the severe state. The remaining errors
were distributed across the other known-predicted group pairs.
For subject P2, most errors occurred when mild (5) or moder-
ate (7) observations were mistakenly classified as naive. For
subject P3, the most errors occurred when naive or mild
observations were classified as being from the moderate state

or moderate observations were misclassified as being from the
naive state. This indicates that the features from the naive and
moderate states were similar to each other and different from
the mild state.

The prediction results from the pooled data were separated
into individual subjects (Fig. 5B). The pooled data classifier
mistakenly classified 12 mild observations from subject P1 as
being from the naive state but successfully separated the naive
and severe states. As in subject P1, the classifier mistakenly
classified subject P2 observations from the mild and moderate
states as being from the naive state but only made three errors
between the naive and severe states. For subject P3, the pattern
of prediction errors mirrored those from the SVM trained only
with features from P3. Because the classifier was trained on the
pooled data, there was a chance that some P3 observations
could be classified as being from a severe state even though
there were no severe observations in this animal. Surprisingly,
only three moderate observations were misclassified as being
from the severe state.

Individual subject classifiers could not predict severity for
other subjects. RBF SVMs were trained on the 28 lasso-
selected features based on the pooled data from one or two
subjects and tested on data from another subject to investigate
intersubject variability, resulting in large prediction errors
(Table 4). The smallest error (51%) occurred when the SVM
was trained with observations from P1 and tested on observa-
tions from P2. The largest errors occurred when P3 was
involved, and 83% of the observations from P3 were incor-
rectly classified when using a SVM trained on data from P1.
When data from two subjects were used to train the algorithm
and it was tested on the third subject, the errors were reduced
slightly but not to the levels seen when pooled data were used
for training or when individual subject classifiers were used.

DISCUSSION

In this study, machine learning algorithms were able to
predict naive, mild, moderate, and severe parkinsonian severity
from LFP spectral and PAC features. Single-subject classifiers
could predict the degree of severity with �20% errors, while
classification of pooled data achieved 28% error. Reducing the
number of features used by the classifier through lasso regu-

Table 2. Performance of SVM classifiers using only PSD, only
PAC, or both PSD and PAC features

Error

Sensitivity/Specificity

Naive Mild Moderate Severe

PSD (134 features)

P1 0.11 0.96/0.94 0.83/0.95 0.81/0.97 0.92/0.97
P2 0.14 0.94/0.88 0.84/0.99 0.70/0.95 0.85/0.96
P3 0.14 0.89/0.94 0.69/0.97 0.91/0.84
All 0.19 0.90/0.85 0.76/0.96 0.73/0.91 0.79/0.98

PAC (72 features)

P1 0.52 0.77/0.40 0.26/0.74 0.10/0.89 0.47/0.85
P2 0.59 0.72/0.16 0.11/0.78 0.17/0.84 0.12/0.87
P3 0.57 0.35/0.59 0.08/0.88 0.61/0.31
All 0.61 0.66/0.29 0.16/0.74 0.19/0.69 0.27/0.90

PSD 	 PAC (206 features)

P1 0.19 0.96/0.82 0.76/0.93 0.66/0.97 0.71/0.97
P2 0.21 0.92/0.73 0.73/0.97 0.53/0.95 0.76/0.96
P3 0.22 0.79/0.86 0.59/0.99 0.85/0.76
All 0.28 0.87/0.74 0.67/0.92 0.58/0.89 0.62/0.96

SVM, support vector machine; PSD, power spectral density; PAC, phase-
amplitude coupling.
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Fig. 4. Lasso regularization was used to select
the smallest subset of features yielding a
mean-square error (MSE) within 1 SE of the
minimum possible MSE. A: regularization
coefficients for the PSD feature set for indi-
vidual subjects (P1, blue; P2, gray; P3, red)
and pooled data (All, black). B: red squares
show the PAC features with nonzero regular-
ization coefficients for individual subjects
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larization yielded smaller prediction errors of 9–21%. When
no data from a subject were used in the training of a classifier
but were used for testing, error rates were very high at 56–
83%. Algorithms could be used to predict parkinsonian sever-
ity based on sample LFPs from the same subject. Otherwise,
we anticipate that a large number of subjects in a diverse
training set would be necessary to train a robust classifier
because training on two nontesting subjects was better than
training on one.

Application of classifiers to Parkinson’s disease. Machine
learning algorithms have become a popular tool for studying
PD. Behavioral measures have been characterized in order to
quantify the severity of gait abnormalities (Muniz et al. 2010;
Tahir and Manap 2012) or to predict onset of tremor in order
to initiate DBS (Basu et al. 2013). SVMs and Bayesian clas-
sifiers have been trained on structural MR images to discrim-
inate between essential tremor and PD patients (Cherubini et
al. 2014) and identify PD patients who are at risk for devel-
oping dementia (Morales et al. 2013), both of which are useful
diagnostic measures for DBS patient selection. Both unsuper-
vised (Wong et al. 2009) and supervised (Guillen et al. 2011;
Rajpurohit et al. 2015) learning techniques have been used to
identify the optimal DBS implant location from intraoperative
microelectrode recordings. Sanders et al. used 29 features of
single-neuron activity recorded from the internal or external
segments of the GP or from the STN to train binary classifiers
to discriminate baseline from parkinsonian recordings in non-
human primates (Sanders et al. 2013). The authors found
variability in feature selection across the different nuclei and
achieved binary prediction errors of 18–29%, which were

slightly higher than those found in our study, which classified
LFP features based on four states.

Unbiased biomarker identification using machine learning
algorithms. The lasso regularization procedure identified dif-
ferent spectral and PAC features as being discriminant for
different subjects. Without prior preference for particular fre-
quency ranges such as the beta band, the algorithm identified
features between 11 and 32 Hz as having nonzero coefficients
for all three subjects individually and for the pooled data (Fig.
4A). However, the addition of other spectral features was
necessary to produce minimum prediction errors. For all indi-
vidual subjects and for the pooled data, there was a spectral
feature in the beta range with a negative regression coefficient
and a spectral feature at a lower frequency band with a positive
regression coefficient, indicating that the frequency of spectral
peaks was decreasing from the higher to the lower band as
parkinsonian severity increased.

Despite the apparent increase in beta-HFO PAC after the
onset of parkinsonism in two of three subjects, the use of PAC
features alone produced prediction errors above 52% (Table 2),
even with subject-specific classifiers. Most errors occurred
because parkinsonian observations were being classified into
the naive group. The PAC analysis showed an increase in the
average strength of the MI between beta phase and HFO
amplitude as severity increased, but this was not associated
with an increasing strength at the level of individual record-
ings. Instead, the proportion of recordings having a signifi-
cantly strong MI increased as severity increased. Therefore,
some recordings in the mild, moderate, and severe states had
MIs close to 0, which the classifier would otherwise identify as

Table 3. Classifier performance using a subset of features selected by lasso regularization

All-Subject Features (28 features) Subject-Specific Features (20, 18, 11 features)

Sensitivity/Specificity Sensitivity/Specificity

Error Naive Mild Moderate Severe Error Naive Mild Moderate Severe

P1 0.10 0.97/0.96 0.85/0.95 0.82/0.99 0.92/0.96 0.15 0.97/0.94 0.77/0.93 0.82/0.97 0.79/0.95
P2 0.13 0.97/0.88 0.79/1.00 0.77/0.97 0.87/0.96 0.12 0.93/0.88 0.82/0.98 0.77/0.96 0.88/0.97
P3 0.21 0.75/0.88 0.64/0.95 0.87/0.77 0.17 0.85/0.92 0.59/0.93 0.87/0.82
All 0.18 0.90/0.86 0.72/0.95 0.74/0.92 0.85/0.97
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being from the naive state. It is worth noting that because the
PAC varied across different locations within the sensorimotor
GP, it remains unclear how well classification with PAC
features would do when recording oscillatory activity from a
bipolar pair of electrodes in a fixed location within the brain
across states.

If spectral power in certain frequency bands was linearly
correlated with parkinsonian motor signs, then one would
expect more errors to occur between neighboring parkinsonian
states (i.e., mild to moderate) than between nonneighboring
(i.e., naive to severe). However, this was not the case (Fig. 5).
Most often, observations were incorrectly classified as being in
the naive state, lacking parkinsonian features. This further
points to parkinsonian motor signs emerging and increasing in
severity according to a population change across the sensori-
motor GP that may not necessarily be reflected at the location
of a single recording.

Between-subject variability. Prediction errors were ex-
tremely high when no data from the testing subject were used
to train the classifier. Subject P1 was more similar to subject
P2 than to subject P3 because the cross-testing errors were
smaller when trained on P1 and tested on P2 or vice versa than
when P3 was used for training or testing. When data from two
subjects were used to train a classifier the prediction errors
were slightly improved in some cases, but the accuracy was not
close to that achieved when the same subject was used to train
and test the classifiers. The variability in classification of LFP
features across subjects could be explained in part by slight
temporal differences in the progression of specific motor signs,
but in general all three developed bradykinesia, akinesia, and
rigidity gradually over the study and had little to no tremor.
The recordings were categorized into parkinsonian states based
on mUPDRS measurements taken at one point in time, but
motor signs can vary on the order of minutes to hours and with
behavioral state. These fluctuations could cause variability
within a subject and increase the noise in the data. The addition
of more subjects would incorporate more samples of the
symptomatology to understand whether the motor signs were
the cause of the cross-subject errors or whether individual
subjects were prone to developing different neural correlates of
disease. Both prior studies using a progressive model of par-
kinsonism in nonhuman primates saw differences in the timing,
frequency content, and direction of changes in neural activity
with increasing parkinsonian severity across subjects (Dever-
gnas et al. 2014; Leblois et al. 2006). Addition of more subjects
may be expected to support the variability seen in this data set.

Limitations. While the MPTP model has been widely used to
investigate the mechanisms of PD, there are several proposed
mechanisms for the slow, progressive induction of parkinso-

nian symptoms that need to be compared (Braak et al. 2005).
While the rhesus macaque develops akinetic-rigid parkinson-
ism, which prior studies have associated with beta oscillations
(Brown 2007), this species does not develop the dominant
tremor that is seen in some PD patients. Beta in the naive state
is believed to be linked with intention to move (Riehle et al.
1997), but we could not control for intention in this study and
have included only spontaneous recordings during which the
animal was at rest. Previous studies show that LFP content in
the basal ganglia-thalamo-cortical loop is significantly modu-
lated by movement in the parkinsonian state (Brazhnik et al.
2012), suggesting that additional changes in pallidal oscillatory
activity are likely to be elucidated during movement in this
progressive model of parkinsonism.

LFPs from humans are often recorded as a bipolar signal
between two clinical DBS macroelectrodes. For this reason, we
chose to analyze bipolar instead of unipolar LFPs. While
recording differentially between two electrodes in close prox-
imity removes far-field noise or extraneous cortical informa-
tion from the recording, if neuronal ensembles surrounding the
two electrodes were oscillating strongly and at the same fre-
quency and phase this information would be removed with the
bipolar recording technique. We examined the power spectra,
median frequency of beta oscillations, and amplitude of beta
oscillations in the unipolar recordings and did not find results
different from those presented here.

The data should also be considered in terms of the recording
approach. Microelectrodes (1-kHz impedance of 0.8–1.2 M�)
were used to acquire LFPs, whereas DBS lead macroelectrode
contacts whose impedance is on the order of 1–10 k� are more
often used in a clinical setting,. The LFPs were also acquired
at a sampling rate of 781.3 Hz, which limits the information
content of the LFPs to below the Nyquist frequency at 390 Hz.
It is possible that the significant PAC extended above the
256 –362 Hz band that was found to be significant in our
study, but the low sampling rate prohibited the detection of
significant coupling in this range. For this reason, we cannot
conclude the upper frequency limit of significant coupling
but can only conclude that significant couplings occurred in
the band � 256 Hz.

Conclusions. The results of this study provide evidence that
LFPs in the pallidum could be used to determine the severity of
bradykinetic and rigid parkinsonian motor signs. However, the
power in the beta band would be insufficient for providing
robust prediction, and a complex combination of LFP features
would be necessary. As few as 10–28 features of the LFP were
needed to discriminate between disease states, but results were
unique to individual subjects. Ultimately, if specific features of
the LFP were to be used as a biomarker of parkinsonian motor
signs, those features would need to be tuned on a subject-
specific, behavior-specific, and therapy-specific basis.
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Table 4. Classification performance when testing on subjects not
included in training data

Test

P1 P2 P3

Train on 1, test on 1
P1 0.51 0.83
P2 0.61 0.63
P3 0.78 0.73

Train on 2, test on 1 0.56 0.59 0.71
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