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FINITE ELEMENT ANALYSIS FOR STOKES AND

NAVIER-STOKES EQUATIONS DRIVEN BY THRESHOLD SLIP

BOUNDARY CONDITIONS

J.K. DJOKO AND M. MBEHOU

Abstract. This paper is devoted to the study of finite element approximations of variational
inequalities with a special nonlinearity coming from boundary conditions. After re-writing the
problems in the form of variational inequalities, a fixed point strategy is used to show existence of
solutions. Next we prove that the finite element approximations for the Stokes and Navier Stokes
equations converge respectively to the solutions of each continuous problems. Finally, Uzawa’s
algorithm is formulated and convergence of the procedure is shown, and numerical validation test
is achieved.
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1. Introduction

This work is devoted to the finite element analysis of the Stokes and Navier
Stokes equations driven by threshold slip boundary conditions. The Stokes systems
of equations for stationary flows of incompressible Newtonian fluids we considered
satisfies

−ν∆u+∇p = f in Ω,(1)

divu = 0 in Ω,(2)

we assume the homogeneous Dirichlet boundary condition on Γ, that is

(3) u = 0 on Γ,

with the impermeability boundary condition

(4) un = u · n = 0 on S,

and the slip boundary condition [1, 2]

(5)

|(σn)τ | ≤ g,

|(σn)τ | < g ⇒ uτ = 0,

|(σn)τ | = g ⇒ uτ 6= 0 , −(σn)τ = (g + k|uτ |)
uτ

|uτ |















on S.

Here Ω ⊂ R
d (d=2,3) is a bounded domain, with boundary ∂Ω. It is assumed that

∂Ω is made of two components S, and Γ with ∂Ω = S ∪ Γ, and S ∩ Γ = ∅. ν is a
positive quantity representing the viscosity coefficient, k is the “friction” coefficient
assume to be positive, and g : S → (0,∞) is the barrier or threshold function. The
velocity of the fluid is u and p stands for the pressure, while f is the external force.
Furthermore, n is the outward unit normal to the boundary ∂Ω of Ω, uτ = u−unn

is the tangential component of the velocity u, and (σn)τ = σn− (n ·σn)n is the
tangential traction. Of course, σ = −pI + 2νD(u) is the Cauchy stress tensor,
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where I is the identity matrix, and D(u) = 1
2 (∇u + (∇u)T ). It should quickly be

mentioned that (5) is equivalent following [3] to

(6) (σn)τ · uτ + (g + k|uτ |)|uτ | = 0 on S,

which is rewritten with the use of sub-differential as

(7) −(σn)τ ∈ (g + k|uτ |)∂|uτ | on S,

where the symbol ∂|.| is the sub-differential of the real value function |.|, with
|u|2 = u · u . We recall that if X is the Hilbert space with x0 ∈ X , then

(8) y ∈ ∂Ψ(x0) ⇔ Ψ(x)−Ψ(x0) ≥ y · (x− x0) for all x ∈ X .

The Stokes system can be considered a simplification of the Navier Stokes equations
when convection is negligible. That is (1) is replaced by

(9) −ν∆u+ (u · ∇)u +∇p = f in Ω,

with (2),(3), (4) and (5) unchanged, and the nonlinear term in (9) is the convection
term given as

(u · ∇)u =
d

∑

i=1

ui
∂u

∂xi
.

Over the past few years a remarkable progress has been achieved in the field of
computational contact mechanics. One of the key ingredients in this phenomenal
growth is attributed to the better mathematical understanding of problems. The
formulation by means of variational inequalities (see [3, 4, 5, 6, 7, 8, 9]) and the fi-
nite element method have contributed to the development of reliable frameworks for
the numerical treatment of such problems. Despite such advances in the modeling
and numerical treatment of contact problems with friction, it should be mentioned
that most works reported in the literature are still restricted to solid mechanics.
The numerical analysis works dealing with fluids flow are concerned with the stan-
dard Amontons-Coulomb law of perfect friction [10, 11, 12, 13, 14, 15, 16, 17, 18],
replacing (5) by

(10)

|(σn)τ | ≤ g,

|(σn)τ | < g ⇒ uτ = 0,

|(σn)τ | = g ⇒ uτ 6= 0 , −(σn)τ = g
uτ

|uτ |















on S.

As pointed out by C. Leroux [1], such a theory can represent only a limited range of
possible situations. The purpose of this work is to numerically analyze by means of
finite element approximation equations (1)–(5), and (2)–(5),(9). At this juncture,
it is important to recall that this type of nonlinear slip boundary conditions as far
as fluid flows are concerned was first introduced by Fujita in [19, 20]. This is in
continuation of a series of investigations aimed at the analysis of Stokes and Navier
Stokes equations driven by nonlinear slip boundary conditions of friction type (see
[10, 11, 12]). The principal goal is to analyze from the numerical analysis viewpoint
the solvability, stability and convergence of the resulting variational inequalities of
such problems. In order to provide a background for a better mathematical under-
standing of the problems, we shall introduce in Section 2 some needed tools, and
quickly indicate how the problems are solvable. At this step, we recall that in C.
Leroux and Tani [1, 2] a fixed point argument is used to establish the solvability of a
class of problems similar to what we want to study. It is re-introduced here because
of its usefulness in the finite element analysis and to make this paper self-contained.
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Hence one can see a sort of “continuum” between the continuous and discrete anal-
ysis. The finite element formulations for both Stokes and Navier Stokes equations
are derived in Section 3. The finite elements are defined on conforming triangular
mesh as introduced in [21], and in each triangle the velocity and pressure are taken
so that the Babuska-Brezzi’s condition [22, 23] is satisfied. In our work, we do not
use penalty method, or pressure stabilized method to enforce the incompressibility
condition. Instead we use a direct method and sufficient conditions of existence
of solutions are employed to derive a priori error estimates in Section 3. In Sec-
tion 4, Uzawa’s algorithm is formulated and analyzed for solving the Stokes and
Navier-Stokes finite element discretization. It is shown that the Uzawa’s algorithm
converges. In Section 5 numerical simulations that confirm the predictions of the
theory are exhibited, and concluding remarks are drawn in Section 6.

2. Preliminaries and Variational Formulations

In this section, we introduce notation and some results that will be used through-
out our work. We also formulate various weak formulations and discuss (recall)
some existence results.

2.1. Notations and Preliminaries. The Lebesgue space is denoted as Lr(Ω),
1 ≤ r ≤ ∞, with norms ‖ · ‖Lr (except the L2(Ω)-norm which is denoted by ‖ · ‖).
For any non-negative integer m and real number r ≥ 1, the classical Sobolev spaces
[24]:

Wm,r(Ω) = {v ∈ Lr(Ω); ∂α v ∈ Lr(Ω) for all |α| ≤ m} ,

is equipped with the seminorm

|v|m,r =







∑

|α|=m

∫

Ω

|∂α v|rdx







1/r

,(11)

and norm

‖v‖m,r =







∑

0≤|α|=m

|v|rWk,r(Ω)







1/r

,(12)

with the usual extension when r = ∞. When r = 2, Wm,r(Ω) is the Hilbert space
Hm(Ω) with the scalar product

((v, w))m =
∑

|α|≤m

(∂αv, ∂αw).

It should be mentioned that ∂α stands for the derivative in the sense of distribution,
while α = (α1, . . . , αd) denote a multi-index of length |α| = α1 + · · ·+ αd. For the
analysis of (1)–(5), and (2)–(9), we introduce

V = {v ∈ H1(Ω)d, v|Γ = 0, v · n|S = 0}, V 0 = H1
0(Ω),

V div = {v ∈ V , div v = 0}, M = L2
0(Ω).

From Poincaré-Fredrichs’s inequality, there exists a positive constant C, such that

(13)

∫

Ω

|v|2dx ≤ C

∫

Ω

|∇v|2dx for all v ∈ V ,

which implies that on V , the semi-norm (11) defines a norm which is equivalent to
the norm in (12). Also, of importance in this work is the Korn’s inequality which
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reads; there exists a positive constant C, such that

(14)

∫

Ω

|∇v|2dx ≤ C

∫

Ω

|D(v)|2dx for all v ∈ V ,

which implies that we can equip V with ‖ · ‖V = ‖D(·)‖ which is equivalent to
‖ · ‖1. We now recall classical operators associated with the formulation of the
Stokes problems (1)–(5), and Navier-Stokes problem (2)–(9) (see [22, 23]).
We first introduce bilinear forms a(·, ·) and b(·, ·) defined as follows

a : V × V → R with a(u,v) = 2ν

∫

Ω

D(u) : D(v)dx

b : V ×M → R with b(u, p) =

∫

Ω

p divudx.

Let d(·, ·, ·) be the trilinear form defined as follows

d : V × V × V → R with d(u,v,w) =

∫

Ω

(u · ∇)v ·w dx.

The trilinear form d(·, ·, ·) is continuous on V ×V ×V , i.e., there exists a positive
constant Cd such that

|d(u,v,w)| ≤ Cd‖u‖V ‖v‖V ‖w‖V for all u,v,w ∈ V

Moreover, for all u ∈ V div and v,w ∈ V

d(u,v,w) = −d(u,w,v),(15)

d(u,v,v) = 0.(16)

The bilinear form b(·, ·) satisfies the inf-sup condition, i.e., there exists a positive
constant β such that

(17) β‖p‖ ≤ sup
u∈V

b(u, p)

‖u‖V
for all p ∈ L2

0(Ω).

As a readily obtainable consequence of Korn’s inequality (14), a(·, ·) is coercive on
V , that is

(18) a(v,v) = 2ν‖v‖2V for all v ∈ V .

The coercivity of a(·, ·) will allow us to apply the following classical existence and
uniqueness result for elliptic variational inequalities of the second kind [3].

Lemma 2.1. Suppose that V is a Hilbert space, a : V × V → R is bilinear,
continuous and coercive, J : V → R ∪ ∞ is convex, lower semi-continuous and
proper, and f ∈ V ′. Then there exists a unique u ∈ V such that

a(u,v − u) + J(v)− J(u) ≥ 〈f ,v − u〉 for all v ∈ V .

2.1.1. Mixed Variational formulation of (1)–(5). Suppose that f ∈ H−1(Ω)
and g ∈ L2(S) with g ≥ 0 on S. We multiply the equation (1) by v − u for all
v ∈ V and integrate the resulting equation over Ω. After application of Green’s
formula, we obtain

(19) a(u,v − u)− b(v − u, p)−

∫

S

σn · (v − u) ds =

∫

Ω

f · (v − u) dx.

Next, we briefly recall that

σn = σNn+ στ , v − u = (vN − uN)n+ (vτ − uτ ),
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then we have
∫

S

σn · (v− u) ds =

∫

S

στ (vτ − uτ ) ds, since vN − uN |Γ = 0.(20)

On the other hand, it follows from boundary conditions (5) which is equivalent to
(7) that after using the definition (8)

(21)

∫

S

(g + k|uτ |)(|vτ | − |uτ |)ds ≥ −

∫

S

στ (vτ − uτ )ds.

We now define the functional

(22) J : H1(Ω)×H1(Ω) → [0,∞) with J(u,v) =

∫

S

(g + k|uτ |)|vτ |dx.

Together with (19)-(22), the following weak formulation is obtained: Find (u, p) ∈
V ×M such that

(23)
for all v, q ∈ V ×M,

a(u,v − u)− b(v − u, p) + J(u,v)− J(u,u) ≥ 〈f ,v − u〉
b(u, q) = 0.

Note that since the bilinear form b(·, ·) satisfies the inf-sup condition (17), the
variational inequality problem (23) is equivalent to

(24)

{

Find u ∈ V div such that

a(u,w − u) + J(u,w)− J(u,u) ≥ 〈f ,w − u〉 for all w ∈ V div.

Proposition 2.1. The functional J satisfies:

(a) for all v ∈ H1(Ω), J(v, ·) is convex and nonnegative continuous on
H1(Ω).

(b) for all v1, v2, ζ1, ζ2 ∈ H1(Ω), there exists C0 such that

(25) J(v1, ζ2)− J(v1, ζ1) + J(v2, ζ1)− J(v2, ζ2) ≤ C0k‖v1 − v2‖V ‖ζ1 − ζ2‖V .

Proof (a) is readily obtained. For (b), note that:

J(v1, ζ2)− J(v1, ζ1) + J(v2, ζ1)− J(v2, ζ2)

=

∫

S

k(|v1| − |v2|)(|ζ2| − |ζ1|)ds

≤

∫

S

k(|v1 − v2|)(|ζ1 − ζ2|)ds

≤ C0k‖v1 − v2‖V ‖ζ1 − ζ2‖V .

The main result of this subsection is the following

Theorem 2.1. Suppose that

(26) 0 <
C0k

2ν
< 1.

Then the mixed variational problem (23) admits a unique solution (u, p) ∈ V ×M ,
which satisfies the following bound

‖u‖V ≤ C(‖f‖−1 + ‖g‖L2(S)),(27)

‖p‖ ≤ C(‖f‖−1 + ‖g‖L2(S)).(28)
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It is clear from our condition (26), that we either need; a large enough viscosity
or a small friction coefficient.
The proof of Theorem 2.1 is based on fixed point arguments and established in two
steps in [1] where similar proofs can be found. To derive the a priori estimate (27),
let w = 0 and w = 2u in (24), one has

a(u,u) + J(u,u) = 〈f ,u〉,

which from (18), and trace’s inequality gives

2ν‖u‖V ≤ ‖f‖−1 + C‖g‖L2(S).

Next, we derive the a priori bound for the pressure. For that purpose, let w ∈ V0,
and replace v in (23) successively by u+w and u−w, and observe that J(u,v) =
J(u,u±w) = J(u,u). Then one obtains

(29) a(u,w)− b(w, p) = 〈f ,w〉 for all w ∈ V 0.

Next, from the compatibility condition (17) and (29), one has

β‖p‖ ≤ sup
w∈V 0

b(w, p)

‖w‖V
= sup

w∈V 0

|a(u,w)− 〈f,w〉|

‖w‖V

≤ 2ν‖u‖V + ‖f‖−1,

and the use of the bound on u leads to the desired estimate.

2.1.2. Mixed Variational formulation (2)–(5) and (9). Suppose that f ∈
H−1(Ω) and g ∈ L2(S) with g ≥ 0 on S. We multiply (9) by v − u for all v ∈ V ,
integrate the resulting equation over Ω, and apply Green’s formula to obtain

a(u,v − u) + d(u,u,v − u)− b(v − u, p)−

∫

S

σ · (v − u) ds = 〈f ,v − u〉.

According to the relations (20), (21) and (22), the weak formulation of (2)-(9) can
be written as follows: Find (u, p) ∈ V ×M such that
(30)

for all (v, q) ∈ V ×M
a(u,v − u) + d(u,u,v − u)− b(v − u, p) + J(u,v)− J(u,u) ≥ 〈f ,v − u〉

b(u, q) = 0.

Since the bilinear form b(·, ·) satisfies the inf-sup condition (17), the variational
inequality problem (30) is equivalent to

(31)

{

Find u ∈ V div such that for all w ∈ V div

a(u,w − u) + d(u,u,w − u) + J(u,w)− J(u,u) ≥ 〈f ,w − u〉.

By the contraction mapping principle, we can prove the following existence and
uniqueness theorem.

Theorem 2.2. If the following conditions hold:

(32) 0 <
CdC1(‖f‖−1 + ‖g‖L2(S))

ν2
< 1,

(33) 0 <
C0k

2ν
< 1−

CdC1(‖f‖−1 + ‖g‖L2(S))

2ν2
,
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then the mixed variational problem (31) admits a unique solution (u, p) ∈ Kdiv×M ,
which satisfies the following bound

‖u‖V ≤ C(‖f‖−1 + ‖g‖L2(S)),(34)

‖p‖ ≤ C(‖f‖−1 + ‖g‖L2(S) + ‖f‖2−1 + ‖g‖2L2(S)).(35)

where C1 satisfies
∣

∣

∣

∣

〈f ,v〉 −

∫

S

g|vτ |ds

∣

∣

∣

∣

≤ C1(‖f‖−1 + ‖g‖L2(S))‖v‖V for all v ∈ V

and

Kdiv = {v ∈ V div , ‖v‖V ≤
C1

ν

(

‖f‖−1 + ‖g‖L2(S)

)

}.

Proof The proof of Theorem 2.2 follows along the same lines as the proof of
Theorem 2.1, but it is more involved because of the additional nonlinear convection
term.

First, for a fixed v ∈ Kdiv, consider the following variational inequality problem:

(36)

{

Find ηv ∈ Kdiv such that for all w ∈ V div,

a(ηv ,w − ηv) + d(ηv ,ηv,w − ηv) + Jv(w)− Jv(ηv) ≥ 〈f ,w − ηv〉.

Lemma 2.2. Assume that the condition (32) holds, then there exists a unique
solution ηv ∈ Kdiv to the problem (36).

Proof The proof can be found in [16, Theorem 2.1, P553] where similar condition
is needed.
Next, let consider the mapping Φ : Kdiv → Kdiv defined as follows

Φ(v) = ηv

where ηv is a unique solution of problem (36). It is obvious that the fixed point of
Φ if exists will be the solution of (31).

Lemma 2.3. Under the assumption of Theorem 2.2, the operator Φ will be a con-
traction on Kdiv.

Proof Let v1, v2 ∈ Kdiv and set η1 = Φ(v1), η2 = Φ(v2) then, we have
(37)
a(η1,w−η1)+d(η1,η1,w−η1)+Jv1(w)−Jv1(η1) ≥ 〈f,w−η1〉 for all w ∈ V div ,

and
(38)
a(η2,w−η2)+d(η2,η2,w−η2)+Jv2(w)−Jv2(η2) ≥ 〈f,w−η2〉 for all w ∈ V div .

Taking w = η2 in (37) and w = η1 in (38) and add the resultant equations, we
obtain

a(η2 − η1,η2 − η1)

≤ d(η2,η2,η2 − η1)− d(η1,η1,η2 − η1) + J(v1,η2)− J(v1,η1) + J(v2,η1)− J(v2,η2)

In other hand, since from (16) d(η2,η2 − η1,η2 − η1) = 0,

d(η2,η2,η2 − η1)− d(η1,η1,η2 − η1)

= d(η2,η2 − η1,η2 − η1) + d(η2 − η1,η1,η2 − η1)

= d(η2 − η1,η1,η2 − η1),
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then

a(η2 − η1,η2 − η1)

≤ d(η2 − η1,η1,η2 − η1) + J(v1,η2)− J(v1,η1) + J(v2,η1)− J(v2,η2).

It follows from (18), (25) and the continuity of d(·, ·, ·) that

2ν‖η2 − η1‖
2
V ≤ Cd‖η1‖V ‖η2 − η1‖

2
V + C0k‖v2 − v1‖V ‖η2 − η1‖V ,

and due to the fact that η1 ∈ Kdiv, ‖η1‖V ≤ C1

ν (‖f‖−1 + ‖g‖L2(S)),
we have

‖η2 − η1‖V ≤
C0k/2ν

(

1−
CdC1(‖f‖−1 + ‖g‖L2(S))

2ν2

)‖v2 − v1‖V ,

that is
‖Φ(v2)− Φ(v1)‖V ≤ L‖v2 − v1‖V ,

with 0 < L :=
C0k/2ν

(

1−
CdC1(‖f‖−1 + ‖g‖L2(S))

2ν2

) < 1.

The derivation of the a priori estimates for the velocity and pressure are similar
to the one obtained for the Stokes equations and will not be repeated here. �

Remark 2.1. (a) It should be noted that (32) is only needed for (36), while
(32) and (33) are required for (31).

(b) It is manifest that in both conditions (32), and (33), we need smallness
of the applied forces or large enough kinematic viscosity. In fact such re-
quirement are not new, and are similar to those needed for Navier Stokes
equations with classical Dirichlet boundary conditions [22].

3. Finite element approximations

We assume that Th is a regular partition of Ω in the sense introduced by Ciarlet
[21]. The diameter of an element K ∈ Th is denoted by hK , and the mesh size h is
defined by h = maxK∈Th

hK . Let introduce the following subspaces:

Mh = {qh ∈ M ∩ C(Ω), qh|K ∈ Pl(K) for all K ∈ Th},

V h = {vh ∈ V ∩ C(Ω)d, vh|K ∈ Pk(K) for all K ∈ Th},

W h = {vh ∈ V h , b(vh, qh) = 0 for all qh ∈ Mh},

V 0h = V h ∩ V 0,

where k, l are non-negative integers that will be made precise later, and Pl(K) the
space of polynomial functions of two variables in K with degree less than or equal
to l. In fact the integers k, l are such that the discrete counterpart of the inf-sup
condition (17) holds with its constant βh independent of h (see [22, 23] for more
discussions and concrete examples).

3.1. Finite element approximation of the variational inequality (23).

3.1.1. Existence and uniqueness of solution. With the finite dimensional s-
paces V h and Mh introduced, the finite element discretization of the variational
inequality (23) reads: Find (uh, ph) ∈ V h ×Mh such that
(39)

for all (vh, qh) ∈ V h ×Mh,
a(uh,vh − uh)− b(vh − uh, ph) + J(uh,vh)− J(uh,uh) ≥ 〈f ,vh − uh〉,

b(uh, qh) = 0,
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which is equivalent to

(40)

{

Find uh ∈ W h such that for all wh ∈ W h

a(uh,wh − uh) + J(uh,wh)− J(uh,uh) ≥ 〈f ,wh − uh〉.

The existence of solutions of (40) follows the same procedure as the existence result
for (23), and thus it holds that

Theorem 3.1. Suppose that 0 <
C0k

2ν
< 1. Then the mixed variational problem

(39) admits a unique solution (uh, ph) ∈ V h × Mh, which satisfies the following
bound

‖uh‖V + ‖ph‖ ≤ C(‖f‖−1 + ‖g‖L2(S)).(41)

3.1.2. A priori error estimate. One of the main contribution of this work is
the following result

Theorem 3.2. Suppose that 0 <
C0k

2ν
< 1. Let (u, p) be the unique solution of

(23), and (uh, ph) the unique solution of (39). Then there exists a generic positive
constant C independent on h such that for all vh ∈ V h and qh ∈ Mh,

‖u− uh‖V ≤ C
{

‖u− vh‖V + ‖p− qh‖+ ‖u− vh‖
1/2
L2(S)

}

,(42)

‖p− ph‖ ≤ C
{

‖u− vh‖V + ‖p− qh‖+ ‖u− vh‖
1/2
L2(S)

}

.(43)

Proof For w ∈ V 0, replace v in (23) by u+w and u−w, and putting together
the resulting equations, one gets

(44) a(u,w)− b(w, p) = 〈f ,w〉 for all w ∈ V 0.

Likewise with (39) and wh ∈ V 0h, one arrives at

(45) a(uh,wh)− b(wh, ph) = 〈f ,wh〉 for all wh ∈ V 0h.

Let w = wh, then (44) and (45) give

a(u− uh,wh)− b(wh, p− ph) = 0 for all wh ∈ V 0h,

which is re-written as

b(wh, ph − qh) = a(u− uh,wh) + b(wh, p− qh).

Now, the equality together with the discrete version of the inf-sup condition (17)
and the continuity of a(·, ·) and b(·, ·) gives

β‖ph − qh‖ ≤ sup
wh∈V 0h

b(wh, ph − qh)

‖wh‖V
= sup

wh∈V 0h

|a(u− uh,wh) + b(wh, p− qh)|

‖wh‖V

≤ (2ν‖u− uh‖V + ‖p− qh‖),

so that,

(46) ‖p− ph‖ ≤ ‖p− qh‖+ ‖qh − ph‖ ≤ C {‖u− uh‖V + ‖p− qh‖} .

Next, let vh ∈ V h, replacing successively v in (23)1 by v = uh and v = 2u − vh

and putting together the resulting inequalities, yields
(47)
a(u,uh−vh)− b(uh−vh, p)+J(u, 2u−vh)+J(u,uh)− 2J(u,u) ≥ 〈f ,uh−vh〉.

Note that the inequality (39)1 can be recast as

(48) −a(uh,uh − vh) + b(uh − vh, ph) + J(uh,vh)− J(uh,uh) ≥ −〈f ,uh − vh〉
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Next, (47)+(48) yields

a(u− uh,uh − vh)− b(uh − vh, p− ph) + J(u, 2u− vh) +

J(u,uh)− 2J(u,u) + J(uh,vh)− J(uh,uh) ≥ 0.(49)

By linearity of a(·, ·),

(50) a(u− uh,uh − vh) = a(u − vh,uh − vh)− a(uh − vh,uh − vh).

Using (23)2 and (39)2, one has

b(uh − vh, p− ph) = b(uh − u, p− qh) + b(uh − u, qh − ph) + b(u− vh, p− ph)

= b(uh − u, p− qh) + b(u− vh, p− ph).(51)

Returning to (49) with (50) and (51), we obtain

(52) 2ν‖uh − vh‖
2
V ≤ a(uh − vh,uh − vh) ≤ I1 + I2,

where

I1 = a(u− vh,uh − vh)− b(uh − u, p− qh)− b(u− vh, p− ph),(53)

I2 = J(u, 2u− vh) + J(u,uh)− 2J(u,u) + J(uh,vh)− J(uh,uh).(54)

By simple algebra manipulation, one obtains

I2

= J(u,uh)− J(u,vh) + J(uh,vh)− J(uh,uh)

+J(u, 2u− vh)− 2J(u,u) + J(u,vh),

which from (25), and application of the triangle’s inequality gives

(55) I2 ≤ C0k‖u− uh‖V ‖uh − vh‖V + 2(‖g‖L2(S) + C0k‖u‖V )‖u− vh‖L2(S).

Next, applying the continuity of both bilinear forms a(·, ·) and b(·, ·), we get

I1 ≤ 2ν‖u− vh‖V ‖uh − vh‖V + ‖p− qh‖‖u− uh‖V + ‖p− ph‖‖u− vh‖V ,

together with (55) and (52) gives

2ν‖uh − vh‖
2
V

≤

{

2ν‖u− vh‖V ‖uh − vh‖V + ‖p− qh‖‖u− uh‖V + ‖p− ph‖‖u− vh‖V
+C0k‖u− uh‖V ‖uh − vh‖V + 2(‖g‖L2(S) + C0k‖u‖V )‖u− vh‖L2(S)

}

,

which together with Young’s inequality, the a priori estimate (34), (46), and the
triangle inequality

‖u− uh‖V ≤ ‖u− vh‖V + ‖vh − uh‖V ,

gives the desired bound (42), whereas (43) is a consequence of (42) and (46). �

3.2. Finite element approximation of the variational inequality (30).

3.2.1. Existence and uniqueness of solution. The finite element approxima-
tion of the variational inequality (30) reads:
Find (uh, ph) ∈ V h ×Mh such that

(56)



















for all vh, qh ∈ V h ×Mh

a(uh,vh − uh) + d(uh,uh,vh − uh)− b(ph,vh − uh)

+J(uh,vh)− J(uh,uh) ≥ 〈f ,vh − uh〉

b(uh, qh) = 0,



FEA STOKES & NAVIER-STOKES WITH SLIP BOUNDARY CONDITIONS 245

which is equivalent to: Find uh ∈ W h such that
(57)
{

for all vh ∈ V h

a(uh,vh − uh) + d(uh,uh,vh − uh) + J(uh,vh)− J(uh,uh) ≥ 〈f ,vh − uh〉.

As far as the existence of solutions of (56) is concerned, one claim that

Theorem 3.3. If the following conditions hold:

(58) 0 <
CdC1(‖f‖−1 + ‖g‖L2(S))

ν2
< 1

(59) 0 <
C0k

2ν
< 1−

CdC1(‖f‖−1 + ‖g‖L2(S))

2ν2
.

Then the mixed finite variational problem (56) admits a unique solution (uh, ph) ∈
Kh ×Mh, which satisfies the following bound

‖uh‖V ≤ C(‖f‖−1 + ‖g‖L2(S))(60)

‖ph‖ ≤ C(‖f‖−1 + ‖g‖L2(S) + ‖f‖2−1 + ‖g‖2L2(S)).(61)

where

Kh = {vh ∈ W h, ‖vh‖1 ≤
C1

ν
(‖f‖−1 + ‖g‖L2(S))}.

The proof goes along the same lines as the proof of Theorem 2.2, and hence will
not be repeated here.

3.2.2. A priori error estimate.

Theorem 3.4. If conditions (58) and (59) are satisfied with f ∈ H−1(Ω), g ∈
L2(S), and g > 0, then there exists a generic positive constant C independent of h
such that for all vh ∈ V h and qh ∈ Mh,

‖u− uh‖V ≤ C
{

‖u− vh‖V + ‖p− qh‖+ ‖u− vh‖
1/2
L2(S)

}

,(62)

‖p− ph‖ ≤ C
{

‖u− vh‖V + ‖p− qh‖+ ‖u− vh‖
1/2
L2(S)

}

.(63)

Proof Let w ∈ V 0. Replacing v in (30) by u−w and u+w and adding the
resulting equations gives

a(u,w) + d(u,u,w)− b(w, p) = 〈f ,w〉 for all w ∈ V 0.

Next, let wh ∈ V 0h, and replace vh in (56) by uh −wh and uh +wh, adding the
resulting equations, one gets

a(uh,wh) + d(uh,uh,wh)− b(wh, ph) = 〈f ,wh〉 for all wh ∈ V 0h.

Putting together the former and later equations for w = wh, gives
(64)
a(u−uh,wh)+d(u,u,wh)−d(uh,uh,wh)−b(wh, p−ph) = 0 for all wh ∈ V 0h.

From the linearity

b(wh, ph − qh) = b(wh, ph − p) + b(wh, p− qh),

d(u,u,wh)− d(uh,uh,wh) = d(u,u− uh,wh) + d(u− uh,uh,wh),



246 J. DJOKO AND M. MBEHOU

which together with the inf-sup on b(·, ·) and (64) gives

β‖ph − qh‖

≤ sup
w∈V 0h

b(wh, ph − qh)

‖wh‖V

= sup
wh∈V 0h

|a(u− uh,wh) + d(u,u− uh,wh) + d(u− uh,uh,wh) + b(wh, p− qh)|

‖wh‖V

≤ (2ν‖u− uh‖V + Cd‖u‖V ‖u− uh‖V + Cd‖uh‖V ‖u− uh‖V + ‖p− qh‖)

≤ (2ν‖u− uh‖V +
2CdC1

ν
(‖f‖−1 + ‖g‖L2(S))‖u− uh‖V + ‖p− qh‖)

since u ∈ Kdiv and uh ∈ Kh.

Hence

(65) ‖p− ph‖ ≤ ‖p− qh‖+ ‖qh − ph‖ ≤ C {‖u− uh‖V + ‖p− qh‖} .

Next, we take vh ∈ V h, replacing successively v in (30)1 by v = uh and v = 2u−vh,
one gets

(66) a(u,uh−u)+d(u,u,uh−u)−b(uh−u, p)+J(u,uh)−J(u,u) ≥ 〈f ,uh−u〉,

and
(67)
a(u,u−vh)+d(u,u,u−vh)−b(u−vh, p)+J(u, 2u−vh)−J(u,u) ≥ 〈f ,u−vh〉.

(66)+(67) yields

a(u,uh − vh) + d(u,u,uh − vh)− b(uh − vh, p)(68)

+J(u, 2u− vh) + J(u,uh)− 2J(u,u) ≥ 〈f ,uh − vh〉.

Note that the inequality (56)1 can be written as

−a(uh,uh−vh)−d(uh,uh,uh−vh)+b(uh−vh, ph)+J(uh,vh)−J(uh,uh) ≥ −〈f ,uh−vh〉,

which together with (68) leads to

a(u− uh,uh − vh) + d(u,u,uh − vh)− d(uh,uh,uh − vh)− b(uh − vh, p− ph)

+J(u, 2u− vh) + J(u,uh)− 2J(u,u) + J(uh,vh)− J(uh,uh) ≥ 0.(69)

Note that
(70)
d(u,u,uh−vh)−d(uh,uh,uh−vh) = d(u,u−uh,uh−vh)+d(u−uh,uh,uh−vh).

Substituting equations (50), (51) and (70) into (69) yields

2ν‖uh − vh‖
2
V(71)

≤ a(uh − vh,uh − vh)

≤ a(u− vh,uh − vh)− b(uh − u, p− qh)− b(u− vh, p− ph

+d(u,u− uh,uh − vh) + d(u− uh,uh,uh − vh)(72)

+J(u, 2u− vh) + J(u,uh)− 2J(u,u) + J(uh,vh)− J(uh,uh).
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Using standard inequalities and (55), (72) becomes

2ν‖uh − vh‖
2
V

≤







2ν‖u− vh‖V ‖uh − vh‖V + ‖p− qh‖‖u− uh‖V + ‖p− ph‖‖u − vh‖V
+Cd‖u‖V ‖u− uh‖V ‖uh − vh‖V + Cd‖uh‖V ‖u− uh‖V ‖uh − vh‖V
+C0k‖u− uh‖V ‖uh − vh‖V + 2(‖g‖L2(S) + C0k‖u‖V )‖u− vh‖L2(S)







≤







2ν‖u− vh‖V ‖uh − vh‖V + ‖p− qh‖‖u − uh‖V + ‖p− ph‖‖u− vh‖V
+ 2CdC1

ν
(‖f‖−1 + ‖g‖L2(S))‖u− uh‖V ‖uh − vh‖V + C0k‖u − uh‖V ‖uh − vh‖V

+2(‖g‖L2(S) +
C0kC1

ν
(‖f‖−1 + ‖g‖L2(S)))‖u− vh‖L2(S)







since u ∈ Kdiv uh ∈ Kh

Hence using the triangle inequalities, the Young’s inequality, and the relations
(58), (59) and (65), we obtain

‖u− uh‖
2
V ≤ C

{

‖u− vh‖
2
V + ‖p− qh‖

2 + ‖u− vh‖L2(S)

}

,

which automatically gives (62), while (63) is a consequence of (62) and (65). �

Remark 3.1. It should be mentioned that specific choice of V h and Mh leads
derivation of particular rate of convergence in Theorem 3.2 and Theorem 3.4. (see
[22, 23]).

4. Numerical Algorithm

In this section, we present and analyze the algorithms for the implementation
of (39) and (56). Next, we present some numerical computations related to the
algorithms described.

4.1. Numerical algorithm for Stokes variational inequality (39). Let con-
sider the following problem: Given u0

h ∈ V h, find (un
h, p

n
h) ∈ V h ×Mh such that

(73)
for all vh, qh ∈ V h ×Mh

a(un
h,vh − un

h)− b(vh − un
h, p

n
h) + J(un−1

h ,vh)− J(un−1
h ,un

h) ≥ 〈f ,vh − un
h〉

b(un
h, qh) = 0,

which is also equivalent to; given u0
h ∈ W h, find (un

h , p
n
h) ∈ W h such that

(74)
for all vh ∈ W h

a(un
h,vh − un

h) + J(un−1
h ,vh)− J(un−1

h ,un
h) ≥ 〈f ,vh − un

h〉.

About the convergence of the algorithm (73), one can claim the following

Theorem 4.1. Suppose that 0 <
C0k

2ν
< 1, problem (73) admits a unique solution

(un
h , p

n
h) ∈ V h ×Mh. Moreover let (uh, ph) ∈ V h ×Mh be the solution of problem

(39). Then the iterative solution (un
h, p

n
h) converges to (uh, ph) in V h × Mh as

n → ∞. More precisely,

‖un
h − uh‖V ≤

(

C0k

2ν

)n

‖u0
h − uh‖V(75)

‖pnh − ph‖ ≤ C‖un
h − uh‖V .(76)

Proof. For the solvability of (73), note that knowing un−1
h ∈ V h, computing

(un
h , p

n
h) ∈ V h×Mh in (73) is to solve the variational inequality of the second kind

with g replaced by g + k|un−1
τh |.

Next, let vh = un
h in (40) and vh = uh in (74), adding the resulting equations, we

obtain:

(77) a(un
h −uh,u

n
h −uh) ≤ J(un−1

h ,uh)− J(un−1
h ,un

h) + J(uh,u
n
h)− J(uh,uh).
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(77) is treated using the coercivity (18) on the left, whereas its right hand side is
bounded using the inequality (25). We then obtain

2ν‖un
h − uh‖

2
V ≤ C0k‖u

n−1
h − uh‖V ‖u

n
h − uh‖V ,

which gives

‖un
h − uh‖V ≤

C0k

2ν
‖un−1

h − uh‖V .

By induction one has (75).
For the convergence of pnh, let wh ∈ W h and replace vh in (73)1 successively

by un
h + wh and un

h − wh. Observe that J(un−1
h ,vh) = J(un−1

h ,un
h ± wh) =

J(un−1
h ,un

h) , then

(78) a(un
h,wh)− b(wh, p

n
h) = 〈f ,wh〉 for all wh ∈ W h.

Likewise, one obtains

a(uh,wh)− b(wh, ph) = 〈f ,wh〉 for all wh ∈ W h,

which together with (78) gives

a(uh − un
h ,wh)− b(wh, ph − pnh) = 0 for all wh ∈ W h.

That relation together with the discrete inf-sup condition on b(·, ·) leads to,

β‖pnh − ph‖ ≤ sup
vh∈V h

b(vh, ph − pnh)

‖vh‖V
= sup

vh∈V h

a(uh − un
h,wh)

‖wh‖1
≤ 2ν‖un

h − uh‖V ,

and the proof is terminated using (75). �

Remark 4.1. Knowing un−1
h ∈ V h, computing (un

h, p
n
h) ∈ V h × Mh in (73) is

to solve the variational inequality of the second kind with g replaced by g+ k|un−1
τh |

which can be solved numerically using Uzawa iteration method (see [4, 14, 18, 22]).

Then we construct the following Uzawa iteration algorithm to solve (39) via (73)
Algorithm 1:

(79) u0
h ∈ V h, λ1

h ∈ Λh arbitrary given

where Λ = {λ ∈ L2(S) : |λ(x)| ≤ 1 a.e. on S} and Λh ⊂ Λ is the finite element
space.
Step 1: knowing (un−1

h , λn
h) ∈ V h × Λh, compute (un

h, p
n
h) ∈ V h ×Mh by

(80)
{

a(un
h,vh)− b(vh, p

n
h) = 〈f ,vh〉 −

∫

S
λn
h(g + k|un−1

τh |)vτhds for all vh ∈ V h

b(un
h, qh) = 0 for all qh ∈ Mh ,

Step 2: Renew λn+1
h ∈ Λh

(81) λn+1
h = PΛh

(λn
h + ρ(g + k|un−1

τh |)un
τh)

where PΛh
(µ) = sup(−1, inf(1, µ)) for all µ ∈ L2(S) and ρ > 0

Remark 4.2. The unique existence of (un
h , p

n
h) ∈ V h × Mh satisfying (80) is

guaranteed by the discrete inf-sup condition on b(·, ·).
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4.2. Numerical algorithm for Navier-Stokes variational inequality (56).
Let consider the following problem: Given u0

h ∈ V h, find (un
h, p

n
h) ∈ V h×Mh such

that
(82)

for all vh, qh ∈ V h ×Mh

a(un
h,vh − un

h) + d(un−1
h ,un

h,vh − un
h)− b(vh − un

h , p
n
h)

+J(un−1
h ,vh)− J(un−1

h ,un
h) ≥ 〈f ,vh − un

h〉,
b(un

h, qh) = 0,

which is equivalent to

(83)











Knowing u0
h ∈ V h, Find un

h ∈ W h such that

a(un
h ,vh − un

h) + d(un−1
h ,un

h,vh − un
h)

+J(un−1
h ,vh)− J(un−1

h ,un
h) ≥ 〈f ,vh − un

h〉 for all vh ∈ W h.

About the convergence of the algorithm (82), we claim that

Theorem 4.2. Assume (32), and (33). Then the problem (82) admits a unique
solution (un

h , p
n
h) ∈ Kh ×Mh. Moreover let (uh, ph) ∈ V h ×Mh be the solution of

problem (56). Then the iterative solution (un
h , p

n
h) converges to (uh, ph) in V h×Mh

as n → ∞. More precisely,

‖un
h − uh‖V ≤

(

C0k

2ν
+

CdC1(‖f‖−1 + ‖g‖L2(S))

2ν2

)n

‖u0
h − uh‖V(84)

‖pnh − ph‖ ≤ C(‖un
h − uh‖V + ‖un−1

h − uh‖V ) .(85)

Proof. We start by proving that ‖un
h‖V ≤ C1

ν (‖f‖−1+ ‖g‖L2(S)) i.e, u
n
h ∈ Kh .

Let wh = 0 and wh = 2un
h in (83), since d(un−1

h ,un
h ,u

n
h) = 0, one has

2ν‖un
h‖

2
V ≤

∫

S

k|un−1
τh ||un

τh|ds+ a(un
h,u

n
h) = 〈f ,un

h〉 −

∫

S

g|un
τh|ds

≤ |〈f ,un
h〉 −

∫

S

g|un
τh|ds|

≤ C1(‖f‖−1 + ‖g‖L2(S))‖u
n
h‖V ,

hence

‖un
h‖V ≤

C1

2ν
(‖f‖−1 + ‖g‖L2(S)) ≤

C1

ν
(‖f‖−1 + ‖g‖L2(S)).

Next, setting vh = un
h in (57) and vh = uh in (83) and adding the resulting

equations, we obtain:

−a(un
h − uh,u

n
h − uh) + d(uh,uh,u

n
h − uh)− d(un−1

h ,un
h,u

n
h − uh)

+J(un−1
h ,uh)− J(un−1

h ,un
h) + J(uh,u

n
h)− J(uh,uh) ≥ 0

Note that since d(uh,u
n
h − uh,u

n
h − uh) = 0

d(uh,uh,u
n
h − uh)− d(un−1

h ,un
h,u

n
h − uh) = −d(un−1

h − uh,u
n
h,u

n
h − uh)

thus

2ν‖un
h − uh‖

2
V

≤ a(un
h − uh,u

n
h − uh)

≤ −d(un−1
h − uh,u

n
h,u

n
h − uh)

+ J(un−1
h ,uh)− J(un−1

h ,un
h) + J(uh,u

n
h)− J(uh,uh)

≤ Cd‖u
n
h‖V ‖u

n−1
h − uh‖V ‖u

n
h − uh‖V + C0k‖u

n−1
h − uh‖V ‖u

n
h − uh‖V
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which together with ‖un
h‖V ≤ C1

ν (‖f‖−1 + ‖g‖L2(S)), yields

‖un
h − uh‖V ≤

(

C0k

2ν
+

CdC1(‖f‖−1 + ‖g‖L2(S))

2ν2

)

‖un−1
h − uh‖V ,

and (84) follows by induction.
For the convergence of pnh, let wh ∈ W h and replace vh in (82)1 successively

by un
h + wh and un

h − wh. Observing that J(un−1
h ,vh) = J(un−1

h ,un
h ± wh) =

J(un−1
h ,un

h), one has

(86) a(un
h,wh) + d(un−1

h ,un
h ,wh)− b(wh, p

n
h) = 〈f ,wh〉 for all wh ∈ W h.

Likewise, one has

a(uh,wh) + d(uh,uh,wh)− b(wh, ph) = 〈f ,wh〉 for all wh ∈ W h,

which when combined with (86) gives

a(un

h−uh,wh)+d(un−1
h

−uh,u
n

h,wh)−d(uh,u
n

h−uh,wh)−b(wh, p
n

h−ph) = 0 for allwh ∈ W h.

That relation together with the discrete inf-sup condition on b(·, ·) gives

β‖pnh − ph‖

≤ sup
wh∈V σh

b(wh, p
n
h − ph)

‖wh‖V

≤ sup
|a(un

h − uh,wh)|+ d(un−1
h − uh,u

n
h ,wh)− d(uh,u

n
h − uh,wh)|

‖wh‖V

≤ 2ν‖un
h − uh‖V + Cd‖u

n
h‖V ‖u

n−1
h − uh‖V + Cd‖uh‖V ‖u

n
h − uh‖V

therefore since uh ∈ Kh and un
h ∈ Kh, we claim (85). �

Remark 4.3. (a) The convergence factor

(

C0k

2ν
+

CdC1(‖f‖−1 + ‖g‖L2(S))

2ν2

)n

is strictly less than one as one can see from (33).
(b) It should be observed that similar condition is obtained in [26] for Navier

Stokes equations under Dirichlet boundary conditions.

As in Stokes formulation (39), we construct the following Uzawa iteration algo-
rithm to solve (56) via (82) .
Algorithm 2:

(87) u0
h ∈ V h, λ1

h ∈ Λh arbitrary given

Step 1: knowing (un−1
h , λn

h) ∈ V h × Λh, compute (un
h, p

n
h) ∈ V h ×Mh by

(88)
{

a(un

h,vh) + d(un−1
h

,un

h,vh)− b(vh, p
n

h) = 〈f ,vh〉 −
∫

S
λn

h(g + k|un−1
τh

|)vτhds for all vh ∈ V h

b(un

h, qh) = 0 for all qh ∈ Mh,

Step 2: Renew λn+1
h ∈ Λh

(89) λn+1
h = PΛh

(λn
h + ρ(g + k|un−1

τh |)un
τh)

where PΛh
(µ) = sup(−1, inf(1, µ)) for all µ ∈ L2(S) and ρ > 0.

Remark 4.4. The unique existence of (un
h , p

n
h) ∈ V h × Mh satisfying (88) is

guaranteed by the inf-sup condition (17).
The initialization of the flow defined by (80) and (88) is important. Let us observe
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that since one has well-posedness of (39) and (56), in order to consolidate the
convergence of (39) and (56), we suggest the solution of Stokes equations

(90)

{

a(uh,vh)− b(vh, ph) = (f ,vh) ∀vh ∈ V h

b(uh, qh) = 0, ∀qh ∈ Mh ,

as initial condition for our algorithms (80) and (88).

5. Numerical experiments

Let us explain our numerical experiments. We assume Ω = (0, 1)2, the boundary
of which consists of two portions Γ and S given by:

Γ = {(0, y)/0 < y < 1} ∪ {(x, 0)/0 < x < 1} ∪ {(1, y)/0 < y < 1}(91)

S = {(x, 1)/0 < x < 1}(92)

For the triangulation Th of Ω, we employ a uniform N ×N mesh, where N denotes
the division number of each side of the domain. The implementation is done by
extending the Matlab code developed in [27, 28]. In all the examples presented, the
velocity and pressure will be approximated by P2− P1 element.
We recall that the different steps of our algorithm are as follows: Choosing the
parameter ρ (here we choose ρ = 0.5),

(a) Starting with u0
h, solution of (90) and λ1

h = 1

(b) knowing (un−1
h , λn

h), compute (un
h, p

n
h, λ

n+1
h ) solution of (80) or (88).

The stopping criteria for iteration is

‖un
h − un−1

h ‖ ≤ 10−6

Let us consider

(93)











u1(x, y) = 20x2(1− x)2y(1− 2y)

u2(x, y) = −20x(1− x)(1 − 2x)(1− y)2y2

p(x, y) = (2x− 1)(2y − 1)

5.1. Numerical examples for Stokes problem (1)-(5). (u, p) defined by (93)
turns out to be the solution of the problem (1)-(5) under the appropriate choice g
where ν = 1 and f (= fstokes) is given by
(94)
{

f1(x, y) = 80x2(1 − x)2 − 20(2 + 12x2 − 12x)y(1− 2y) + 2(2y − 1);

f2(x, y) = 20(12x− 6)y2(1− y)2 + 20x(1− 2x)(1 − x)(2 + 12y2 − 12y) + 2(2x− 1)

It is easy to verify that the solution u satisfies u = 0 on Γ, u ·n = u2 = 0, u1 6= 0
on S. By direct computations, we have

(95)
στ = −60x2(1 − x)2 on S
uτ = 20x2(1 − x)2 on S

and

(96) max
S

|στ | = 3.75.

On the other hand, from the slip boundary conditions (5), we have

(97) |στ | ≤ g + k|uτ | on S

then we find from (97) that with g constant:

g + k|uτ | ≥ 3.75 ⇒ (93) remains a solution.

g + k|uτ | < 3.75 ⇒ (93) is no longer a solution and a non-trivial slip occurs.
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Indeed it is observable in figures 1, slip and non-slip condition on the boundary. In
fact in figure 1-a and figure 1-b, g + k|uτ | < 3.75 and we see the manifestation of
the slip due to the adherence of the flow at the boundary, whereas in figure 1-c,
g + k|uτ | ≥ 3.75 and no slip occurs. In addition, we find that

(a) as the threshold g of tangential stress increases, the more difficult it becomes
for a non-trivial slip to occur,

(b) the smaller the threshold g of tangential stress becomes, the more easier it
becomes for a non-trivial slip to occur,

which is in agreement with the predicted outcome.
For all the numerical results here, we set ν = 1, k = 10−1, ρ = 0.5 and g is indicated
on the pictures.
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Figure 1. Velocity field respectively for g = 0.5, g = 1, g = 4

5.2. Numerical examples for Navier-Stokes problem (2)–(5),(9). For Navier-
Stokes problem, we consider the same solution (93) as in Stokes problem with
appropriate choice of g , and f given by

f = fstokes + (u · ∇)u

We observe similar pattern as commented for figure 1. In our computations we
did not observe a major difference between Stokes and Navier-Stokes as far as the
driven cavity is concerned. Of course as it was expected, the simulations with
Navier Stokes system is more time involve than the one of Stokes equations.
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Figure 2. Velocity field respectively for g = 0.5, g = 1, g = 4

5.3. Numerical accuracy check. We evaluate the error between approximate
solutions and exact ones as the division number N increased. Since we do not
know the explicit exact solution when g = 1, we employ the approximate solutions
with N = 60 as the reference solutions (uref , pref ), and we compute the H1-norm
and L2-norm respectively for velocity and pressure of the difference of the reference
solution and the approximate solution (uh, ph). The results are presented in Table
1 for Stokes problem and Table 2 for Navier-Stokes problem.

Table 1. convergence results for Stokes problem

h ‖uref − uh‖1 rate H1 ‖p− ph‖ rate L2

1/6 1.150e-3 1.308e-2
1/10 7.814e-4 0.756 7.071e-3 1.204
1/12 6.863e-4 0.711 5.657e-3 1.223
1/15 5.783e-4 0.767 4.243e-3 1.289
1/20 4.790e-4 0.654 2.928e-3 1.289
1/30 6.185e-4 0.630 1.814e-3 1.180
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Table 2. convergence results for Navier-Stokes problem

h ‖uref − uh‖1 rate H1 ‖p− ph‖ rate L2

1/6 1.103e-2 1.208e-2
1/10 8.262e-3 0.566 7.171e-3 1.021
1/12 7.499e-3 0.531 5.957e-3 1.017
1/15 6.714e-3 0.495 4.743e-3 1.021
1/20 7.896e-3 0.563 3.528e-3 1.028
1/30 6.446e-3 0.500 2.414e-3 0.935

6. Conclusions

The purpose of this work was to introduce a threshold slip boundary conditions
for the numerical analysis of the Stokes and Navier Stokes equations. The resulting
variational inequalities obtained are analyzed by the means of fixed approach, and
a priori error estimates are derived using sufficient conditions for existence of so-
lutions. Next we have formulated and established the convergence of the Uzawa’s
algorithm associated to the finite element equations for both the Stokes and Navier
Stokes equations. Finally, some numerical simulations which confirm the predic-
tions of the theory presented are shown. We intend to actively continue to work in
the research directions presented in this paper.
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