Proceedings of the Fourth Australian Conference on Neural Networks (ACNNB93)92

A Comparison of
Architectural Alternatives for
Recurrent Networks

William H. Wilson

School of Computer Science and Engineering
University of New South Wales
Sydney NSW 2052 Australia
E-mail:bi | | w@se. unsw. edu. au

Abstract

This paper describes a class of recurrent neural networ!
related to Elman networks. The networks used here
differ from standard Elman networks in that they ma
have more than one state vector. Such networks have
explicit representation of the hidden unit activations fror
several steps back. In principle, a single-state-vectc
network is capable of learning any sequential task that
multi-state-vector network can learn. This paper describe
experiments which show that, in practice, and for th
learning task used, a multi-state-vector network can leal
a task faster and better than a single-state-vector netwol
The task used involved learning the graphotactic structu
of a sample of about 400 English words.

1

Elman [1,2] introduced a particular class of recurrer
network in which the feedback connections are from tf
state vector to the hidden layer, as illustrated in Figure
Elman used this neural network architecture, along wit
the backpropagation learning algorithm [4], to learn th
grammatical structure of a set of sentences randon
generated from a limited vocabulary and grammar. A maj
point of ElIman's work was to study the hidden uni
activation patterns in a trained network, produced i
response to a sequence of inputs, and to use techniq
such as cluster analysis to infer a structure for the data
represented in the hidden unit activation patterns. He w
able to extract a cluster hierarchy corresponding to tl
syntactic rules from which the data had been constructe
nouns, verbs, animate and inanimate nouns, transitive ¢
intransitive verbs, etc. This information was only
implicitly present in the data presented to the network:

other words, the network had learned the structure of t
linguistic data from the examples presented to it.

A significant aspect of the training data set used t
Elman is that it included no negative examples. Backpro
agation nets are frequently viewed as learning a classific
ion mapping:y: X - T where X={x,X»,...}, and
T={t1,t5,...}. In such cases, the input training data consi:
of instances of each of the typggd which an input x
can be classified. If a network is partially-trained on a s

Introduction

Output layer (n nodes)

Hidden layer (h nodes)

w

State vector (h nodes)

Input layer (n nodes)

Figure 1:Architecture of EIman's recurrent netwotk;
signifies total interconnection with trainable weights; 1
signifies that the activations at the destination are a
copy of the activations at the souritethe previous
processing cycle.
of inputs which includes no instances of typesay, then
the partially-trained network might map such an input to
a random type. In particular, for a binary classification
network, (i.e. T = {+,-}) a standard backpropagation
network must be trained on inputs of type + and of type —.

There are two reasons why this model of learning -
training on examples and non-examples - is inappropriate
to learningsyntax as in Elman's task, graphotactics
the task used in this paper:

« syntax and graphotactitphonotactics are learnt by
humansessentially on the basis of examples, rather than
examples and non-examples.

*words and sentences are of variable length and are per-
ceived sequentially, or at least, the sequence of words or
letters can affect the meaning; it is not practical or ling-
uistically plausible to have an input pattern representing
each possible sentence or each possible word. Instead, for
example, a word might be represented as a sequence ol
input patternscat could be represented as a sequence of
bit patterns corresponding to the lettera andt.

The state vector in Elman's networks provides the

potential for such networks to store information

aboutprevious inputs. An ordinary backpropagation
network without some form of feedback loop would be
unable to perform tasks which require it to know what the

previous input was: such networks could not recognize a

tune or any other temporal structure.

If one state vector is useful for suitable tasks, is it

possible that two or more state vectors (as illustrated in

Figures 2 & 3) will let a network perform even better at

sequential tasks? This is the focus of the research reported

here. We compare networks with 1, 2, 4, and 7 state
vectors. The 4- and 7- state-vector networks are similar to
2-state vector networks, but with more state vectors.

1 graphotactics studies which letters can be adjacent in the
words of a language: e.g., English words cannot begin with
the letter-sequencep or contain the sequend.

189

Of course, it would seem unsurprising if the addition ¢
an extra state-vector to a basic recurrent network like t
one shown in Figure 1 should increase its performanc
After all, with the extra state-vector, we add weighte
connections back to the hidden layer, and thus increase
learning potential of the system. In making comparison
we have to allow for such effects.

Section 2 describes the design of recurrent networ
with different numbers of state vectors, but otherwis
similar computational power, and outlines simulatiol
experiments done with such networks. Section 3 repol
and analyses the results of these simulations. The resi
indicate that networks with more state vectors do inde:
perform better, although network learning behavioL
became erratic with the largest number of state vectc
tried (7). Section 4 gives some pointers to othe
approaches to elaboration and analysis of the performar
of recurrent networks.

2 Experiments with Multi-State
Recurrent Networks

The aim of the experiments was to compare recurre
networks having different numbers of state vectors whi
holding as many other factors as possible constant. T
most likely repository of computational information in &
neural network is the set of weights. Thus particule
attention was paid to equalizing the numbers of weigh
between the examples of the different architectures bei
tested. It might be suggested that hidden units, rather tt
weights, are a critical resource in a network. Thi
hypothesis was not tested directly in the experiments, k
it did turn out that network performance was best fc
networks with less hidden units and more state vectors.

The number of weights and biases in a recurrent netwc
with n outputs h hidden units and state vectors is:
nweights = weights(inputs- hidden layer)

+ weights(hidden layes outputs)

+ biases(hidden layer) + biases(outputs)

+ sxweights(one state vectothidden layer)

=nh+h+hn+n+sh

In these experiments, = 27 (26 letters in the alphabet +
1 symbol for end of a word), so the formula for the
weights isw(s,h) = 54h + 27 +h + sh?2. What we

need is a number of pairs of valueha@nds for which
State Hidder |Weights
Name Vector: Units + Biase!
S1H24 1 24 192¢
S2H2(2 20 1927
S4H1€ 4 16 1931
S7H1:S 7 13 192t

Table 1:Parameters of the Four Architectural Variants

| Output layer |

A
W
Hidden layer
yy 1
0
© State vector1 |
ll
Q)
State vector 2 |
| Input layer

Figure 2:Architecture of Elman-style recurrent
network with 2 state vectors

w(s,h) evaluates to the same, or nearly the same,
number. It turns out that withs€l, h=24), =2,
h=20), (=4, h=16), and ¢=7, h=13), w(s,h)
evaluates to numbers in the relatively narrow range from
1923 to 1931 weights. Details are shown in Table 1.
Figure 3 shows a recurrent net with 4 state vectors; a
recurrent network with 7 state vectors is analogous.

These four architectures were simulated for 10 runs (2
runs on each of 5 different Apollo workstations) each
using random starting states. The task used was the
graphotactic task of predicting the next letter in an English
word given an initial string of letters in the word. This
task is related to the problem discussed by Wilson [5]. Its
motivation comes from the problem of classifying strings
of letters which are not present in an on-line lexicon as
either (a) likely typographical/spelling errors, or (b) valid
words which happen to be absent from the lexicon - valid
words are likely to be graphotactically acceptable, whereas
many errors will not be. Note that this paper does not set
out to report success or failure in applying recurrent
networks to this task, but rather to report the relative
performance of different recurrent architectures on this task.

The networks were trained on the same set of 373 3-to-
7-letter English words which gave rise to 1880 input patt-
erns. For a word likdush the net gets four patterns,
corresponding td- u (if the input isb, then the output
should beau), u- s, s- h, andh - end-of-word.

190

| Output layer |

w
—

state vectors

W)

Input layer |

Figure 3: Recurrent network with 4 state vectors; note
that the connections from the state vectors to the
hidden layer feedback hidden layer activations from the
preceding four processing cycles

In each case, TSS (Total Sum of Squares) starts
around 1150, descends rapidly for the first 100-300 epoc
and then levels out to a high plateau. With the tas
chosen, there is no hope of TSS approaching zero,
input patterns (letters) early in a word can only be used
predict the next pattern/letter in a probabilistic way.

For example, if the lettef is presented as the first
letter of a word, then the net could learn to predict that tl
next letter might bea, e, i, I, 0, r, u, (or with low
probability j, as infjord), but no other. Absolute
correctness is not possible. Late in a word, certainty
sometimes possible (particularly with the limited data si
of 373 words). Thus, if these nets have seen the seque
s hift then they could safely predigt sinceshifty
happens to be the only word in the training data th
begins withs hift Givens hifty they could safely
predictend-of-word

So TSS descends to a plateau, and we would like t
altitude of the plateau to be as low as possible, as tl
means, in a general way, that next-letter prediction is
good as possible.

3 The Experimental Results and Their
Inter pretation

Figure 4 shows typical plots of the TSS (Total Sum ¢
Squares of errors) against epoch number for one (typic
run of each of the four architectures. In a general way, v
can see that for these particular runs, the architectt
performances can be ranked as S1H24 < S2H20 < S4+
< S7H13. (However, a more systematic comparison
desirable: see below). Figure 4 also illustrates the fact tt
for all four architectures, TSS descends from an initi
high value and then "wanders" on a plateau. For tt
S1H24 and S2H20 architectures, the oscillations of tt
plateau are small from one epoch to the next. For S4H!
and particularly for S7H13, the oscillations on the platea

are less stable.The architectures could be compared in

various ways, including:

(@) the slope of the initial descent (measured as the epoch
number of the first local minimum);

(b) the TSS-value at the global minimum over the 1000
epochs of the simulations.

Measure (b) is of particular interest because it indicates

best possible performance of this class of network (over

the period of the simulation). Measure (a) is of interest

because it is an indicator of learnispeed

1150 =

TSS

1100~

1050~

1000

950 -4

it

9001

,l‘e‘-\,“j,f'* w‘%q‘l !-\. , N ry _*‘_"*. ..I"-Inh'. l

Epoch

850
S7H13

800

T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000

Figure 4:Typical TSS Plots for the 4 Architectures

The mean epoch numbers of the first local minimum over
each of the four architectures were calculated (see Table 2)
and all pairs of means were found to be significantly
different. That is, our subjective judgment, from Figures 4
and 5, that the initial descents of the curves are at different
rates, is borne out by statistical analysis of the results of
all 40 runs. There is overlap of performance, however,
particularly between the 2- and 4- state vector architectures.

S1H2: | S2H2C S4H1€ | S7H1:
26(150 10¢ 75
0 27¢ 171 12¢ 83
2 271 184 131 8¢
E 29¢ 185 14(91
z 31¢ 190 152 99
§ 31¢ 209 16(10¢
s 33C 230 17¢ 107
33¢ 230 181 11¢
34(235 19¢ 112
37¢ 239 202 112

Mear 313.1 203.1 157.¢ 97.¢

Table 2: Epoch Number of First Local Minimum

The global minima (over 1000 epochs) are shown in Fig-
ure 6. The analysis of the global minima for the 40 runs is
complicated by the fact that the minima sets for the four
architectures are heteroscedastic (do not have the same
variances), so that non-parametric analysis is necessary.
For this reason, the global minima were ranked from 1 to
40 (40 means largest global minimum). Table 3 shows
ranked global minima tabulated by architecture.

191

4007 number of first local minimum was for the S7H13
architecture. The best global minimum TSS for the 10
runs of this architecture was 88.35% of the best
performance for the S1H24 architecture. The TSS values
from epoch to epoch for instances of the S7TH13 architect-
2507 ure were erratic, but ultimately this is unimportant: the
absolute minimum TSS is what matters most in a
sequential prediction task. Thus these experiments show
that use of several state vectors, linked as exemplified in
Figures 2 and 3, can improve the performance of a
recurrent network with a given number of weights.

350 4

Epoch number
N
3

7 S1H24 S2H2(S4H1€ | S7H1Z
0 ' ' . Rank|Min. [Rank [Min. |Rank [Min. [Rank Min.
0 2 3 4 5 7
Number of state vectors © | 319219 21 8838| 7 839.7| 1 8145
Figure 5: First Local Minima with Different Architectures ‘= | 32 922.3| 22 890.0| 9 848.3| 2 834.9
040 ‘E |33 9225/ 23 891.1|1C 855.4| 3 835.7
9301 . T | 34 9229/ 24 892.6/11 8555 4 8358
9201 ! O |35 923125 894.1|12 856.2| 5 836.0
o104 . o | 36 923.1| 26 894.3|13 8585| 6 837.1
ol i L |37 9255/ 27 896.3|14 859.0| 8 840.0
o . § |38 929.0/ 28 899.4|1¢ 867.1| 15 859.1
B ool . @ |30 930.2| 2¢ 899.4|1¢c 868.1| 16 863.3
8601 . : 40 930.2| 30 903.9|2C 872.8| 17 866.5
8501 : Mean| 35.5 25.5 13.3 7.7
840 . ;
830 Table 3: Global Minima and Their Ranks
820
8104 : Acknowledgements
st T T T T r T 1 This work was supported by a grant from the Australian

Telecommunications and Electronics Research Board. The
author would like to thank Janet Wiles for helpful dis-
cussions about recurrent networks. Statistical analysis of
All S1H24 global minima are larger than any S2H2(the experimental results was performed by Kelly Reynolds
global minimum, which are in turn larger than the globé under the supervision of Deborah Street and David Byron.
minima for S4H16 and S7H13. The latter two architec

ures have some "crossed-over" runs, but statistical analy References
showed that, overall, STH13 performs significantly bette [1] Elman, Jeffrey L., Representation and structure in

3 4
State Vectol

Figure 6: Global Minima with Different Architectures

than S4H16, when the pairs of means for these archite
ures are compared. Statistical analysis also confirmed 1
differences between all the other pairs of architectures.

4 Related Work

Another approach to improving the performance of recu
rent networks is the work of Mozer (1992) on induction ¢
temporal structure across longer temporal intervals |
using hidden units that operate with different time cons
ants. This approach is most relevant to tasks that invol
recognizing the reappearance of a pattern presented in
relatively distant past. The architecture described in th
paper presumably provides the hidden layer with mo
detailed information about the inputs seen in the relative
recent past, and might be expected not to provide
dramatic improvement on Mozer's task.

5 Conclusions
The best average global minimum and best average ep:

192

[2] Elman, Jeffrey L.,

connectionist modelsTRL Technical Report 8903
Centre for Research in Language, Univ. of California,
San Diego, La Jolla, CA 92093 (1989) 26 pages.
Finding structure in time,
Cognitive Scienc#&4 (1990) 179-211.

[3] Mozer, Michael C., Induction of multiscale temporal

structure, in Advances in Neural Information

Processing Systems J.E. Moody, S.J. Hanson, and
R.P. Lippmann, (eds) San Mateo, CA: Morgan
Kaufmann, 1992.

[4] Rumelhart, David E., Hinton, G.E. and Williams,

R.J., Learning internal representation by error prop-
agation, pages 318-362 Rarallel Distributed Proc-
essing: Explorations in the Microstructure of Cognit-
ion: Vol. 1: Foundationsedited by D.E. Rumelhart
and J.L. McClelland, Cambridge, MA: MIT Press,
1986.

[5] Wilson, William H., Dealing with unknown words:

classifying unknown letter-strings using trigram
analysis,Australian Computer Science Communic-
ations14(1) (1992) 981-988.

