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Abstract

This paper describes a class of recurrent neural networks
related to Elman networks. The networks used herein Figure 1: Architecture of Elman's recurrent network; ω
differ from standard Elman networks in that they may signifies total interconnection with trainable weights; 1
have more than one state vector. Such networks have ansignifies that the activations at the destination are a
explicit representation of the hidden unit activations from copy of the activations at the source in the previous
several steps back. In principle, a single-state-vector processing cycle.
network is capable of learning any sequential task that aof inputs which includes no instances of type tk, say, then
multi-state-vector network can learn. This paper describesthe partially-trained network might map such an input  to
experiments which show that, in practice, and for thea random type.  In  particular,  for  a  binary  classification
learning task used, a multi-state-vector network can learnnetwork, (i.e. T = {+,–}) a standard backpropagation
a task faster and better than a single-state-vector network.network must be trained on inputs of type + and of type –.
The task used involved learning the graphotactic structure

There are two reasons why this model of learning -
of a sample of about 400 English words.

training on examples and non-examples -  is  inappropriate
to learning syntax, as in Elman's task, or graphotactics,

1 Introduction the task used in this paper:
• syntax and graphotactics1/phonotactics are learnt byElman [1,2] introduced a particular class of recurrent

humans essentially on the basis of examples, rather thannetwork in which the feedback connections are from the
examples and non-examples.state vector to the hidden layer, as illustrated in Figure 1.

• words and sentences are of variable length and are per-Elman used this neural network architecture, along with
ceived sequentially, or at least, the sequence of words orthe backpropagation learning algorithm [4], to learn the
letters can affect the meaning; it is not practical or ling-grammatical structure of a set of sentences randomly
uistically plausible to have an input pattern representinggenerated from a limited vocabulary and grammar. A major
each possible sentence or each possible word. Instead, forpoint of Elman's work was to study the hidden unit
example, a word might be represented as a sequence ofactivation patterns in a trained network, produced in
input patterns: cat could be represented as a sequence ofresponse to a sequence of inputs, and to use techniques
bit patterns corresponding to the letters c, a and t.such as cluster analysis to infer a structure for the data as

The state vector in Elman's networks provides therepresented in the hidden unit activation patterns. He was
potential  for  such  networks  to  store  informationable to extract a cluster hierarchy corresponding to the
aboutprevious inputs. An ordinary backpropagationsyntactic rules from which the data had been constructed:
network without some form of feedback loop would benouns, verbs, animate and inanimate nouns, transitive and
unable to perform tasks which require it to know what theintransitive verbs, etc. This information was only
previous input was: such networks could not recognize aimplicitly present in the data presented to the network: in
tune or any other temporal structure.other words, the network had learned the structure of the

linguistic data from the examples presented to it. If one state vector is useful for suitable tasks, is it
possible that two or more state vectors (as illustrated inA significant aspect of the training data set used by
Figures 2 & 3) will let a network perform even better atElman is that it included no negative examples. Backprop-
sequential tasks? This is the focus of the research reportedagation nets are frequently viewed as learning a classificat-
here. We compare networks with 1, 2, 4, and 7 stateion mapping: µ: X →  T where X={x1,x2,...}, and
vectors. The 4- and 7- state-vector networks are similar toT={t 1,t2,...}. In such cases, the input training data consist
2-state vector networks, but with more state vectors.of instances of each of the types tj to which an input xi

can be classified. If a network is partially-trained on  a  set
1 graphotactics studies which letters can be adjacent in the

words of a language: e.g., English words cannot begin with
the letter-sequence xp or contain the sequence fff.
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Of course, it would seem unsurprising if the addition of
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an extra state-vector to a basic recurrent network like the
one shown in Figure 1 should increase its performance.
After all, with the extra state-vector, we add weighted
connections back to the hidden layer, and thus increase the
learning potential of the system. In making comparisons,
we have to allow for such effects.

Section 2 describes the design of recurrent networks
with different numbers of state vectors, but otherwise
similar computational power, and outlines simulation
experiments done with such networks. Section 3 reports
and analyses the results of these simulations. The results
indicate that networks with more state vectors do indeed
perform better, although network learning behaviour
became erratic with the largest number of state vectors
tried (7). Section 4 gives some pointers to other
approaches to elaboration and analysis of the performance
of recurrent networks. Figure 2: Architecture of Elman-style recurrent

network with 2 state vectors
2 Experiments with Multi-State

w(s,h) evaluates to the same, or nearly the same,Recurrent Networks
number. It turns out that with (s=1, h=24), (s= 2 ,

The aim of the experiments was to compare recurrenth=20), (s=4, h=16), and (s=7, h=13), w (s,h )
networks having different numbers of state vectors whileevaluates to numbers in the relatively narrow range from
holding as many other factors as possible constant. The1923 to 1931 weights. Details are shown in Table 1.
most likely repository of computational information in a Figure 3 shows a recurrent net with 4 state vectors; a
neural network is the set of weights. Thus particularrecurrent network with 7 state vectors is analogous.
attention was paid to equalizing the numbers of weights These four architectures were simulated for 10 runs (2
between the examples of the different architectures beingruns on each of 5 different Apollo workstations) each
tested. It might be suggested that hidden units, rather thanusing random starting states. The task used was the
weights, are a critical resource in a network. Thisgraphotactic task of predicting the next letter in an English
hypothesis was not tested directly in the experiments, butword given an initial string of letters in the word. This
it did turn out that network performance was best fortask is related to the problem discussed by Wilson [5]. Its
networks with less hidden units and more state vectors. motivation comes from the problem of classifying strings
The number of weights and biases in a recurrent networkof letters which are not present in an on-line lexicon as
with n outputs, h hidden units and s state vectors is: either (a) likely typographical/spelling errors, or (b) valid
nweights = weights(inputs→hidden layer) words which happen to be absent from the lexicon - valid

+ weights(hidden layer→outputs) words are likely to be graphotactically acceptable, whereas
+ biases(hidden layer) + biases(outputs) many errors will not be. Note that this paper does not set
+ sxweights(one state vector→hidden layer) out to report success or failure in applying recurrent

= nh + h + hn + n + sh2
networks to this task, but rather to report the relative

In these experiments, n = 27 (26 letters in the alphabet + performance of different recurrent architectures on this task.
1 symbol for end of a word), so the formula for the

The networks were trained on the same set of 373 3-to-weights is w(s,h) = 54h + 27 + h + sh2. What we
7-letter English words which gave rise to 1880 input patt-need  is a number of pairs of values of h and s  for which
erns. For a word like bush, the net gets four patterns,
corresponding to b→u (if the input is b, then the output

Name State
Vectors

Hidden
Units

Weights
+ Biases

S1H24
S2H20

S4H16
S7H13

1
2

4
7

24
20

16
13

1923
1927

1931
1925

should be u), u→s, s→h, and h→end-of-word.

Table 1: Parameters of the Four Architectural Variants
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Output layer are less stable.The architectures could be compared in
various ways, including:

(a) the slope of the initial descent (measured as the epoch
number of the first local minimum);

(b) the TSS-value at the global minimum over the 1000
epochs of the simulations.

Measure (b) is of particular interest because it indicates
best possible performance of this class of network (over
the period of the simulation). Measure (a) is of interest
because it is an indicator of learning speed.
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Figure 3: Recurrent network with 4 state vectors; note
that the connections from the state vectors to the
hidden layer feedback hidden layer activations from the
preceding four processing cycles
In each case, TSS (Total Sum of Squares) starts at

around 1150, descends rapidly for the first 100-300 epochs
and then levels out to a high plateau. With the task
chosen, there is no hope of TSS approaching zero, as
input patterns (letters) early in a word can only be used to
predict the next pattern/letter in a probabilistic way. Figure 4: Typical TSS Plots for the 4 Architectures

For example, if the letter f is presented as the first
The mean epoch numbers of the first local minimum over

letter of a word, then the net could learn to predict that the
each of the four architectures were calculated (see Table 2)

next letter might be a, e, i , l , o, r , u, (or with low
and all pairs of means were found to be significantly

probability j , as in f jord), but no other. Absolute
different. That is, our subjective judgment, from Figures 4

correctness is not possible. Late in a word, certainty is
and 5, that the initial descents of the curves are at different

sometimes possible (particularly with the limited data set
rates, is borne out by statistical analysis of the results of

of 373 words). Thus, if these nets have seen the sequence
all 40 runs. There is overlap of performance, however,

s h i f t, then they could safely predict y, since shifty
particularly between the 2- and 4- state vector architectures.

happens to be the only word in the training data that

S1H24 S2H20 S4H16 S7H13

Mean 313.1 203.1 157.6 97.9
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begins with s h i f t. Given s h i f t y, they could safely
predict end-of-word.

So TSS descends to a plateau, and we would like the
altitude of the plateau to be as low as possible, as this
means, in a general way, that next-letter prediction is as
good as possible.

3 The Experimental Results and Their
Interpretation

Figure 4 shows typical plots of the TSS (Total Sum of
Squares of errors) against epoch number for one (typical)
run of each of the four architectures. In a general way, we

Table 2: Epoch Number of First Local Minimumcan see that for these particular runs, the architecture
performances can be ranked as S1H24 < S2H20 < S4H16The global minima (over 1000 epochs) are shown in Fig-
< S7H13. (However,  a more systematic comparison isure 6. The analysis of the global minima for the 40 runs is
desirable: see below). Figure 4 also illustrates the fact thatcomplicated by the fact that the minima sets for the four
for all four architectures, TSS descends from an initialarchitectures are heteroscedastic (do not have the same

variances), so that non-parametric analysis is necessary.high value and then "wanders" on a plateau. For the
For this reason, the global minima were ranked from 1 toS1H24 and S2H20 architectures, the oscillations of the
40 (40 means largest global minimum). Table 3 showsplateau are small from one epoch to the next. For S4H16,
ranked global minima tabulated by architecture.and particularly for S7H13, the oscillations on the plateau
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number of first local minimum was for the S7H13
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architecture. The best global minimum TSS for the 10
runs of this architecture was 88.35% of the best
performance for the S1H24 architecture. The TSS values
from epoch to epoch for instances of the S7H13 architect-
ure were erratic, but ultimately this is unimportant: the
absolute minimum TSS is what matters most in a
sequential prediction task. Thus these experiments show
that use of several state vectors, linked as exemplified in
Figures 2 and 3, can improve the performance of a
recurrent network with a given number of weights.
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Figure 5: First Local Minima with Different Architectures
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Table 3: Global Minima and Their Ranks
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