
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 1, pp. 391–413. DOI:10.46586/tches.v2022.i1.391-413

Guessing Bits: Improved Lattice Attacks on
(EC)DSA with Nonce Leakage

Chao Sun1, Thomas Espitau2, Mehdi Tibouchi1,2 and Masayuki Abe1,2

1 Kyoto University, Kyoto, Japan,
sun.chao.46s@st.kyoto-u.ac.jp,
2 NTT Corporation, Tokyo, Japan,

{thomas.espitau.ax,mehdi.tibouchi.br,masayuki.abe.cp}@hco.ntt.co.jp

Abstract. The lattice reduction attack on (EC)DSA (and other Schnorr-like signature
schemes) with partially known nonces, originally due to Howgrave-Graham and Smart,
has been at the core of many concrete cryptanalytic works, side-channel based or
otherwise, in the past 20 years. The attack itself has seen limited development,
however: improved analyses have been carried out, and the use of stronger lattice
reduction algorithms has pushed the range of practically vulnerable parameters
further, but the lattice construction based on the signatures and known nonce bits
remain the same.
In this paper, we propose a new idea to improve the attack based on the same data
in exchange for additional computation: carry out an exhaustive search on some bits
of the secret key. This turns the problem from a single bounded distance decoding
(BDD) instance in a certain lattice to multiple BDD instances in a fixed lattice of
larger volume but with the same bound (making the BDD problem substantially
easier). Furthermore, the fact that the lattice is fixed lets us use batch/preprocessing
variants of BDD solvers that are far more efficient than repeated lattice reductions
on non-preprocessed lattices of the same size. As a result, our analysis suggests that
our technique is competitive or outperforms the state of the art for parameter ranges
corresponding to the limit of what is achievable using lattice attacks so far (around
2-bit leakage on 160-bit groups, or 3-bit leakage on 256-bit groups).
We also show that variants of this idea can also be applied to bits of the nonces
(leading to a similar improvement) or to filtering signature data (leading to a data-time
trade-off for the lattice attack). Finally, we use our technique to obtain an improved
exploitation of the TPM–FAIL dataset similar to what was achieved in the Minerva
attack.
Keywords: ECDSA · Lattice Attacks · Hidden Number Problem · Success-Time
Trade-Off · Cryptanalysis

1 Introduction
A lattice is a discrete group of points in space, which can be defined as the set of all
integer linear combinations of a certain set of linearly independent vectors b1, . . . ,bd
known as a basis. A lattice has infinitely many bases, but so-called “reduced” bases,
that consist of short and close to orthogonal vectors, are much more interesting. Lattice
reduction, the mathematical problem of finding such bases, has a long history which
can be traced back to the 18th century, but gained particular prominence after Lenstra,
Lenstra and Lovász [LLL82] introduced a polynomial-time approximate algorithm for it
in 1982 that became known as LLL. Since the advent of LLL, lattice reduction proved to
be a powerful tool for cryptanalysis: early examples include attacks on knapsack-based

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-07-15 Accepted: 2021-09-15 Published: 2021-11-19

https://doi.org/10.46586/tches.v2022.i1.391-413
mailto:sun.chao.46s@st.kyoto-u.ac.jp
mailto:{thomas.espitau.ax,mehdi.tibouchi.br,masayuki.abe.cp}@hco.ntt.co.jp
http://creativecommons.org/licenses/by/4.0/

392 Guessing Bits: Improved Lattice Attacks on (EC)DSA with Nonce Leakage

cryptosystems [Sha82] and Coppersmith’s small root finding algorithm [Cop97] that broke
many variants of RSA in particular.

This paper focuses on another major cryptanalytic application of lattice reduction:
lattice attacks against (EC)DSA (and related signature schemes like Schnorr’s) when
bits of the nonce are known. DSA and ECDSA are well-established standards for digital
signature based on the discrete logarithm problem, and that involve the use, for each
generated signature, of some fresh random value called the nonce. It is well-known that
if the same nonce is used twice, the adversary can directly compute the private key due
to a linear relation between the nonce and the private signing key. Even worse, partial
information about the nonces of multiple signatures can lead to recovery of the full private
key. The original approach to do so, due to Bleichenbacher, actually relied on discrete
Fourier analysis techniques [Ble00, DHMP13, AFG+14b, TTA18, ANT+20], but lattice
reduction was also discovered to provide an attack technique, in connection to Boneh and
Venkatesan’s hidden number problem (HNP) [BV96].

HNP is a number theoretic problem that was originally introduced to establish bit
security results for the Diffie–Hellman key exchange. Boneh and Venkatesan showed that it
could be seen as a bounded distance decoding (BDD) instance in a lattice, which could be
solved with Babai’s nearest plane algorithm [Bab86] for suitable parameters. Subsequently,
Howgrave-Graham and Smart [HGS01], and later Shparlinski and Nguyen [NS02], observed
that the problem of attacking (EC)DSA if some top or bottom bits of the nonces are
known is an instance of HNP, and could be attacked using the same lattice techniques.
However, when nonce leakage is very small, the attack becomes much more difficult mainly
because the hidden lattice vector in BDD is not very close to the target vector. It took
significant development in lattice reduction algorithms to advance the state of the art. In
2013, Liu and Nguyen [LN13] were able to attack 160-bit DSA with 2-bit nonce leakage
using the BKZ 2.0 algorithm introduced just a few years earlier [CN11], relying on a
very high block size of 90, with pruned enumeration as the SVP oracle. In a very recent
work [AH21], Albrecht and Heninger utilize the state-of-the-art lattice reduction algorithm
G6K [ADH+19] together with the novel idea of predicate sieving to break new records.

1.1 Our Contributions
Lattice attacks on (EC)DSA are in general all-or-nothing, in the sense that the attack
reveals the entire secret key when it succeeds, and nothing at all otherwise. In contrast,
Bleichenbacher’s statistical attack, for example, only reveals some bits of the secret key in
a single execution; however, it has been observed in previous work that the knowledge of
those bits makes subsequent applications of the attack much more efficient.

How the knowledge of some bits of the secret key affects lattice attacks on (EC)DSA,
however, does not appear to have been considered in previous work1. Perhaps interestingly,
we observe that knowledge of some bits of the secret does in fact make the attack easier.
This results in a simple idea to improve those attacks, which forms the main contribution
of this paper: guess some bits of the secret key, and solve the resulting, easier lattice
problem for each possible guess (in other words: carry out an exhaustive search on those
bits).

An interesting feature of this approach is that this reduces the attack to solving many
BDD instances with varying target vectors in the same lattice, making it possible to
rely on various batch-CVP or CVP-with-preprocessing techniques to solve them. At the

1How the knowledge of certain types of side information on the secret affects the hardness of lattice
problems like LWE has been considered, e.g., in [DDGR20]. The context of HNP/nonce leakage, however,
is very different: for example, the key in our setting is an element of Zq , as opposed to a vector in LWE;
the nature of the hints (bits vs. linear relations) is different; the lattice is very structured (knapsack-like)
for HNP, as opposed to random q-ary for LWE; the BDD parameters are totally dissimilar; the analysis in
their case depends on Gaussian noise, etc. So the two questions appear to be mostly unrelated.

Chao Sun, Thomas Espitau, Mehdi Tibouchi and Masayuki Abe 393

Table 1: Tractable parameters for lattice attacks on (EC)DSA.
Nonce leakage

Modulus 4-bit 3-bit 2-bit 1-bit
160-bit Easy Easy [LN13], [AH21], Ours Hard
256-bit Easy [AH21], Ours Hard Hard
384-bit [AH21], Ours Hard Hard Hard

simplest level, even just carrying out an initial lattice reduction on the original BDD lattice,
and then solving all the BDD instances by reduction to SVP using Kannan’s embedding
technique turns out to be far more efficient than naively solving the SVP instances without
the initial common lattice reduction.

Additionally, this approach parallelizes very easily, and has the convenient property of
being very easy to simulate (in the sense that one can certainly make the “correct” guess
for self-generated instances), which makes its cost easy to predict even for parameters that
are impractical to fully run in a short time.

As additional contributions, we also show that the same idea can be applied to guessing
additional bits of some of the signature nonces (on top of those already known; this
results in a similar, but usually slightly worse, success-time trade-off than guessing bits of
the secret key), as well as filtering some of the signatures to construct lattices that are
easier to attack (resulting in a data-time trade-off reminiscent to what can be achieved
in Bleichenbacher’s attack). Furthermore, we carry out experiments on the TPM–FAIL
dataset [MSEH20] and apply our techniques to key recovery. While the original attack
requires about 40000 signatures, with the method of guessing bits, we are able to recover
the secret key with only around 800 signatures, which is comparable to the results achieved
in Minerva [JSSS20].

1.2 Related Work
The main question that we consider, namely how small of a nonce leakage do we need to
recover the signing key in (EC)DSA, has been considered in previous work both for lattice
attacks and for Bleichebacher’s attack. In the case of lattice attacks, the record-holding
works are due to Liu and Nguyen [LN13] and very recently Albrecht and Heninger [AH21].
In the case of Bleichenbacher’s attack, the state of the art is presented in [ANT+20]. We
briefly describe below how our results compares to theirs.

Comparison with [LN13] and [AH21]. Table 1 presents typical parameters (in terms of
group size and number of known nonce bits) for (EC)DSA, and indicates whether they
can be tackled easily with lattice attacks (“Easy”), are considered hard so far with lattices
(“Hard”), or have been solved in specific papers. In [LN13] and [AH21], strong lattice
reduction algorithms (BKZ 2.0 and G6K with predicate respectively) are used to attack
the “borderline” cases, namely 160-bit modulus with 2-bit nonce leakage, 256-bit modulus
with 3-bit nonce leakage and 384-bit modulus with 4-bit nonce leakage. Our approach all
makes those borderline cases tractable, but relies on very different techniques and arguably
present various advantages, particularly the following:

• whereas [LN13] and [AH21] are based on specific improvements and modifications
of the underlying lattice reduction algorithms, our approach works with any lattice
reduction algorithm. In our experiments, we use fplll’s implementation of BKZ–30,
but any algorithm would work. In particular, it is straightforward to combine our
idea with the techniques of those two papers if so desired;

394 Guessing Bits: Improved Lattice Attacks on (EC)DSA with Nonce Leakage

• tailoring the parameters of [LN13] and [AH21] to a specific problem instance or
to the specific computational resources of the attack can be quite challenging; in
contrast, due to its straightforward simulatability mentioned above, our approach
makes this easy, and makes it possible to quantify the cost of attacking a given
problem instance in very concrete terms in advance.

Comparison with Bleichenbacher’s attack. Although we come up with an approach to
improve lattice attacks with more signatures and in some sense bridge the gap between
lattice attacks and Bleichenbacher’s, it still requires too many signatures compared with
Bleichenbacher’s attack. For instance, for 160-bit (EC)DSA with 2-bit nonce leakage,
our method requires 227 signatures, while the Bleichenbacher attack requires about 212

signatures for 2-bit leakage case and 227 signatures for the one-bit leakage case [ANT+20].
Besides, with this approach, we still could not attack harder cases, such as 160-bit modulus
with 1-bit nonce leakage and 256-bit modulus with 2-bit nonce leakage, which are already
tractable using Bleichenbacher’s attack [AFG+14b, TTA18, ANT+20]. However, the fact
that there exists a way of improving lattice attacks with more signatures might give some
ideas for future work. It is still possible that better ways of utilizing more signatures
for lattice attacks exist, and we hope that lattice attacks on (EC)DSA could be further
improved.

2 Preliminaries
2.1 Lattices
A lattice2 is an additive subgroup of Zn for some n ≥ 0. For any family of linearly
independent vectors b1, . . . ,bm of Zn, the set:

L(b1, . . . ,bn) =
{ n∑
i=1

cibi : ci ∈ Z
}

is a lattice, and conversely, any lattice L ⊂ Zn can be put in that form for some vectors
b1, . . . ,bm. In that case, the family (b1, . . . ,bm) is called a basis of L. We can then
represent the lattice L by the m× n matrix B whose rows are formed by the vectors bi,
and write L = L(B).

A given lattice L can have infinitely many distinct bases, but they all have the same
cardinality m, called the rank of L. In this paper, we will only consider full-rank lattices,
whose rank m is equal to n, the dimension of the ambient space. For a full-rank lattice L
with basis matrix B, we define the volume of L as the quantity:

vol(L) = |det(B)|,

which does not depend on the choice of B.
The Euclidean norm of the shortest non-zero vector in L is called the first minimum of

L and denoted as λ1(L). More generally, for 1 ≤ i ≤ n, the i-th minimum λi(L) of L is
defined as the minimum radius r such that a ball centered at origin with radius r contains
i linearly independent vectors.

It is proved in [Ajt06] that a random n-dimensional lattice satisfies, with high proba-
bility,

∀1 ≤ i ≤ n, λi(L) ≈
√

n

2πevol(L)1/n.

2This is more properly the definition of an integral lattice, but integral lattices are the only ones we
consider in this paper.

Chao Sun, Thomas Espitau, Mehdi Tibouchi and Masayuki Abe 395

The approximation factor of a lattice basis b1, . . . ,bn is defined as ‖b1‖
λ1(L) (where ‖·‖ hence-

forth denotes the Euclidean norm), and the root Hermite factor is defined as (‖b1‖
vol(L)1/n)1/n.

There are many computational problems related to lattices. The most famous one is
the Shortest Vector Problem (SVP for short): given a lattice L, find the shortest vector
v ∈ L such that ‖v‖ = λ1(L). Another problem is the Closest Vector Problem (CVP for
short): given a lattice L and a target vector t, find the vector v ∈ L such that ‖v− t‖ is
minimal.

There exist efficient lattice algorithms for solving approximate versions of SVP and
CVP. For approximate SVP, lattice reduction algorithms such as LLL [LLL82] and BKZ
[SE94] output lattice basis b1, . . . ,bn such that the approximation factor and the root
Hermite factor are relatively small. As a result, the first vector b1 of the reduced basis
is a good approximation of the shortest non-zero vector. For approximate CVP, Babai’s
nearest plane algorithm [Bab86] and variants of it such as [Kle00, GPV08, EK20] can be
used to find a relatively close vector when applied after a lattice reduction algorithm.

2.2 Hidden Number Problem
The Hidden Number Problem can be described as follows: q, l are fixed integers known to
the public and α is a unknown integer in Zq. For many known random t ∈ Zq, we have
an oracle Oα(t) that on input t, outputs (t, u) such that |α · t − u|q < q/2l, where |z|q
represents the unique integer 0 ≤ x < q such that x ≡ z mod q. The goal is to recover the
hidden secret key α. Suppose that we have queried the oracle d times and have d pairs
(ti, ui) (i = 1, 2, . . . , d), we could transform this into a lattice problem. Construct a lattice
L spanned by the following matrix B:

B =

2lq 0 · · · 0 0
0 2lq · · · 0 0

...
...

0 0 · · · 2lq 0
2lt1 2lt2 · · · 2ltd 1

Since |αti − ui|q < q/2l, there exists some integer ci such that |αti − ui + ciq| < q/2l,
so |2lαti − 2lui + 2lciq| < q, and h = (2lαt1 + c12lq, 2lαt2 + c22lq, . . . , 2lαtd + cd2lq, α)
is a lattice vector (which we call the hidden lattice vector) in L, and set the target
vector v = (2lu1, 2lu2, . . . , 2lud, 0). Denote the difference vector h − v as e. Since
|2lαti − 2lui + 2lciq| < q (i = 1, 2, . . . , d), it is easy to know that the absolute value of
each coefficient of e is less than q. Therefore, the Euclidean norm of e is at most q

√
d+ 1.

When l is not too small, the target vector v is a close vector to the lattice L, so this
becomes a CVP instance (or more precisely, BDD instance). Generally, there are two
ways to solve the HNP, i.e., the CVP approaches and SVP approaches. In the original
paper by Boneh and Venkatesan, they use the LLL algorithm to reduce the lattice basis
and Babai’s nearest plane algorithm to find the hidden lattice vector. The LLL reduction
can be replaced with BKZ. We can also use CVP enumeration instead of nearest plane
algorithm. Besides, another technique, known as Kannan’s embedding method [Kan87],
transforms the CVP instance into a SVP instance by embedding the target vector into the
original lattice, thus constructing a larger lattice:

C =
(
B 0
v q

)
.

Then, we can solve SVP by lattice reduction. In this paper, we mainly use Kannan’s
embedding method to solve HNP.

In practice, there are two subtle technical points that we should take care of:

396 Guessing Bits: Improved Lattice Attacks on (EC)DSA with Nonce Leakage

• We might find q − α instead of the secret key α, since q − α is also a good candidate
(this can be easily checked). Therefore, we should check both. Note that the checking
time is almost negligible compared with the time in lattice reduction, because the
only operation is one scalar multiplication (for ECDSA) and checking consistency
with public key.

• Typically in practical attacks, the vector that we want is not the first vector of the
reduced basis, so we should check every row of the reduced basis. In other words,
the attacks are considered successful if we find the vector in any row of the reduced
basis (this is typical in the literature).

2.3 (EC)DSA Signature Scheme
Here we only discuss DSA and skip ECDSA, since for the construction of HNP instances,
this makes no difference. DSA is an El Gamal-like signature scheme, which is included in
Digital Signature Standard (DSS) issued by NIST. DSA can be described as follows.

Parameters. The parameters are p, q, g, where p and q are primes satisfying q|(p− 1),
g ∈ Z∗p has order q. Besides, we have a hash function h that maps any arbitrary-length
string into Zq. The signing key α is a uniformly random number in Z∗q and the public key
is y = gα mod p.

Signing Phase. To sign a message m, the nonce k is chosen uniformly at random from
Z∗q , and we compute r = (gk mod p) mod q, and s = k−1(h(m)+αr) mod q. The signature
is the pair (r, s).

Verification Phase. Given a signature pair (r, s) of the message m, if r = (gh(m)s−1
yrs
−1

mod p) mod q, the signature is regarded as valid, otherwise invalid.

2.4 Lattice Attacks on (EC)DSA
From the signing phase of (EC)DSA, we already know that s ≡ k−1(h(m) +αr) mod q, so

αr ≡ sk − h(m) (mod q).

Now in our case, we have l-bit leakage, which means that we know l LSBs of k. In the
case of timing attack, MSB is used, where the construction is very similar but slightly
subtle. The difference is that when k has some leading zeroes, k < q/2l might not be true
depending on the order q. For more discussion, see Section 4.3 of [JSSS20]. Denote the
value of l LSBs as k1, then we have k = 2lk2 + k1 for some integer 0 ≤ k2 ≤ q/2l, so:

αr ≡ s(2lk2 + k1)− h(m) (mod q)
α(rs−1 − k1)2−l ≡ k2 − 2−ls−1h(m) (mod q).

For simplicity of formulas, we set k1 = 0 (without loss of generality, because we know the
value of k1) and have:

t ≡ 2−ls−1r (mod q)
u ≡ −2−ls−1h(m) (mod q)
k2 ≡ αt− u (mod q).

Note that both t and u can be computed from all the public available information. Since
0 ≤ k2 < q/2l,

|αt− u|q < q/2l.

Chao Sun, Thomas Espitau, Mehdi Tibouchi and Masayuki Abe 397

In this way, we have constructed an HNP instance for (EC)DSA. Then we solve the HNP
either by nearest plane algorithm or Kannan’s embedding method.

2.5 Recentering Technique
In order to further improve the lattice attack on (EC)DSA, there is a well-known technique
in the community called recentering [NT12]. It works as follows: since

|αt− u|q < q/2l,

there exists some integer c such that

0 ≤ αt− u+ cq < q/2l,
−q/2l+1 ≤ αt− u− q/2l+1 + cq < q/2l+1.

Therefore,
|αt− u− q/2l+1|q < q/2l+1.

Now set
v = 2l+1u+ q.

Then we have
|αt− v/2l+1|q < q/2l+1.

Suppose that now we have d signatures (ri, si) (i = 1, . . . , d) and compute the pairs (ti, ui)
as previously defined. Then construct a lattice L spanned by the following matrix B:

B =

2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1 2l+1t2 · · · 2l+1td 1

and everything goes the same.

2.6 Projected Lattice
Typically, in standard lattice attacks, we almost always locate the secret key in the second
row (which we hope to be the first) of the reduced basis. In order to deal with this
issue, [AH21] makes a modification to the original lattice. Recall that the matrix that we
construct is:

B =

2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1 2l+1t2 · · · 2l+1td 1

With some simple linear combinations of the rows, we could know that (0, 0, . . . , 0, q)
belongs to this lattice. The expected Euclidean norm of the difference vector e is roughly√

d+1
3 q. With typical parameters such as d = 85, l = 2, ‖e‖ is much larger than q. This

means that the difference vector e will never be the shortest vector in practice. In fact, we
can project this lattice orthogonal to (0, . . . , 0, q) and construct a new lattice:

B =

2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1(td)−1 2l+1t2(td)−1 · · · 2l+1td−1(td)−1 2l+1

 .

398 Guessing Bits: Improved Lattice Attacks on (EC)DSA with Nonce Leakage

Table 2: Typical number of signatures for 160-bit modulus.
Nonce leakage l 4-bit 3-bit 2-bit 1-bit
Number of signatures d 50 80 100 200

In this new lattice, the hidden vector will be (|αtd|q · 2l+1t1(td)−1 + c12l+1q, . . . , |αtd|q ·
2l+1td−1(td)−1 + cd2l+1q, 2l+1|αtd|q). The important thing is that the vector (0, 0, . . . , 0, q)
does not belong to the new lattice, so we are able to locate the private key in the first row
of the reduced basis.

3 Analysis: Modeling Lattice Attacks on (EC)DSA
As previously mentioned, there are “borderline” cases that were considered difficult for
standard lattice attacks on (EC)DSA, e.g., 160-bit modulus with 2-bit nonce leakage,
256-bit modulus with 3-bit nonce leakage, 384-bit modulus with 4-bit nonce leakage. One
important question about this is: How difficult are those “borderline” cases? In this section,
we explain this question, quantify the difficulty and give intuitive ideas for our attacks in
later sections.

3.1 Difficulty When Nonce Leakage is Small
For each HNP inequality, there exists some integer ci such that

|α2l+1ti − vi + ci2l+1q| < q.

Let the target vector v = (v1, . . . , vd, 0) and the hidden lattice vector h = (α2l+1t1 +
c12l+1q, . . . , α2l+1td + cd2l+1q, α), thus the Euclidean norm of the difference vector e is
upper bounded by q

√
d+ 1. The volume of this lattice L is qd2(l+1)d, and according to

Gaussian Heuristic, the Euclidean norm of the shortest vector is roughly

λ1(L) ≈
√
d+ 1
2πe (vol)

1
d+1 ≈

√
d+ 1
2πe 2

(l+1)d
d+1 q

d
d+1 .

Therefore, the requirement is that the distance is much smaller than λ1(L):

q
√
d+ 1 <

√
d+ 1
2πe 2

(l+1)d
d+1 q

d
d+1 .

After solving this inequality, we get

d ≥ log2(q)
l − log2(

√
πe/2)

.

This can be used to estimate the number of signatures needed for the attack to succeed.
Table 2 is the typical number of signatures needed (just information-theoretically, the
attack might not be successful at all) to perform the lattice attack on 160-bit (EC)DSA.
Now, we give an intuitive explanation of why lattice attacks against (EC)DSA with small
nonce leakage are difficult.

When l = 3 and d = 80 (this case is regarded as “easy” for lattice attacks), the lattice
basis matrix B is:

B =

16q 0 · · · 0 0
0 16q · · · 0 0

...
...

0 0 · · · 16q 0
16t1 16t2 · · · 16td 1

 .

Chao Sun, Thomas Espitau, Mehdi Tibouchi and Masayuki Abe 399

The Euclidean norm of the first vector is 16q, and ‖e‖ is upper bounded by q
√
d+ 1 = 9q.

Therefore, any linear combination of the first d rows will have significantly larger Euclidean
norm than ‖e‖.

When l = 2 and d = 100 (this case is regarded as “hard” for standard lattice attacks,
but have been solved in specific papers), the Euclidean norm of the first vector is 8q, and
‖e‖ is upper bounded by q

√
d+ 1 ≈ 10q. To be a bit more precise, we can compute the

expected norm, which is roughly
√

100
3 q2 ≈ 6q.

When l = 1 and d = 200 (this case remains “hard” so far), similarly, the Euclidean
norm of the first vector is 4q, and ‖e‖ is upper-bounded by q

√
d+ 1 ≈ 14q. With similar

computation, we can know that the expected norm is around 8q. This means that many
linear combinations of the first d rows will have smaller Euclidean norm than the difference
vector e. In other words, there are exponentially many lattice vectors that are closer to
the target vector than the hidden vector, thus making decoding extremely difficult.

3.2 Modeling Lattice Attacks
Following the idea of [AFG14a], we consider lattice attacks on (EC)DSA as Unique-SVP
instances. In [GN08], it is concluded that given a lattice reduction algorithm which we
assume to be characterised by a root Hermite factor δ0 and a n-dimensional lattice L, the
algorithm will be successful in disclosing a shortest non-zero vector with “high probability”
when λ2

λ1
≥ τ · δ0

n (we call λ2
λ1

the gap), where τ is a constant depending both on the nature
of the lattices involved and lattice reduction algorithm being used. However, in [GN08],
they do not explain what “high probability” means. Therefore, in some subsequent work
[AFG14a], the success rate is fixed to some number (10 percent, for example) and the
dimension n is taken as the smallest possible in practice in order to achieve the same
success rate.

Here we slightly change the model such that τ is not a constant, but a function
τn = k

log(n) (k is some constant) on the dimension n. Besides, we choose BKZ–30 as the
lattice reduction algorithm and fix the success rate to be 20%. In the context of this
section, the modulus q is 160-bit.

Recall that the lattice we construct is:

B =

2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1 2l+1t2 · · · 2l+1td 2l+1

so the lattice dimension n = d+ 1, where d is the number of signatures being used. As
before, we denote the difference vector between the target vector and the hidden lattice
vector as e. Besides, we are using Kannan’s embedding method to perform lattice attacks
on a larger lattice:

C =
(
B 0
v q

)
.

Regarded as a Unique-SVP instance, the success rate of the attack crucially depends on
the ratio λ′2

λ′1
, where λ′1, λ′2 are the first and second minimum of the embedded lattice L(C).

According to the relation between L(B) (lattice spanned by the matrix B) and L(C)
(lattice spanned by the matrix C), λ′1 ≈ ‖e‖ and λ′2 ≈ λ1, where λ1 is the first minimum
of the original lattice L(B). Therefore, the success rate of lattice attacks increases as the
ratio λ1

‖e‖ increases.

400 Guessing Bits: Improved Lattice Attacks on (EC)DSA with Nonce Leakage

Table 3: Experimental result: gap needed to achieve ≥ 20% success rate.
Leakage l Signatures d Gap λ1/‖e‖ Success rate

3 54 0.93 20/100
4 40 0.91 25/100
5 32 0.88 20/100
6 27 0.87 21/100
7 23 0.86 25/100
8 20 0.85 23/100

As previously mentioned, we assume that in order to achieve 20% success rate, the
requirement is

gap = λ1

‖e‖ ≥
k

log(d+ 1) · δ0
d+1,

where δ0 is the root Hermite factor and k is some constant. Before proceeding, we have to
determine the root Hermite factor as well as the number of signatures d. First we do some
experiments to determine the root hermite factor δ0 for BKZ–30 on this type of lattice
(for HNP attack). After doing numerous experiments, we determine that δ0 ≈ 1.01 for
BKZ–30. In addition, we take d as the binary length of the modulus qlen divided by the
leakage l. Intuitively and information theoretically, one HNP inequality with l-bit leakage
contains l bits of information, so in order to recover the secret key α that has qlen bits, at
least qlen

l inequalities are necessary.
Table 3 shows the experimental results of the gap (λ1

‖e‖) that is necessary to achieve
20% success rate for 160-bit (EC)DSA. Now we do a linear regression to determine the
constant k. After carrying out the regression depicted in Figure 1, we find that k ≈ 3.11.

Now we estimate the computation cost for the “borderline” case 160-bit (EC)DSA with
2-bit nonce leakage. The dimension d = 160

2 = 80, and the requirement is

gap = λ1

‖e‖ ≥
k

log(d+ 1) · δ0
d+1 = 3.11

log(81) · 1.0181 ≈ 1.098.

According to Gaussian Heuristic, we have

λ1(L) ≈
√
d+ 1
2πe vol(L)1/(d+1) =

√
81

2πevol(L)1/81.

0.16 0.18 0.2 0.22 0.240.5

0.55

0.6

0.65

0.7

1
log(d+1)

τ d

Figure 1: Linear regression to estimate the constant k.

Chao Sun, Thomas Espitau, Mehdi Tibouchi and Masayuki Abe 401

The expected length of e is roughly
√

81
3 q, so we have√

81
2πevol(L)1/81√

81
3 q

≥ 1.098,

which is equivalent to

vol(L) ≥ 2.6181 · q81,

but the real volume of the lattice is 881 · q80, so the ratio between them is

2.6181 · q81

881 · q80 ≈ q

2130 ≈ 230.

This means that if we could increase the volume of the lattice by 230 times and keep ‖e‖
unchanged, then we have 20% success rate for 160-bit modulus with 2-bit nonce leakage.
The number 230 somewhat shows the magnitude of computation cost for 2-bit nonce
leakage case.

3.3 One Intuitive Idea to Improve the Attacks

The direct idea is to increase the gap λ1(L)
‖e‖ . Since λ1(L) ≈

√
d+1
2πe vol(L)1/(d+1), we could

increase the volume of the lattice while keeping ‖e‖ almost unchanged. Our attack is
directly based on this idea. In later sections, we will show that by brute-forcing some bits
of the secret key (or the nonces), we could modify the original lattice and increase the
volume of the lattice, while ‖e‖ is almost unchanged. Thus, according to the property of
Unique-SVP, we will have significantly better success rate.

4 Guessing Bits of Secret Key
In our context, we are considering those “borderline” cases, so in this section, the modulus
q has 160 bits and the nonce leakage l = 2 (for other moduli, it is similar). In standard
lattice attacks, either we find the secret key or get nothing. Even if we set the secret key
having only 10 bits, it still does not make lattice attacks any easier (of course, if it has only
10 bits, then we could brute-force the secret key, but it is irrelevant here, since we only
care about lattice attacks). Therefore, it is somewhat believed that partial information of
the secret key do not help the attack. Perhaps surprisingly, we find that the length of the
secret key is closely related to the difficulty of the attack. Take 160-bit (EC)DSA with
2-bit leakage for instance, if we assume that the secret key has less than 60 bits, we can
modify the original lattice and make the attack very easy.

Recall that the HNP inequality is |αti − ui|q < q/2l (i = 1, . . . , d) and the lattice we
construct is:

B =

2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1 2l+1t2 · · · 2l+1td 1

 .

The target vector is (2l+1u1 +q, 2l+1u2 +q, . . . , 2l+1ud+q, 0), and the hidden lattice vector
is (α2l+1t1 + c12l+1q, α2l+1t2 + c22l+1q, . . . , α2l+1td + cd2l+1q, α). Again we denote the
difference vector between them as e and we already know that each coefficient of e is

402 Guessing Bits: Improved Lattice Attacks on (EC)DSA with Nonce Leakage

less than q, so ‖e‖ < q
√
d+ 1. As we have discussed in the previous section, in order to

improve the success rate of lattice attacks, one direct idea is to increase the volume of the
lattice while keeping ‖e‖ almost unchanged. For instance, we could modify the lattice as

B =

2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1 2l+1t2 · · · 2l+1td 2100

 .

In this way, we increase the volume of the lattice by 2100 times, but the problem is that
the hidden lattice vector will not be close to the target vector anymore, because the hidden
lattice vector is (α2l+1t1 + c12l+1q, α2l+1t2 + c22l+1q, . . . , α2l+1td + cd2l+1q, 2100α), and
the last coefficient of e is very large (2100α), thus making the modification meaningless.

However, if we assume that the secret key has less than 60 bits, then 2100α is still
upper-bounded by 2160 ≈ q, so this means ‖e‖ keeps almost unchanged, and we have
increased the volume of the lattice by 2100 times, thus making the success probability
significantly better. We carry out some simulation experiments and find that if the secret
key only has 60 bits for 160-bit (EC)DSA with 2-bit nonce leakage, after modifying the
lattice as the above matrix B, we can recover the secret key in just one BKZ–20 operation
with 100% success rate, so this becomes almost trivial.

This observation leads to the following attack. First write the secret key in the following
format

α = α1 · 2c + α2 (0 ≤ α2 < 2c),

where c is any arbitrary predetermined integer between 1 and 160. Then α1 is the (160− c)
most significant bits of α and α2 is the remaining c bits of α. Suppose that we have
constructed d HNP inequalities with leakage l

|α · ti − ui|q < q/2l (i = 1, 2, . . . , d).

Then substitute α with α1 · 2c + α2 and we have

|α1 · 2c · ti + α2 · ti − ui|q < q/2l (i = 1, 2, . . . , d).

Then set

t′i = 2c · ti,
u′i = −α2 · ti + ui,

so we have new HNP inequalities for t′i and u′i:

|α1 · t′i − u′i|q < q/2l (i = 1, 2, . . . , d).

Then construct the lattice as

B =

2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t′1 2l+1t′2 · · · 2l+1t′d 2c

The hidden vector is (α12l+1t′1 + c12l+1q, α12l+1t′2 + c22l+1q, . . . , α12l+1t′d + cd2l+1q, α12c)
and the target vector is (2l+1u′1 + q, 2l+1u′2 + q, . . . , 2l+1u′d + q, 0). Now we have increased

Chao Sun, Thomas Espitau, Mehdi Tibouchi and Masayuki Abe 403

the volume of the lattice by 2c times while keeping ‖e‖ almost unchanged, since α12c is
upper bounded by q. Of course we do not know the value of α2, but we can enumerate α2
from 0 to 2c, so this is a trade-off: we increase the volume of the lattice by 2c times (thus
making the attack easier) at the cost of 2c enumerations. We formalize the attack as the
following steps:

• Step 1: Determine the integer constant c (it depends on how much computation cost
we want to pay).

• Step 2: Collect d signatures and construct ti, ui as previously defined (i = 1, 2, . . . , d).

• Step 3: Enumerate α2 from 0 to 2c:

– Construct the corresponding HNP instance for α1.

– Solve the new HNP instance by Kannan’s embedding method.

With this method, we are able to attack those “borderline” cases: 160-bit (EC)DSA with
2-bit nonce leakage, 256-bit (EC)DSA with 3-bit nonce leakage, 384-bit (EC)DSA with
4-bit nonce leakage. For more detail, see the section of experimental results.

One typical question for this attack would be: What is the difference between our
approach and directly applying BKZ with larger block size? We make a comparison:

• In some sense, our approach has similar effect as directly applying BKZ with larger
block size. While BKZ with larger block size outputs lattice basis with smaller root
Hermite factor (thus better chance of finding the vector e), our approach aims to
increase the gap for Unique-SVP and have better success rate due to the property of
Unique-SVP.

• Our approach is easy to simulate and control. In simulation experiments, we could
assume that we have guessed the correct bits, thus avoding the enumeration, which
is difficult to carry out in a short time.

• Our approach can be easily parallelized, because each enumeration of bits is inde-
pendent. While we do not deny the fact that BKZ with larger block size could also
be parallelized, it requires another implementation of the SVP oracle (changing the
internal code of fplll library [dt20]), which needs a lot of work.

5 Guessing Bits of Nonces
Another similar approach could be made to increase the volume of the lattice. Again in our
context, the modulus q has 160 bits, the leakage l = 2. For other moduli, it is essentially
the same, so we will not discuss it again.

Suppose that now we have d 160-bit (EC)DSA signatures (ri, si) (i = 1, . . . , d) with
2-bit nonce leakage and computed ti = |r · 2−2s−1|q and ui = | − h(m) · 2−2s−1|q as in
previous sections, so the nonce ki = 22bi where bi is some integer. We can guess the third
least significant bit of the nonce, thus constructing a HNP inequality with 3-bit leakage
with probability 1

2 . If the third bit is zero, then

ki = 23b′i,

and we set:
t′i = |r · 2−3s−1|q and u′i = | − h(m) · 2−3s−1|q.

404 Guessing Bits: Improved Lattice Attacks on (EC)DSA with Nonce Leakage

If the third bit is 1, we have:

ki = 23b′i + 22

αrs−1 ≡ 23b′i + 22 − h(m)s−1 (mod q)
αrs−12−3 ≡ b′i + 2−1 − h(m)s−12−3 (mod q),

and we then set:

t′i = |r · 2−3s−1|q and u′i = |2−1 − h(m) · 2−3s−1|q.

Note that here 2−1 means the inverse of 2 mod q, not the fractional number 1
2 . Although

we do not know whether the third least significant bit is 0 or 1, by trying these two new
settings of t′i and u′i, we are essentially guessing the third bit and construct t′i and u′i with
3-bit leakage, of which the success probability is 1

2 . Recall that typically, for 2-bit leakage,
we need about 90 signatures to perform the attack. Thus the lattice basis is the following
matrix B.

B =

8q 0 · · · 0 0
0 8q · · · 0 0

...
...

0 0 · · · 8q 0
8t1 8t2 · · · 8t90 1

 , C =

16q 0 · · · 0 0
0 16q · · · 0 0

...
...

0 0 · · · 16q 0
16t′1 16t′2 · · · 16t′90 1

 .

By guessing one more bit for all the signatures, we can construct the above matrix C with
all the inequalities having 3-bit leakage. Of course, with this new matrix, we could attack
160-bit (EC)DSA easily, since we know that for 3-bit leakage, standard lattice attacks work
well. However, we are paying a price of 290 for guessing one more bit for all the signatures,
which is unacceptable. In order to avoid the huge computation, instead of guessing one
more bit for all the signatures, we could guess one more bit for part of the signatures, thus
constructing a hybrid lattice. For instance, we can guess one more bit for 20 out of the 90
signatures and keep the other 70 signatures unchanged as follows:

D =

16q · · · 0 0 · · · 0 0
0 · · · 0 0 · · · 0 0

... 16q 0
...

...
0 · · · 0 8q · · · 0 0

0 · · · 0
... · · ·

...
...

16t′1 · · · 16t′20 8t21 · · · 8t90 1

Now we have increased the volume of the lattice by 220 times and perform the lattice

attacks on the new matrix at the cost of 220 operations for guessing bits.
This approach can be summarised as the following steps:

• Step 1: Determine integer constant k and collect d signatures (ri, si) (i = 1, · · · , d),
and construct ti and ui with the original 2-bit leakage.

• Step 2: For k of them, guess and enumerate the third least significant bit of nonces
and construct t′i and u′i with 3-bit leakage. For all the other signatures, keep ti and
ui unchanged.

• Step 3: Construct the hybrid lattice and use Kannan’s embedding method to find
the secret key (for lattice reduction, we use BKZ–30). If failed, go back to step 2.

Chao Sun, Thomas Espitau, Mehdi Tibouchi and Masayuki Abe 405

Under worst circumstances, we have to perform 2k times step 2 and 3, since there are 2k
possibilities of the third bits of the nonces.

With this method, we are able to attack those “borderline” cases: 160-bit (EC)DSA
with 2-bit nonce leakage, 256-bit (EC)DSA with 3-bit nonce leakage, 384-bit (EC)DSA with
4-bit nonce leakage. See the section of experimental results. Here we make a comparison
with the approach in Section 4. Generally, the approach in Section 4 performs better than
the approach in this section. The lattice attack on HNP essentially amounts to decoding
a lattice point in a hypercube. When we guess bits of some of the signature nonces, we
reduce the length of certain sides of this hypercube. On the contrary, when we guess bits
of the secret key, we uniformly shrink the hypercube. For the same exhaustive search cost,
the two decoding regions have the same volume, but the average (squared) error length is
smaller in the second case.

6 Utilizing More Data to Improve Lattice Attacks
In 2000, Bleichenbacher presented a purely statistical attack technique against biased
nonces at the IEEE P1363 meeting [Ble00]. The main idea of Bleichenbacher’s attack is to
define a bias function and search for a candidate value that is near the secret key, thus
finding many MSBs of the secret key. An advantage of Bleichenbacher attack is that it can
deal with small biases in principle at the cost of using many signatures as input. There is
a question in the community (mentioned by cryptanalysis experts on different occasions,
e.g., ECC-17 by Tibouchi [Tib17], Lattice Camp-20 by Heninger [Hen20]): Is it possible to
improve lattice attacks with many more signatures? We give a solution to this question
and again we are in the context of 160-bit modulus with 2-bit nonce leakage.

6.1 From Bleichenbacher to Lattice
Motivated by Bleichenbacher attack, similar ideas could be applied to lattice attacks.
Suppose that we have d HNP inequalities with l-bit leakage

|α · ti − ui|q < q/2l (i = 1, 2, . . . , d),

and write the secret key α as

α = α1 · 2c + α2 (0 ≤ α2 < 2c).

Where α1 is the (160− c) MSBs of α and α2 is the remaining LSBs. If ti (i = 1, 2, . . . , d)
is small enough, α2 · ti (i = 1, 2, . . . , d) will be a very small perturbation compared with
q/2l. This means that with high probability, α1 · 2c will satisfy all the d inequalities:

|α1 · 2c · ti − ui|q < q/2l (i = 1, 2, . . . , d).

Then construct the lattice as:

B =

2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2c · 2l+1t1 2c · 2l+1t2 · · · 2c · 2l+1td 2c

In this lattice, (α12c ·2l+1t1+c12l+1q, α12c ·2l+1t2+c22l+1q, . . . , α12c ·2l+1td+cd2l+1q, α12c)
will be the hidden lattice vector. The advantage that we get is that the volume of the
lattice is increased by 2c times, while ‖e‖ almost keeps unchanged, thus making the attack
much easier. Note that now we do not do enumeration of bits as in previous sections.

This attack can be summarised as the following steps:

406 Guessing Bits: Improved Lattice Attacks on (EC)DSA with Nonce Leakage

• Step 1: Collect signatures (r, s) and set:

t = 2−ls−1r mod q
u = −2−ls−1h(m) mod q

If t is small enough (smaller than some predetermined bound), then keep the (t, u)
pairs, otherwise throw it away.

• Step 2: Keep doing step 1 until we get d pairs (ti, ui) (i = 1, . . . , d).

• Step 3: Construct the above lattice and use Kannan’s embedding method to do
lattice attacks.

• Step 4: Find α1 which is the (160− c) MSBs of α.

• Step 5: Find the remaining bits of α (for example, we can construct a HNP instance
for the remaining bits).

As we previously discussed, once we have recovered many MSBs of α, recovering the
remaining bits becomes pretty easy.

6.2 A Concrete Example
In order to make it clear, we show a concrete example here. For 160-bit (EC)DSA with
2-bit nonce leakage, we collect t which is less than 2140 and write the secret key α as:

α = α1 · 210 + α2 (0 ≤ α2 < 210)

and we have:

|α · ti − ui|q < q/2l (i = 1, 2, . . . , d),
|α1 · 210 · ti + α2 · ti − ui|q < q/2l (i = 1, 2, . . . , d).

Since α2 is less than 210, α2 · t is upperbounded by 2150, q/2l has about 158 bits, so
as long as the value |α · ti − ui|q does not lie on the edge of the interval (0, q/2l) (which
happens with small probability), we could just throw the term α2 · ti away and have:

|α1 · 210 · ti − ui|q < q/2l (i = 1, 2, . . . , d).

In order to collect 90 signatures where t < 2140, we have to sample about 90 · 220 ≈ 227

signatures. The advantage is that we increase the volume of the lattice almost for free
(considering the fact that sampling a signature is much more efficient than doing one BKZ–
30 operation). Therefore, at the cost of using 227 signatures, we are able to attack 160-bit
(EC)DSA with 2-bit nonce leakage in just one BKZ–30 operation, which is significantly
faster than previous results. For more detail, see the section of experimental results.

7 Batch SVP and Kannan Embedding Factor
7.1 Batch SVP
In section 4 and section 5, we have to do 2c (typically we set c = 15, 20) BKZ–30 operations
on the following matrices:

C =

2l+1q 0 · · · 0 0 0
0 2l+1q · · · 0 0 0

...
...

0 0 · · · 2l+1q 0 0
2l+1t1 2l+1t2 · · · 2l+1td 1 0
v1 v2 · · · vd 0 q

.

Chao Sun, Thomas Espitau, Mehdi Tibouchi and Masayuki Abe 407

Table 4: Kannan embedding factor test.
Modulus Leakage Signatures Kannan embedding factor Success rate
160-bit 3 80 q 93/100
160-bit 3 80 (q − 1)/2 97/100
160-bit 3 80 q2 5/100
160-bit 3 80 1 0/100

Write C as
C =

(
B 0
v q

)
.

Each time we perform BKZ operations, only the last row of matrix C is changed and
B is fixed. One BKZ–30 operation on a 90-dimensional lattice typically takes about 3
minutes with fplll [dt20] library on Sagemath [The20]. If c = 215, the time complexity
will be 215 · 3 minutes without using multiple cores. Although this is practical time, we
could further improve the time complexity. For simplicity, we use LLL as an example here
(for BKZ it is similar). In LLL algorithm [LLL82], there is an index k starting from 1,
which represents the row currently being reduced. Besides, there is an exchange condition,
and if it is satisfied, two adjacent rows will be exchanged. After exchanging rows and
recomputing the Gram–Schmidt norm, size reduction will be performed.

If we consider the process of LLL reduction on the matrix C, essentially it will first
reduce the submatrix B, so every time the reduction on B is repeated, which is not
necessary. We come up with a simple solution:

• Step 1: BKZ-reduce the submatrix B (preprocessing).

• Step 2: Do Kannan embedding and construct the matrix C.

• Step 3: Do BKZ on the matrix C again.

This actually means that we preprocess the submatrix B. In this way, we save a lot
of computation. With this preprocessing, one BKZ–30 operation typically takes several
seconds, while the original one takes about 3 minutes.

7.2 Kannan Embedding Factor
In our experiments, we observe that lattice attacks on (EC)DSA are very sensitive to the
Kannan embedding factor. To the best of our knowledge, there are only a few works that
discuss how to choose the factor. For example, in Galbraith’s book [Gal12], the embedding
factor is set to 1 by default, and in [WAT17], Kannan embedding factor for LWE lattices
(very different context) is discussed. Therefore, we give a simple analysis for HNP lattice
for completeness. As we can see from Table 4, if the factor is either too small or too large,
the success rate becomes very low.

Here we give an explanation why this happens. Denote the Kannan embedding factor
as γ. For simplicity, we analyze LLL reduction.

Case 1: Kannan embedding factor is too large. Recall that the embedded matrix C is

C =
(
B 0
v γ

)
.

The Gram–Schmidt norm of the last row is γ, and if γ is too large, after LLL reduction
on the submatrix B, the exchange condition will not be satisfied, then only one round of
size reduction will be performed (reduce the last row from the first (d + 1) rows) and the

408 Guessing Bits: Improved Lattice Attacks on (EC)DSA with Nonce Leakage

Table 5: A comparison of the CVP and SVP approaches.
Modulus Leakage Nearest plane Kannan’s embedding method
160-bit 4-bit 37/100 100/100
160-bit 3-bit 0/100 91/100

algorithm terminates. By contrast, if γ is properly valued, the exchange condition will
be satisfied and the last row will be exchanged to some other row. Then Gram–Schmidt
norm will be recomputed and one round of size reduction will be performed. Typically,
the exchange happens many times, so many rounds of size reduction will be performed.
Therefore, if γ is too large, the lattice will get much less reduced.

Case 2: Kannan embedding factor is too small. Since the Gram–Schmidt norm of the
last row is γ, if the Kannan embedding factor is too small, the Gram–Schmidt norm of the
last row will be very small. After exchanging rows, size reduction will be performed. Since
the Gram–Schmidt norm is small, when performing size reduction on other rows, many
multiples of the target vector v will be added to other rows. However, since

B =

2l+1q 0 · · · 0 0

0 2l+1q · · · 0 0
...

...
0 0 · · · 2l+1q 0

2l+1t1 2l+1t2 · · · 2l+1td 1

 ,

what we want is α · (2l+1t1, 2l+1t2, . . . , 2l+1td, 1)− v, so we do not want to use the target
vector v to reduce other vectors. If γ is too small, we will find that all the vectors in the
reduced basis will have a very large coefficient of v, which is not our goal.

8 Gap Between the CVP and SVP Approaches
As mentioned in [JSSS20], we also observe a certain gap between the nearest plane algorithm
and Kannan’s embedding method. In this attack, Kannan’s embedding method always
outperforms nearest plane algorithm to some extent.

As we can see from Table 5, for 160-bit (EC)DSA with 4-bit nonce leakage, both
approaches work well. However, nearest plane algorithm never succeeds for 3-bit leakage,
while Kannan’s embedding method works quite well.

Reason for the Gap. Essentially, nearest plane algorithm can be regarded as one round
of size reduction in the embedded lattice. Recall the process in the previous section, if
the Kannan embedding factor is large enough, nearest plane algorithm will be the same
as Kannan embedding, because for the last row of the embedded lattice, the exchange
condition will not be satisfied and only one round of size reduction takes place, which is
essentially the same as nearest plane. However, if the Kannan embedding factor is properly
valued, many exchanges will happen. After one exchange, one round of size reduction will
take place, which means that Kannan’s embedding method will make the target vector
more reduced compared with nearest plane algorithm.

9 Experimental Results
In this section, we show the result of our practical experiments. All the experiments are
carried out on AMD Ryzen 3970x with Sagemath [The20] and fplll [dt20] library. For

Chao Sun, Thomas Espitau, Mehdi Tibouchi and Masayuki Abe 409

lattice reduction algorithms, we are using BKZ–30. The source code is available in [Sun21].

9.1 Guessing Bits of Secret Key
As we can see in Figure 2, as the number of guessed bits increases, the success rate increases.
Take 160-bit (EC)DSA with 2-bit nonce leakage for example, if we guess 15 bits for the
secret key, we succeed in recovering the secret key 12 times among 200 experiments. Since
we enumerate 15 bits of the secret key, the time complexity is upper bounded by 215

BKZ–30 operations (the expected number is 214). In this way, we are able to quantify the
complexity in terms of BKZ operations. Instead of directly using real-time, the advantage
is that it gives us a clear impression of the time complexity and this is independent of the
machine being used. Besides, it is easy to estimate the practical attack time. For instance,
with Ryzen 3970x and batch SVP technique described in section 7, one BKZ–30 operation
on a 90-dimensional lattice takes 40 seconds (on average) on a single core, so the expected
time is 214·40s

32 ≈ 10200s, which is several hours.

9.2 Guessing Bits of Nonces
Similarly, for 160-bit (EC)DSA with 2-bit nonce leakage, if guessing 1 more bit for 20 of
the 90 signatures, we succeed in recovering the secret key 14 times out of 200 experiments,
so the time complexity is 220 BKZ–30 operations. Actually, we could even estimate the
time complexity for 1-bit nonce leakage. What we could do is to guess 2 more bits for 20 of
the signatures and guess 1 more bit for the other 70 signatures, so the time complexity is
420 ·270 = 2110 BKZ–30 operations. Although this is not practical (thus not so meaningful),
it is an estimate of computation cost for 1-bit leakage.

9.3 Improving Lattice Attacks with More Data
Recall that in Section 6, we discussed that for one HNP inequality |αt− u|q < q/2l, if we
get small t, then we can construct a lattice that has larger volume. In our experiments,
summarized in Table 6, we find that for 160, 256, 384-bit modulus q, if t has less than 140,
226, 344 bits respectively, we can perform the attack. Take 160-bit modulus for example,
in order to get 90 inequalities where all the t ≤ 2140, we have to sample 220 · 90 ≈ 227

signatures. This may seem too many in practical setting, but the advantage is that we
could recover about 150 MSBs of the secret key in just one BKZ-30 operation.

0 10 20 30 400

20

40

60

80

100

Number of guessed bits

Su
cc
es
s
ra
te
[%

]

Guessing bits of secret key

160-bit modulus with 2-bit nonce leakage
256-bit modulus with 3-bit nonce leakage
384-bit modulus with 4-bit nonce leakage

0 10 20 30 400

20

40

60

80

100

Number of guessed bits

Su
cc
es
s
ra
te
[%

]

Guessing bits of nonces

160-bit modulus with 2-bit nonce leakage
256-bit modulus with 3-bit nonce leakage
384-bit modulus with 4-bit nonce leakage

Figure 2: Experimental results: guessing bits of the secret key vs. of the nonces.

410 Guessing Bits: Improved Lattice Attacks on (EC)DSA with Nonce Leakage

Table 6: Utilizing more data to improve lattice attacks.
Modulus Leakage Upper bound on t Signatures Time complexity Success rate
160-bit 2-bit 2140 227 1 BKZ-30 30/200
256-bit 3-bit 2226 237 1 BKZ-30 27/200
384-bit 4-bit 2344 247 1 BKZ-30 62/200

9.4 Experiments on the TPM–FAIL Dataset
We also carry out experiments on the TPM–FAIL [MSEH20] dataset (256-bit ECDSA).
The first row of the dataset contains the public key and the message being signed. Each of
the other rows contains (r, s) and t, where (r, s) is the signature and t is the signing time.
One typical way to perform the attack is:
• Collect N signatures.

• Choose d out of the N signatures, whose signing time is the fastest.

• For each of the d signatures, assign leakage l.

• Construct HNP inequalities and perform lattice attacks.
For 256-bit modulus, if setting l = 3, typically d ≈ 90. In [MSEH20], the authors use
about 40000 signatures and in Minerva [JSSS20], a new technique of geometric assignment
of leakage is proposed: assign half of the d signatures with leakage l = 3, one fourth of
them having leakage l = 4, and so on. In our experiments, we combine these techniques
with our method of guessing bits of the secret key and come up with the following attack:
• Randomly collect 800 signatures.

• Choose 90 out of the 800 signatures, whose signing time is the fastest.

• Geometrically assign the leakage l.

• Guess and enumerate some LSBs of the secret key and perform lattice attacks
described in section 4.

We do 100 experiments and succeed 3 times. In this way, with only 800 signatures available,
we are able to recover the secret key for TPM–FAIL dataset. For the most part of this paper,
we are in a setting where there is no noise in the sense that leakage is assigned correctly
for each signature. However, this is not the case in general in practice. If the number of
signatures is enough, it is easy to assign the leakage correctly with high probability, but
if N = 800, it is unavoidable that some of the assignment are wrong, which is somewhat
annoying and makes the success rate very low. There are many robust techniques in
Minerva [JSSS20] for dealing with noise, which are very important contribution of that
paper. For example, the random subset technique in Minerva could be utilized: instead
of choosing d out of N signatures, we could choose 1.5d signatures and collect a random
subset having d elements. Besides, the CVP + flip technique can be applied: change u
to correct errors (this part can even be generalized with our nonce guessing technique by
flipping more bits). Considering that our work is largely orthogonal and complementary to
Minerva and we only use BKZ–30 (which could be replaced with stronger lattice reduction
algorithms, e.g., [CN11, AWHT16, ADH+19, EK20, KEF21]), it is fair to say that our
approaches help improving the attack.

Acknowledgement
We are thankful to Masaya Yasuda for helpful discussions. We also would like to thank
the anonymous reviewers for their useful suggestions and comments.

Chao Sun, Thomas Espitau, Mehdi Tibouchi and Masayuki Abe 411

References
[ADH+19] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Ea-

monn W. Postlethwaite, and Marc Stevens. The general sieve kernel and
new records in lattice reduction. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 717–746. Springer,
Heidelberg, May 2019.

[AFG14a] Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy
of solving LWE by reduction to unique-SVP. In Hyang-Sook Lee and Dong-
Guk Han, editors, ICISC 13, volume 8565 of LNCS, pages 293–310. Springer,
Heidelberg, November 2014.

[AFG+14b] Diego F. Aranha, Pierre-Alain Fouque, Benoît Gérard, Jean-Gabriel Kam-
merer, Mehdi Tibouchi, and Jean-Christophe Zapalowicz. GLV/GLS decom-
position, power analysis, and attacks on ECDSA signatures with single-bit
nonce bias. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 262–281. Springer, Heidelberg, December
2014.

[AH21] Martin R. Albrecht and Nadia Heninger. On bounded distance decoding with
predicate: Breaking the “lattice barrier” for the hidden number problem. In
Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12696 of LNCS, pages 528–558. Springer, Heidelberg, October
2021.

[Ajt06] Miklós Ajtai. Generating random lattices according to the invariant distribu-
tion. Draft of March, 2006, 2006.

[ANT+20] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi,
and Yuval Yarom. LadderLeak: Breaking ECDSA with less than one bit of
nonce leakage. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 2020, pages 225–242. ACM Press, November 2020.

[AWHT16] Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi. Im-
proved progressive BKZ algorithms and their precise cost estimation by
sharp simulator. In Marc Fischlin and Jean-Sébastien Coron, editors, EU-
ROCRYPT 2016, Part I, volume 9665 of LNCS, pages 789–819. Springer,
Heidelberg, May 2016.

[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice point
problem. Combinatorica, 6(1):1–13, 1986.

[Ble00] Daniel Bleichenbacher. On the generation of one-time keys in DL signature
schemes. In Presentation at IEEE P1363 working group meeting, page 81,
2000.

[BV96] Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the most
significant bits of secret keys in Diffie-Hellman and related schemes. In Neal
Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 129–142. Springer,
Heidelberg, August 1996.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security
estimates. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 1–20. Springer, Heidelberg, December 2011.

412 Guessing Bits: Improved Lattice Attacks on (EC)DSA with Nonce Leakage

[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low exponent
RSA vulnerabilities. Journal of Cryptology, 10(4):233–260, September 1997.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE
with side information: Attacks and concrete security estimation. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume
12171 of LNCS, pages 329–358. Springer, Heidelberg, August 2020.

[DHMP13] Elke De Mulder, Michael Hutter, Mark E. Marson, and Peter Pearson. Using
Bleichenbacher’s solution to the hidden number problem to attack nonce leaks
in 384-bit ECDSA. In Guido Bertoni and Jean-Sébastien Coron, editors,
CHES 2013, volume 8086 of LNCS, pages 435–452. Springer, Heidelberg,
August 2013.

[dt20] The FPLLL development team. fplll, a lattice reduction library, Version: 5.4.0.
Available at https://github.com/fplll/fplll, 2020.

[EK20] Thomas Espitau and Paul Kirchner. The nearest-colattice algorithm. Cryp-
tology ePrint Archive, Report 2020/694, 2020. https://eprint.iacr.org/
2020/694.

[Gal12] Steven D. Galbraith. Mathematics of public key cryptography. Cambridge
University Press, 2012.

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 31–51.
Springer, Heidelberg, April 2008.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May
2008.

[Hen20] Nadia Heninger. Using lattices for cryptanalysis, 2020. https://simons.
berkeley.edu/talks/using-lattices-cryptanalysis.

[HGS01] Nick A Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital
signature schemes. Designs, Codes and Cryptography, 23(3):283–290, 2001.

[JSSS20] Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek Sys. Minerva: The
curse of ECDSA nonces. IACR TCHES, 2020(4):281–308, 2020. https:
//tches.iacr.org/index.php/TCHES/article/view/8684.

[Kan87] Ravi Kannan. Minkowski’s convex body theorem and integer programming.
Mathematics of operations research, 12(3):415–440, 1987.

[KEF21] Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque. Towards faster
polynomial-time lattice reduction. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part II, volume 12826 of LNCS, pages 760–790, Virtual Event,
August 2021. Springer, Heidelberg.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close. In
David B. Shmoys, editor, 11th SODA, pages 937–941. ACM-SIAM, January
2000.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász. Factoring poly-
nomials with rational coefficients. Mathematische Annalen, 261(4):515–534,
1982.

https://github.com/fplll/fplll
https://eprint.iacr.org/2020/694
https://eprint.iacr.org/2020/694
https://simons.berkeley.edu/talks/using-lattices-cryptanalysis
https://simons.berkeley.edu/talks/using-lattices-cryptanalysis
https://tches.iacr.org/index.php/TCHES/article/view/8684
https://tches.iacr.org/index.php/TCHES/article/view/8684

Chao Sun, Thomas Espitau, Mehdi Tibouchi and Masayuki Abe 413

[LN13] Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An update.
In Ed Dawson, editor, CT-RSA 2013, volume 7779 of LNCS, pages 293–309.
Springer, Heidelberg, February / March 2013.

[MSEH20] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger. TPM-
FAIL: TPM meets timing and lattice attacks. In Srdjan Capkun and Franziska
Roesner, editors, USENIX Security 2020, pages 2057–2073. USENIX Associa-
tion, August 2020.

[NS02] Phong Q. Nguyen and Igor Shparlinski. The insecurity of the digital signature
algorithm with partially known nonces. Journal of Cryptology, 15(3):151–176,
June 2002.

[NT12] Phong Q. Nguyen and Mehdi Tibouchi. Lattice-based fault attacks on sig-
natures. In Marc Joye and Michael Tunstall, editors, Fault Analysis in
Cryptography, pages 201–220. Springer, 2012.

[SE94] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Mathematical program-
ming, 66(1-3):181–199, 1994.

[Sha82] Adi Shamir. A polynomial time algorithm for breaking the basic Merkle–
Hellman cryptosystem. In SFCS 1982, pages 145–152. IEEE, 1982.

[Sun21] Chao Sun. Source code for the algorithms in this paper. https://github.
com/security-kouza/Lattice-Attacks-on-EC-DSA, 2021.

[The20] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 9.2), 2020. https://www.sagemath.org.

[Tib17] Mehdi Tibouchi. Attacks on Schnorr signatures with biased nonces, 2017.
https://ecc2017.cs.ru.nl/slides/ecc2017-tibouchi.pdf.

[TTA18] Akira Takahashi, Mehdi Tibouchi, and Masayuki Abe. New Bleichenbacher
records: Fault attacks on qDSA signatures. IACR TCHES, 2018(3):331–371,
2018. https://tches.iacr.org/index.php/TCHES/article/view/7278.

[WAT17] Yuntao Wang, Yoshinori Aono, and Tsuyoshi Takagi. An experimental study
of Kannan’s embedding technique for the search LWE problem. In Sihan Qing,
Chris Mitchell, Liqun Chen, and Dongmei Liu, editors, ICICS 17, volume
10631 of LNCS, pages 541–553. Springer, Heidelberg, December 2017.

https://github.com/security-kouza/Lattice-Attacks-on-EC-DSA
https://github.com/security-kouza/Lattice-Attacks-on-EC-DSA
https://ecc2017.cs.ru.nl/slides/ecc2017-tibouchi.pdf
https://tches.iacr.org/index.php/TCHES/article/view/7278

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Lattices
	Hidden Number Problem
	 (EC)DSA Signature Scheme
	Lattice Attacks on (EC)DSA
	Recentering Technique
	Projected Lattice

	Analysis: Modeling Lattice Attacks on (EC)DSA
	Difficulty When Nonce Leakage is Small
	Modeling Lattice Attacks
	One Intuitive Idea to Improve the Attacks

	Guessing Bits of Secret Key
	Guessing Bits of Nonces
	Utilizing More Data to Improve Lattice Attacks
	From Bleichenbacher to Lattice
	A Concrete Example

	Batch SVP and Kannan Embedding Factor
	Batch SVP
	Kannan Embedding Factor

	Gap Between the CVP and SVP Approaches
	Experimental Results
	Guessing Bits of Secret Key
	Guessing Bits of Nonces
	Improving Lattice Attacks with More Data
	Experiments on the TPM–FAIL Dataset

