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Abstract
Extrinsic signaling cues in the microenvironment of acute myelogenous leukemia (AML) contribute to

disease progression and therapy resistance. Yet, it remains unknown how the bone marrow niche in which
AML arises is subverted to support leukemic persistence at the expense of homeostatic function. Exosomes
are cell membrane–derived vesicles carrying protein and RNA cargoes that have emerged as mediators of
cell–cell communication. In this study, we examined the role of exosomes in developing the AML niche of the
bone marrow microenvironment, investigating their biogenesis with a focus on RNA trafficking. We found
that both primary AML and AML cell lines released exosome-sized vesicles that entered bystander cells.
These exosomes were enriched for several coding and noncoding RNAs relevant to AML pathogenesis.
Furthermore, their uptake by bone marrow stromal cells altered their secretion of growth factors. Proof-of-
concept studies provided additional evidence for the canonical functions of the transferred RNA. Taken
together, our findings revealed that AML exosome trafficking alters the proliferative, angiogenic, and
migratory responses of cocultured stromal and hematopoietic progenitor cell lines, helping explain how
the microenvironmental niche becomes reprogrammed during invasion of the bone marrow by AML. Cancer
Res; 73(2); 1–12. �2012 AACR.

Introduction
Although the majority of patients with acute myelogenous

leukemia (AML) achieve remission, nearly half will die from
disease relapse. The contribution of microenvironmental
cues to the survival, spread, and relapse of AML in the
marrow are increasingly recognized as crucial in the process
of leukemic evolution (1, 2). The bone marrow is structurally
and functionally specialized to sustain lifelong hemato-
poietic and immune function; its infiltration by leukemia
is associated with the acquisition of unique properties that
make the bone marrow a sanctuary for persistent disease
(3, 4). Even as differences emerge that distinguish the
leukemic microenvironment from the homeostatic hemato-
poietic stem cell (HSC) niche, the mechanisms whereby
malignant cells reprogram the niche remain to be clarified
(4–6). Instances of extrinsic resistance are illustrated in

the treatment of high-risk AML associated with internal
tandem duplication (ITD) mutations in FMS-like tyrosine
kinase 3 (FLT3), in which specific inhibitors eliminate cir-
culating blasts without eradicating leukemic cells in the
bone marrow (7). Conversely, FLT3-ITDpos AML cells are sen-
sitized to the tyrosine kinase inhibitor sorafenib by inhibition
of chemokine receptor-4 (CXCR4)-SDF-1a niche signaling
with bone marrow stromal cells (2). Although integrin-,
chemokine-, and cytokine-mediated adhesive and paracrine
interactions all contribute to drug resistance, none of these
fully address how marrow invasion by leukemia cells results
in niche remodeling (6).

Conventional intercellular signaling relies on direct cell–cell
contact or the action of secreted molecules, but more recent
studies indicate an additional, evolutionarily conserved mech-
anism whereby cells communicate via the exchange of extra-
cellular vesicles carrying protein and RNA cargo (8, 9). As a
unique consequence of cell–cell vesicle trafficking, the cyto-
plasmic delivery of mRNA, miRNA, or protein can circum-
vent transcriptional controls. Vesicle trafficking of receptors
between cells, for example, may transcend niche signaling that
is based on conventional restrictions of cell-specific ligand or
receptor expression and modulate growth factor signaling
cascades. Vesicles ranging in size from 30 to 100 nm (exo-
somes) to 100 to 1,000 nm (broadly termedmicrovesicles) have
been detected in the urine and plasma of patients with diverse
malignancies (10). However, detailed studies of vesicle biology
in AML have not been reported (11, 12).

The results presented here show the release of exosome-
sized vesicles byAMLcells and illustrate howvesicle trafficking
alters gene expression, protein secretion, and behavior of
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bystander cells. We show that vesicles contain diverse RNA
species, including mRNAs and miRNAs relevant to AML bio-
logy and with broad biomarker potential. In aggregate, our
work indicates that trafficking of AML exosomes elicits broad
functional changes in bystander cells.

Materials and Methods
Cell lines and cell culture

AML cell lines (HEL, HL-60, Molm-14, and U937) were
provided by Dr. Jeffrey (Oregon Health & Science University)
Tyner and cultured in RPMI (Invitrogen) with 10% vesicle-free
FBS. Vesicle-free FBS was produced by centrifugation of FBS
(Gemini Bio-Products) at 100,000 � g for 2.5 hours. Patient
samples (with >90% leukemic blasts) were obtained under
Oregon Health & Science University-Institutional Review
Board (OHSU-IRB; Portland, OR)–approved protocol from
treatment-na€�ve patients. Primary cells were cultured in
EGM-2 media (Lonza). OP9 cells, from Dr. William H. Fleming
(Oregon Health & Science University), were cultured in
a-minimum essential media (Invitrogen) with 20% FBS and
60 mmol/L 2-mercaptoethanol. Igf-1r knockout (R�) mouse
embryonic fibroblasts and R� cells expressing human insulin-
like growth factor (IGF)-IR cDNA (termed Rþ), provided by
Drs. Briony Forbes and Douglas Yee, respectively, were cultur-
ed in Dulbecco's Modified Eagle's Medium (Invitrogen) with
10% FBS (13). Cryopreserved human CD34þ-enriched bone
marrow cells (StemCell Technologies) were cultured in serum-
free expansion media with the StemSpan CC110 cytokine
cocktail for 5 to 7 days. All cultures contained 50 mg/mL
Pen/Strep (Invitrogen). Cell lines were obtained from reliable
sources without additional authentification beyond what is
shown in the content of the experiments described.

Vesicle preparation and staining
Vesicles were isolated from cell lines and primary

AML cells after 48 to 72 hours culture via centrifugation at
300 � g for 10 minutes. The supernatant was sequentially
centrifuged at 2,000 � g for 20 minutes, at 10,000 � g for
20 minutes, and at 100,000 � g for 2 hours. The resulting
pellet waswashedwith PBS and then centrifuged at 100,000� g
for 2 hours. For sucrose gradient density purification, the
pellet from the first 100,000 � g spin was resuspended in
200 mL PBS by shaking for 4 hours at 4�C. The suspension was
transferred to a sucrose step gradient (8%/15%/30%/45%/
60%) and centrifuged at 150,000 � g for 90 minutes. The
30%/45% interface was harvested, diluted 10-fold with PBS,
and the ultracentrifugation was repeated. The pellet was re-
suspended in 200 mL of PBS (methods adapted from ref. 8).
For PKH26 (Sigma) staining, exosomes were isolated with the
following changes: following the first 100,000 � g centrifuga-
tion, the pellet was resuspended in 1 mL PKH26 membrane
dye-diluent C (Sigma) by shaking for 30 minutes at 4�C, along
with a control aliquot containing diluent only.

Vesicle transfer assays
Transwell experiments were carried out in 6-well plates

using 0.4-mm pore size inserts (Corning). Target cells were

seeded at 2� 104 cells per well. A total of 1 to 2� 106 cells were
added into the transwell insert and cocultured for 48 hours.
Media collected from vesicle preparations after the 10,000 � g
spin was termed vesicle-rich media (VRM). Two milliliters
VRM were cocultured with 2 � 104 target cells per well in
6-well plate. Target cells were incubated with the vesicle
pellets resuspended in RPMI or PBS for 48 hours in 2 mL of
media, then washed twice. For real-time PCR (RT-PCR), RNA
was extracted using either the RNeasy (Qiagen) or miRNeasy
kit (Qiagen). Transwell cocultures with CD34þ cells were not
conducted because of culture media incompatibility and the
limited availability of cells.

Fluorescence microscopy
Cells were exposed to 25 mL of PKH26-stained, sucrose-

purified exosomes or PKH26-stained diluent C for 2 hours,
followed bywash and fixation in 4% paraformaldehyde (Sigma)
before treatment with Fluoromount G (Southern Biotech).
Fluorescence microscopy was conducted with an Olympus
IX71 microscope and DeltaVision SoftWoRx, using a �60
1.4NA oil lens. Z-stacks were acquired every 0.2 mm for the
complete depth of the cells. A reference bright-field image was
captured from the center of each Z-stack. Particle quantifica-
tion was conducted using ImarisCell (Bitplane, Inc.). For live-
cell imaging, cells were plated on poly-L-lysine (Sigma)–coated
chamber wells, treated with 5 mg/mL Hoechst 33342 and
2.5 mmol/L N-Rh-PE (Avanti Polar Lipids) for 1.5 hours fol-
lowed by wash and resuspension in RPMImedia with 9% horse
serum (Invitrogen) and 9% FBS (Gemini Bioproducts). Images
were acquired every 2.5 minutes for 2 hours, at 37�C and
5% CO2. For colocalization studies, cells were treated with
5 mmol/L N-Rh-PE for 1 hour, fixed for 15 minutes, permea-
bilized with NET (NaCl þ EDTA þ Tris) buffer, cytospun and
blocked with 2% FBS for 30 minutes at 4�C. Fixation precluded
N-Rh-PE polarization seen during live cell imaging. Permea-
bilized cells were stained with anti-human CD63 hybridoma
supernatant and anti-human Tsg101 antibodies (Abcam).
AlexaFluor488 anti-mouse immunoglobulin G (IgG) and Alex-
aFluor647 anti-rabbit IgG (Invitrogen) were used as the sec-
ondary antibodies. Cells were stained with 40,6-diamidino-2-
phenylindole (DAPI; Invitrogen).

Transmission electron microscopy
Exosome preparations (10 mL) were deposited onto UV-ac-

tivated carbon formvar 400-mesh copper grids (Ted Pella
01822-F) for 3 minutes, rinsed and stained in filtered 1.33%
uranyl acetate, and then air-dried. Samples were imaged at
100 kV on a Philips CM120 transmission electron micro-
scope. The size distribution of exosomes was determined
by averaging the maximum and minimum diameters of at
least 100 vesicles imaged at �37,000 magnification.

Dynamic light scatter
Light-scattering experiments were conducted in a DynaPro

molecular sizing instrument (Protein Solutions). A sample in
PBS buffer was loaded into a quartz cuvette and analyzed
with a 488 nm laser. Fifty spectra were collected at 25�C to
estimate diffusion coefficient and relative polydispersity. Data
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were analyzed with Dynamics software V.5.25.44 (Protein
Solutions) and vesicle size was measured as the mean hydro-
dynamic radius.

RNA analysis and qRT-PCR
RNA was extracted using miRNeasy (Qiagen) or RNeasy

(Qiagen) kits and quantified using a Nanodrop 2000c
(Thermo). RNA integrity was measured using the Agilent
Bioanalyzer Pico Chip or small RNA Chip (Agilent). For RT-
PCR, RNAs were converted into cDNA using the SuperScript III
First Strand Synthesis Kit (Invitrogen) with oligo-dT priming
followed by PCR. See Supplementary Table S1 for primer
sequences. For quantitative PCR (qPCR), human IGF-IR pri-
mers/probe (forward primer: AACTTTCTCCCTCATCGGCCG;
reverse primer: GTGTGTCGCCAGCGTGTCT; probe: FAM-
CGCTGATTCCTCGTGTCCGGAGG), mouse VEGF, mouse
c-fos, humanGAPDH, andmouseGAPDH (Applied Biosystems)
were used. Relative quantification was calculated using DDCT
algorithm with glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) as the endogenous control. For miRNA quantitation,
TaqMan Assay Kits (Applied Biosystems) were used for reverse
transcription and qRT-PCR. For PCR array analysis, reverse
transcription was conducted using the RT2 First Strand (Qia-
gen) Kit. PCR arrays (SABiosciences) were run according to
manufacturer's instructions.

Flow-cytometry analysis
For IGF-IR detection, target R� murine embryonic fibro-

blasts (MEF) were trypsinized after coculture, washed, and
resuspended in staining buffer (1% bovine serum albumin in
PBS, w/v). Cells were stained with mouse anti-human IGF-IR-
PE antibody (BioLegend) or CXCR4-APC antibody
(eBioscience) � 30 minutes at 4�C, washed twice, propidium
iodide (PI) was added and cells analyzed with a FACSCalibur
(BD Biosciences). Data were analyzed using FlowJo software
(Tree Star).

Transwell migration and cell proliferation
Ba/F3 cells were cultured for 48 hours in the presence or

absence of VRM by plating 5 � 105 cells in 2 mL Ba/F3
media with 4 mL of either vesicle-rich or base media. Ba/F3
cells were washed and plated on 8-mm transwell inserts in
plates containing either media alone or SDF-1a gradient.
After 2 hours, transwells were removed, migrated cells were
washed and counted using a Guava PCA cytometer (Milli-
pore). For proliferation assays, 5 � 104 R� MEFs were
cocultured with 1 � 106 HL-60 cells in 0.4-mm transwells
for 48 hours, after which R� MEFs were counted. IGF-IR
inhibitor picropodophyllin (PPP; CalBiochem) was added at
100 nmol/L before coculture.

Western blotting
Protein lysates were generated using RIPA buffer with

protease inhibitors (Thermo Scientific) and protein concen-
trations quantified by BCAProtein Assay (Pierce). Lysates were
loaded on 4% to 15% SDS-PAGE gels (Bio-Rad) for transfer and
Ponceau S stain. IGF-IR was detected using rabbit anti-human
IGF-IRb (Cell Signaling Technology) and anti-rabbit IgG-HRP

(Thermo Scientific). Actin was detected using mouse anti-
human pan-actin (Millipore) and anti-mouse IgG-HRP (Jack-
son ImmunoResearch Laboratories). Chemiluminescence was
detected by the Supersignal West Pico Chemiluminescent
substrate (Pierce).

Results
AML cells release exosomes

To systematically examine AML vesicle release, we used
several AML cell lines and patient cells. Primary AML samples
phenotyped by flow-cytometry showed more than 90% of cells
expressing leukemia-associated antigens (data not shown).
Vesicles were isolated from culture media using differential
centrifugation and sucrose gradient purification (Fig. 1A and
B). Transmission electron microscopy (TEM) revealed that
both HL-60 and primary AML cells released vesicles primarily
between 30 and 100 nm in diameter (Fig. 1C), the size range
of exosomes (9). To exclude detectionmethod- or purification-
protocol bias, we conducted dynamic light scattering (DLS)
measurements comparing HL-60 vesicle preparations purified
by sucrose gradient versus differential centrifugation (captur-
ing larger vesicles; Fig. 1D). Results mirrored the TEM size and
distribution profile without significant method specific bias.
To show direct exosome release from AML cells, we imaged
primary AML cells labeled with N-Rh-PE, a marker dye routed
from the endocytic compartment to the multivesicular body
(MVB) and released within exosomes (14). Representative
time-lapse images from stained primary AML blasts show
the polarized aggregation of dye-labeled MVB's at the plasma
membrane before release of the exosome content, represen-
tative of 53% of cells in 3 primary AML samples (Fig. 1E;
ref. 15). The canonical N-Rh-PE trafficking and vesicle budding
provide further evidence that primary AML cells release exo-
somes. When we conducted immunofluorescent imaging
for exosomal markers Tsg101 and CD63 (16, 17), the N-Rh-
PE–stained compartment in primary AML cells colocalized
with CD63 in more than 90%, with Tsg101 in 70%, and with
both proteins in 29% of cells (Fig. 1F). Together, these experi-
ments provide strong complementary evidence that AML
cell lines and primary AML cells give rise to exosomes. Here-
after, we use the term "exosomes" specifically and "vesicles"
generically.

Exosomes traffic mRNA between AML and stromal cells
Vesicles transfer protein and RNA between cells (18),

leading us to investigate the trafficking of AML exosomes
to bystander cells. To determine exosome entry, GFP-expres-
sing murine OP9 bone marrow stromal cells were exposed
to PKH26-stained exosomes from HL-60 cells (19). Fluores-
cence microscopy images revealed rapid and significant
uptake of PKH26-stained exosomes as early as 15 minutes
and increasing until 2 hours after initial exposure (Fig.
2A–F), at which time their number per cell reached a plateau
(data not shown). To ascertain the transfer of specific RNA
transcripts via AML exosomes, we cultured leukemia cells
across a 0.4-mm transwell membrane from OP9 cells. After
48 hours of coculture, OP9 cells were harvested, RNA was
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extracted and reverse-transcribed. RT-PCR with species-
specific primers confirmed the presence of leukemia-derived
(human) CXCR-4 transcripts in murine OP9 cells after
coculture with HL-60 cells or primary AML cells (Fig. 2G).
These experiments show that AML exosomes transfer leu-
kemia-derived mRNA to murine bone marrow stromal cells.

AML exosomes contain RNA with broad regulatory
potential

Given the diagnostic and prognostic relevance of molecular
abnormalities in AML, we decided to focus on the analysis of
exosomal RNA. We initially quantified total exosome RNA
among 4 leukemia cell lines, 5 different primary AML cell
samples, and primary CD34þ bone marrow cells. Total vesicle
RNA content varied considerably among cell lines and primary
AML cells after standardized culture for 48 hours (Fig. 3A).
Comparing the spectrum of vesicle and cellular RNA using a
bioanalyzer, we found a similar size distribution, with pro-
nounced ribosomal and small RNApeaks (Fig. 3B). This pattern
was observed in RNA obtained from cell lines and several
AML samples (Fig. 3C). Because we were interested in transfer

of mRNA with potential to alter the recipient cell phenotype,
we used a PCR array to screen for a set of 59 transcription
factors in Molm-14–derived exosomes. Many transcripts
seemed either decreased or enriched relative to cellular back-
ground (adjusted for GAPDH, b-2-microbglobulin and HPRT1
controls; Fig. 3D). We selected a subset of 9 transcripts
for further validation based on their involvement in hemato-
poiesis and/or leukemogenesis; that is, GATA1, FOXP3, SHIP1,
ID1, E2F1, CEBP-a and -b, Myc, and MEF2C (20). Judged
by RT-PCR, all were present in vesicle RNA from cell lines and
most in primary samples, with somepatient–patient variability
(Fig. 3E). Our data on exosome RNA spectrum and abundance
suggested strong potential for a role in AML biology.

Exosomes carry RNA transcripts with prognostic
relevance in AML

Given evidence of transcript enrichment and the equilibra-
tion of vesicles between tissue compartment and blood-
stream shown by others, we evaluated exosomes for AML-
relevant transcripts as potential biomarkers (21–23), speci-
fically, nucleophosmin 1 (NPM1), FLT3, CXCR4, MMP9, and

A

C

D
F

B E

Figure 1. AML cells release
exosomes. Vesicles isolated from
HL-60 cells (A) and from primary
AML cells (B) using sucrose
gradient centrifugation, visualized
by TEM. Scale bars, 100 nm. C,
average diameter of more than
100 vesicles was measured from
TEM of HL-60 and primary AML.
D, comparison of size distribution
of vesicles from sucrose gradient
(Sucr) and differential
centrifugation (Cent) analyzed by
DLS and TEM. E, left, projection
image (merged Z-stack) of primary
cell stained with Hoechst 33342
(blue) and N-Rh-PE (red). Right,
z-plane captured every
2.5 minutes. Dotted line, cell
margin; arrows, MVB and
subsequent extracellular vesicle.
F, immunofluorescence of fixed
primary AML cells: N-Rh-PE (red),
anti-CD63 (green), anti-Tsg101
(green/white), and DAPI (blue).
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IGF-IR (21, 24, 25). RT-PCR analysis revealed the presence
of all 5 candidate transcripts in exosomes from patient AML
blasts, primary CD34þ bone marrow cells, and leukemia cell
lines (Fig. 4A and B and Table 1). Indeed, exosome RNA
reproduced the FLT3 allelic diversity (wt vs. ITD tran-
scripts), including multiple unique ITDs present in the bulk

cell population from which they were derived (Fig. 4A and B;
ref. 26). Similarly, we were able to detect transcripts bearing
mutations in exon 12 of NPM1 (confirmed by sequencing
and capillary gel electrophoresis) in matched exosomal and
cellular RNA (Fig. 4A). We next determined relative IGF-IR
transcript levels in RNA from AML patient cells and vesicles

Figure 2. AML exosomes are taken
up by bone marrow stromal cells.
PGK-GFPOP9cellswere exposed to
PKH-26–labeled HL-60 exosomes
(A, C, and E) and PKH-26–labeled
diluent C (B and D) for 2 hours. A and
B, differential interference contrast
(D DIC) images. C and D, single
z-slices showing labeled exosomes
(red). E, Z-stack in the xy-, xz-, and
yz-planes. Scale bars, 10 mm. F,
quantification of labeled exosomes
within cells. N, number of cells
analyzed; error bars, SEM; P < 0.006
by Student t test. G, RT-PCR for
human CXCR4 in murine OP9s after
48 hours coculture or exposure to
vesicles from HL-60 or primary AML.
Transfer conditions: 0.4-mm
transwell (Transwell), VRM exposure,
purified vesicle exposure (vesicles).
Data are representative of at least
3 independent experiments. NTC,
non template control.
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Figure 3. AML exosomes contain unique RNA profiles. A, quantification of AML or control vesicle RNA. BM: CD34þ bone marrow progenitors. Data represent
at least 3 individual experiments. B and C, bioanalyzer electropherograms of RNA from cells and vesicles of AML cell lines and primary samples. D,
transcription factor array comparison of exosomal RNA from Molm-14 cells, expressed as fold change in vesicles versus cells. E, RT-PCR for select
transcription factors in RNA from primary AML cells and vesicles from 4 patients. Data represent at least 3 individual experiments.
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(24, 25, 27). When normalized to GAPDH, IGF-IR mRNA
levels differed substantially between primary AML samples
(28). Yet, expression in both cellular and exosomal RNA was
generally 2- to 5-fold higher in AML samples than in CD34þ

progenitors (Fig. 4C). A direct comparison of IGF-IR mRNA
levels confirmed exosome enrichment over matched cellular
RNA, by up to 1,000-fold in 2 of the samples tested (Fig. 4D).
This relative enrichment of IGF-IR mRNA (normalized to
GAPDH) seemed to be specific for leukemia-derived vesicles,
as primary CD34þ bone marrow vesicles exhibited IGF-IR
mRNA levels proportional to those found in cells (Fig. 4D).

Transfer of IGF-IR mRNA modulates cellular responses
in Igf-Ir-deficient cells
To show proof-of-principle for the specific functional con-

sequences of AML exosome trafficking to bystander cells, we
set up contact-independent cocultures of HL-60 or Molm-14
donor cells and (murine) OP9 target cells. Under all 3 exper-
imental modalities (transwell coculture, vesicle-rich media
exposure, and purified vesicle exposure), human-specific
IGF-IR transcripts were detected in OP9 recipient cells

(Fig. 5A). To determine if AML vesicle-derived IGF-IR con-
tributes to target cell signaling after transfer, we cocultured
leukemia cells across a transwell from Igf-Ir knockout mouse
embryonic fibroblasts (R�MEF; refs. 13, 29). In flow-cytometry
analysis, R� MEFs cocultured with HL-60, Molm-14, or U937
cells expressed human IGF-IR, although at a level less than
that of R� cells stably transfected with human IGF-IR cDNA
(termed Rþ; Fig. 5B). Protein lysates from AML cells and
vesicles revealed broad differences in banding profile, reflect-
ing the disparity between vesicle and cellular protein con-
tent that includes conventional controls, such as actin and
GAPDH, or tubulin (data not shown). Evenwhen loading 3-fold
the amount of vesicle than cell protein lysate (reflected in
the Ponceau S stain), significantly less actin was detected in
vesicles. IGF-IR protein, as well, was present only at very low
levels in AML exosomes by Western blot analysis, although
it was readily detected in both WT HL-60 cells and HL-60
overexpressing IGF-IR (Fig. 5C; Supplementary Fig. S1A and
S1B; ref. 30). Allowing for small amounts of IGF-IR protein
in vesicles, these results nonetheless suggest that transferred
human IGF-IR mRNA may be successfully translated and

Figure 4. Leukemia-relevant
transcripts in AML exosomes.
RT-PCR for AML-related transcripts
in cells and vesicles from primary
AML samples (A) and AML cell lines
(B). C, qRT-PCR for IGF-IR in primary
AML cellular and vesicle RNA,
normalized to CD34þ bone marrow
cells and vesicles. GAPDH was used
as the endogenous control. D, fold
enrichment of IGF-IR mRNA in
vesicles versus cells, normalized to
CD34þ cells/vesicles.
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trafficked to the cell surface of R� MEFs after coculture with
AML cells. This observation is corroborated at the functional
level by measuring rates of IGF-I–stimulated proliferation
in R� MEFs (13). In experiments using transwell cocultures
of HL-60 with R� MEFs, we observed increased prolifera-
tion in cocultured R� MEFs compared with R� MEFs alone
(Fig. 5D). This proliferative response was specifically abro-
gated in response to the IGF-IR–specific inhibitor PPP, which
similarly decreased proliferation in Rþ MEFs, indicating that
the altered proliferation kinetics resulted from the transfer of
IGF-IR mRNA. In addition to its mitogenic activity, IGF-IR
signaling has been shown to upregulate VEGF expression
(31, 32). When we assessed the effect of coculture on VEGF
expression in target cells, we found that R� MEF cells exhi-
bited increased VEGF transcript levels by qRT-PCR following
coculture with HL-60 cells (Fig. 5E). As another canonical IGF
signaling response, we observed upregulation of the early
response gene c-fos under these conditions, although this did
not reach statistical significance (Fig. 5F; ref. 33). Our experi-
ments show that exosomal transfer of IGF-IR can modulate
proliferative signaling in bystander cells and promote expres-
sion of VEGF. Exosomal induction of transcripts promoting
angiogenesis in bystander cells is further corroborated in the
exposure of OP9 cells to Molm-14 coculture (Supplementary
Fig. S2A–S2C) and Molm-14 vesicles (Supplementary Fig. S3A
and S3B). We observed substantial changes in growth fac-
tor secretion into OP9 culture supernatant using commercial
(murine) arrays. Despite apparent differences in secretion

resulting from the presence of soluble factors under coculture
conditions versus concentrated vesicle exposure, several rel-
evant proteins whose secretion was upregulated after cocul-
ture (angiopoietin 1, endothelin 1, CXCL4, and FGF-2) were
also elevated following treatment with purified vesicles. VEGF
was consistently elevated after both treatments, whereas
secreted osteopontin (OPN) and SDF-1 were decreased after
vesicle treatment despite an increase following coculture.
To validate these results (and discrepancies), we investigated
several of these targets at the mRNA level with qRT-PCR,
and found that while SDF-1 and VEGF mRNA tracked with
secreted protein levels, OPN transcription had increased after
vesicle exposure without changes in its secretion. These results
illustrate hat physiologic vesicle transfer occurs in the context
of other secreted effectors, which act in concert to influence
surrounding cells.

miRNA enriched in AML exosomes regulates the biologic
function of neighboring cells

Our initial bioanalyzer data suggested the enrichment of
miRNA in exosomes (Fig. 3B and C; ref. 34). The RNA size range
between 0 and 150 nts was therefore further evaluated using
the small RNA bioanalyzer chip. Results confirmed abun-
dant representation of small RNAs (defined as 0–150 nts) and
miRNAs (40–80 nts; Fig. 6A). Remarkably, when comparing
the calculated concentrations, we found 2-fold enrichment of
small RNAs and 5- to 13-fold greater gains among miRNAs
in vesicles versus parental cells across several cell lines

Table 1. Transcripts detected in AML exosomes

Sample ID Sample source FLT-3 NPM1 IGF-IR CXCR4 MMP9

AML10128 LA ITD þ þ ND ND
AML10226 LA ITD þ þ ND ND
AML10831 PB WT þ þ ND ND
AML11009 PB � þ þ ND ND
AML11105 PB � � þ ND ND
AML11254 PB ITD þ þ þ þ
AML11261 PB ITD þ þ þ þ
AML11376 PB ITD þ þ þ þ
AML11378 PB ITD þ þ þ þ
AML11423 PB WT þ þ þ þ
AML12073 PB WT þ þ þ þ
AML12035 BM WT þ þ þ þ

NL-1 BM WT þ þ þ þ
NL-2 BM WT þ þ þ þ

HL-60 Cell line WT þ þ þ þ
Molm-14 Cell line ITD þ þ þ þ
U937 Cell line WT þ þ þ þ
HEL Cell line WT þ þ þ þ
Abbreviations: LA, leukapheresis cells; ND, not done; NL, normal bone marrow cells; PB, peripheral blood cells; þ, detected; �, not
detected.
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(Fig. 6B). We conducted qRT-PCR assays to quantify specific
miRNAs inMolm-14 cells and vesicles, including Let-7a, miR-9,
miR-99b, miR-150, miR-155, miR-191, and miR-223. Using the
noncoding small nuclear U6 RNA for normalization, we
observed significant incorporation in vesicles, ranging from

2- to near 40-fold enrichment compared with cells among this
set of miRNA (Fig. 6C). When we conducted a qRT-PCR array
study to profile 234 human miRNAs, our screen detected
miRNAs in both Molm-14 cellular and exosomal RNA
(Fig. 6D). Many miRNA were enriched in vesicles, indicated
by data point skewing toward the y-axis, with approximately
83% of miRNAs detected in both cells and vesicles. Among
miRNA represented by the array, 40 were excluded from
exosomes, whereas 1 miRNA (miR-146a) was present at a
detectable level only in exosomes.

One functional consequence of leukemic invasion of the
niche is the displacement of hematopoietic stem and progen-
itor cells from the bone marrow microenvironment through
altered migration and retention (4). The CXCR4/SDF-1a sig-
naling axis plays a crucial role in this, and CXCR4 itself
was recently shown to be a target of miR-150 (4, 35). We
therefore examined the effect of Molm-14 exosomes (enriched
in miRNA-150) on migration of Ba/F3 cells, a conditionally
SDF-1a–responsive murine B-precursor cell line (36). Remark-
ably, Ba/F3 cells cultured for 48 hours in the presence ofMolm-
14–derived, vesicle-rich media and placed on 8-mm Transwell
grids showed significantly decreasedmigration toward SDF-1a
(Fig. 6E; ref. 2). Moreover, vesicle exposure specifically reduced
the surface expression of CXCR4, the cognate SDF-1a receptor,
by 50% as judged by median fluorescence intensity (Fig. 6F).
Taken together, our results reveal that AML vesicles alter
transcriptional responses, protein secretion, and migration in
bystander cells.

Discussion
A specialized AML stromal niche is thought to account, in

part, for the evasion of cells from therapy-induced apoptosis
and is implicated in relapse (1–3). Conceptually, niche con-
version requires the successive displacement and suppression
of hematopoietic function and establishment of conditions
conducive to leukemic spread. The mechanisms underlying
this process, however, remain to be clarified (1, 4). On the
basis of the established potential for exosomes to mediate
cell-to-cell communication (8, 18, 37), and increasing evidence
of their relevance in cancer (17, 28, 38), we investigated a
role for exosomes in modulating signaling between cells in
the AML microenvironment.

Classes of cell membrane–derived vesicles produced by
different cell types can be distinguished on the basis of size,
density, and characteristic marker proteins (39). Our studies
provide compelling evidence that AML cells produce primarily
exosome-sized vesicles, capable of rapid entry and cargo
transfer to bystander cells. Given the importance of molecular
abnormalities in AML risk stratification, we decided to exam-
ine exosomal RNA content, and observed a broad spectrum,
including small RNA. Profiling the mRNA content of these
vesicles revealed the presence of transcripts relevant to AML
prognosis (FLT3-ITD, NPM1), treatment (FLT3-ITD, IGF-IR,
CXCR4), and niche function (IGF-IR, CXCR4, MMP9; Table 1;
refs. 21, 27, 40). Other experimental systems have shown that
the direct cytoplasmic transfer of RNA between cells can
have significant and lasting impact on cellular phenotypes

Figure 5. AML exosomes transfer leukemia-specific transcripts and
modulate target cell function. A, RT-PCR for human IGF-IR mRNA in
murineOP9s after 48 hours coculture or exposure to vesicles fromHL-60
or MOLM-14. Transfer conditions: 0.4-mm transwell (Transwell), VRM
exposure, purified vesicle exposure (vesicles). Data are representative of
at least 5 independent experiments. B, flow-cytometry analysis of human
IGF-IR expression in R�MEFs after 48 hours coculturewith U937, HL-60,
or Molm-14. Light gray, R� MEFs; dark gray, R� MEFs after coculture;
black, Rþ MEFs. C, top: Ponceau S stain of HL-60 cell, HL60 vesicle
lysate, and cell lysate from IGF-IR overexpressing HL-60 (positive
control). Bottom, Western blot analysis for IGF-IR and actin. Top and
bottom, 10-mg cellular and 30-mg vesicle protein were loaded. D,
proliferation of R�MEFs after coculturewithHL-60s. R�MEFs, RþMEFs,
or R� MEFs/HL-60 cells were cultured with or without PPP for 48 hours.
E and F, relative expression of VEGF and c-fos transcripts in R� MEFs
cocultured with HL-60 cells for 12 hours and in Rþ MEFs or R� MEFs
alone. Error bars, SEM. P < 0.05 by Student t test.
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(18, 19, 37, 41). Reinforcing the regulatory potential of AML
exosome RNA in target cells, we found several transcription
factor transcripts important to hematopoiesis and a range of
AML-relevant miRNA (20).

To show the functional significance of exosome trafficking,
we focused on the consequences of transfer on IGF-IR signaling

in stromal cells and CXCR4 signaling in progenitor cells. Not
only is IGF-IRmRNA enriched in AML exosomes, but we found
that its transfer led to the induction of downstream gene
expression and changes in cell proliferation that were abro-
gated by specific inhibition of IGF-IR kinase function. miRNA-
150 was previously reported to suppress erythropoiesis and

Figure 6. AML exosomes contain unique miRNA profile. A, bioanalyzer electropherograms of small RNA profiles for 3 leukemia cell lines. Major peak, small
RNA. Dotted line, cellular RNA. Solid line, vesicle RNA. B, small RNA and miRNA concentrations determined by small RNA chip. C, miRNA qRT-PCR in
Molm-14 vesicles versus cells, expressed as fold-change in vesicle incorporation. Data shown are representative of at least 3 independent assays. D,
correlation ofmiRNAs inMolm-14 cells and vesicles by qPCR array, normalized toU6 snRNA. Inset, number ofmiRNAs unique to or shared between cells and
vesicles. E, migration of Ba/F3 cells along SDF-1a gradient after 48-hour coculture with Molm-14 VRM. Data are representative of 3 independent
experiments.P < 0.05 byStudent t test. F, expression of CXCR4 onBa/F3 cells after 48-hour exposure toMolm-14 VRMby flowcytometry. Light gray, isotype
control. Dark gray, Ba/F3 after coculture. Black, control Ba/F3. Data represent 3 independent assays, P < 0.05 by Student t test.
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target CXCR4 transcripts for degradation (35). Although both
miR-150 and CXCR4 mRNA are present in AML exosomes,
miR-150 is highly enriched therein, and exosome transfer to
Ba/F3 progenitor cells was associated with a loss of CXCR4
surface expression and consequent decrease in cell migration
toward SDF-1a. Several caveats remain: we did not titrate
vesicle doses and it is possible that some of these effects will
reveal exosome dose–response kinetics. At the same time, our
data caution against the direct extrapolation of vesicle effects
to biologic response, as both the cell coculture and VRM
treatment provide further physiologic modulation via soluble
factors, illustrated in Supplementary Figs. S2 and S3. This is
to be expected, as the exosome transfer of a receptor, for
example, would be expected to result in differential signaling
events in the presence of media containing the cognate ligand.
The diverse exosome cargo highlights the inherent challenge
in assigning a specific functional outcome to the transfer of
an individual exosomal protein or RNA transcript in the
context of many others. The presence of prognostically rele-
vant mRNA in AML-derived exosomes implies their potential
development as a minimally invasive AML biomarker plat-
form. Here, it will be important to see the extent to which
specific AML exosome content will track with diagnostic
parameters and change during the course of treatment.
Taken together, our results show that exosome trafficking

by AML cells can alter the function of bystander cells. Our
observations show the complexity of cell–cell communication
and emphasize the potential impact of exosome trafficking
on AML physiology. Coding and noncoding RNAs are key
determinants of the cellular phenotype, and in vitro RNA
transfer can produce experimental phenotype conversion

(37, 41). The transfer of transcription factor and miRNA from
AML to bystander cells presents a compelling paradigm for
cell–cell communication in the leukemic niche.
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