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Abstract. We study the relationship between structural properties of the
two-dimensional nonconjugate subalgebras of the same rank of the Lie algebra
of the Poincaré group P (1, 4) and the properties of reduced equations for the
(1 + 3)-dimensional homogeneous Monge-Ampère equation. In this paper,
we present some of the results obtained concerning symmetry reduction of
the equation under investigation to identities. Some classes of the invariant
solutions (with arbitrary smooth functions) are presented.

Анотація. Вивчається взаємозв’язок між структурними властивостями
двовимірних неспряжених підалгебр того самого рангу алгебри Лі групи
Пуанкаре P (1, 4) і властивостями редукованих рівнянь для (1 + 3)-ви-
мірного однорідного рівняння Монжа-Ампера. У цій роботі представле-
но деякі отримані результати, що стосуються симетрійної редукції дослі-
джуваного рівняння до тотожностей. Наведено деякі класи інваріантних
розвязків (з довільними гладкими функціями).
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1. INTRODUCTION
In many cases mathematical models of the processes of real world can

be written with the help of partial differential equations (PDEs). Among
of these equations there are a lot of PDEs with non trivial symmetry
groups. To investigate of this type equations we can use the classical Lie-
Ovsiannikov method [27, 31, 30, 29] (see, also, the references therein). The
application of this approach allow us, in particular, to perform the sym-
metry reductions of the equations under study and to construct classes of
exact solutions.
However, it turned out that in order to efficiently apply the classical Lie-

Ovsiannikov method for PDEs with non-trivial symmetry groups we had to
solve a pure algebraic problem of describing all nonconjugate (nonsimilar)
subalgebras of the Lie algebras of symmetry groups of the equations under
investigation. More details on this theme can be found in [31,30] (see, also,
the references therein).
In 1975, Patera, Winternitz, and Zassenhaus [32] proposed a general

method for describing the nonconjugate subalgebras of Lie algebras with
nontrivial ideals.
In 1984, Grundland, Harnad, and Winternitz [20] pointed out that the

reduced equations, obtained with the help of nonconjugate subalgebras of
the same ranks of the Lie algebras of the symmetry groups of some PDEs,
were of different types. They also investigated the similar phenomenon.
The confirmation of this conclusion can be found in [7, 5, 6, 28, 9, 19, 10–14]
(see, also, the references therein).
The results obtained cannot be explained using only the rank of non-

conjugate subalgebras of the Lie algebras of the symmetry groups of PDEs
under investigation.
To try to explain some of the differences in the properties of the re-

duced equations for PDEs with nontrivial symmetry groups, we recently
suggested to investigate the relationship between the structural proper-
ties of nonconjugate subalgebras of the same rank of the Lie algebras of
the symmetry groups of those PDEs and the properties of the correspon-
ding reduced equations [10]. To realise of this suggestion we need to solve
pure algebraic problem of classifying of all nonconjugate subalgebras of the
Lie algebras of symmetry groups of the equations under investigation into
classes of isomorphic ones.
A solution a lot of problems of the geometry, string theory, geometri-

cal optics, elastic theories of shallow shells, optimal transportation, one-
dimensional gas dynamics, meteorology and oceanography, etc. has re-
duced to the investigation of the Monge-Ampère equations in the spaces of
different dimensions and different types. Some details on this theme can
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be found in [33,1,34,37,38,24,21,26,39,22,2,15,40,25,36,23,35] (see, also,
the references therein).
This paper is devoted to the study the relationship between structural

properties of the low-dimensional (dimL ď 3) nonconjugate subalgebras
of the same rank of the Lie algebra of the Poincaré group P (1, 4) and the
properties of reduced equations for the (1 + 3)-dimensional homogeneous
Monge-Ampère equation.
At the present time, the relationship has been investigated between the

structural properties of the two-dimensional nonconjugate subalgebras of
the same rank of the Lie algebra of the Poincaré group P (1, 4) and the
properties of reduced equations for the (1 + 3)-dimensional homogeneous
Monge-Ampère equation.
We have obtained the following types of the reduced equations:
- identities,
- partial differential equations.

In this paper, we plan to present some of our results, which are obtained
on the way of symmetry reduction of the (1+3)-dimensional homogeneous
Monge-Ampère equation to identities.

2. LIE ALGEBRA OF THE POINCARÉ GROUP P(1,4) AND ITS
NONCONJUGATE SUBALGEBRAS

The group P (1, 4) is a group of rotations and translations of the five-
dimensional Minkowski space M(1, 4). It is the smallest group, which con-
tains, as subgroups, the extended Galilei group rG(1, 3) [18] (the symmetry
group of classical physics) and the Poincaré group P (1, 3) (the symmetry
group of relativistic physics).
Lie algebra of the group P (1, 4) is generated by 15 bases elements

Mµν = ´Mνµ, (µ, ν = 0, 1, 2, 3, 4), Pµ, (µ = 0, 1, 2, 3, 4),

which satisfy the commutation relations:
[Pµ, Pν ] = 0, [Mµν , Pσ] = gνσPµ ´ gµσPν ,

[Mµν ,Mρσ] = gµσMνρ + gνρMµσ ´ gµρMνσ ´ gνσMµρ,

where g00 = ´g11 = ´g22 = ´g33 = ´g44 = 1, gµν = 0, if µ ‰ ν.
In this paper, we consider the following representation [16] of the Lie

algebra of the group P (1, 4):

P0 =
B

Bx0
, P1 = ´

B

Bx1
, P2 = ´

B

Bx2
, P3 = ´

B

Bx3
,

P4 = ´
B

Bu
, Mµν = xµPν ´ xνPµ, x4 ” u.
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In what follows, we will use the next bases elements:
G = M04, L1 = M23, L2 = ´M13, L3 = M12,

Pa = Ma4 ´ M0a, Ca = Ma4 +M0a, (a = 1, 2, 3),

X0 =
1

2
(P0 ´ P4) , Xk = Pk (k = 1, 2, 3), X4 =

1

2
(P0 + P4) .

Nonconjugate subalgebras of the Lie algebra of the group P (1, 4) have
been described in the papers [3, 4, 17].
The Lie algebra of the extended Galilei group rG(1, 3) is generated by the

following bases elements:
L1, L2, L3, P1, P2, P3, X0, X1, X2, X3, X4.

The classification of all nonconjugate subalgebras of the Lie algebra of the
group P (1, 4) of dimensions ď 3 was performed in [8].

3. ON CLASSIFICATION OF SYMMETRY REDUCTIONS USING
TWO-DIMENSIONAL NONCONJUGATE SUBALGEBRAS OF THE LIE

ALGEBRA OF THE POINCARÉ GROUP P (1, 4)

In this section, we consider the homogeneous Monge-Ampère equation
in the space M(1, 3) ˆ R(u):

det (uµν) = 0,

where

u = u(x), x = (x0, x1, x2, x3) P M(1, 3), uµν ”
B2u

BxµBxν
,

for µ, ν = 0, 1, 2, 3. Here, and in what follows,M(1, 3) is a four-dimensional
Minkowski space, and R(u) is a real number axis of the depended variable
u.
In 1983, Fushchich and Serov [16] studied symmetry properties and con-

structed some classes of exact solutions for the multidimensional Monge-
Ampère equation. It follows from that paper that the Lie algebra of the
symmetry group of the equation under consideration contains, as subalge-
bra, the Lie algebra of the group P (1, 4). As we mentioned before, the
results of the classification of all the low-dimensional (dimL ď 3) noncon-
jugate subalgebras of the Lie algebra of the group P (1, 4) could be found
in [8]. We will present below some of the results obtained.

3.1. Lie algebras of type 2A1. Taking into account some invariants of
two-dimensional nonconjugate subalgebras, we constructed the ansatzes re-
ducing the (1 + 3)-dimensional homogeneous Monge-Ampère equation to
identities.
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1) xL3 ´ P3y ‘ xX4y.
The first step is to construct a functional basis of the invariants for this

subalgebra. In order to realize it we have solved the following system of
PDEs:

#

(L3 ´ P3)ω(x0, x1, x2, x3, u) = 0,

(X4)ω(x0, x1, x2, x3, u) = 0.

The solutions of this system are

ω1 = (x21 + x22)
1/2,

ω2 = arctan
x1
x2

+
x3

x0 + u
,

ω3 = x0 + u.

From these invariants we construct an ansatz as follows

x0 + u = φ(ω1, ω2), ω1 = (x21 + x22)
1/2, ω2 = arctan

x1
x2

+
x3

x0 + u
.

The second step is to calculate the second order derivatives uµν (µ, ν =
0, 1, 2, 3). The third step is to substitute the derivatives into the equa-
tion under investigation ((1+3)-dimensional homogeneous Monge-Ampère
equation). This substitution reduces the equation under investigation to
the identity of the form 0 = 0. It means that the ansatz is a solution of the
following (1 + 3)-dimensional homogeneous Monge-Ampère equation:

x0 + u = φ

(
b

x21 + x22, arctan
x1
x2

+
x3

x0 + u

)
,

where φ is an arbitrary smooth function.
Since the method is the same for all of the subalgebras, we will omit the

interim details and provide with the final results only.

2) xL3 + λG, λ ą 0y ‘ xX3y.
In this case we have the following ansatz:

(x21 + x22)
1/2 = φ(ω1, ω2),

ω1 = (x20 ´ u2)1/2, ω2 = ln(x0 + u) + λ arctan x1
x2

,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

(x21 + x22)
1/2 = φ

(
x20 ´ u2, ln(x0 + u) + λ arctan x1

x2

)
,

where φ is an arbitrary smooth function.
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3) xGy ‘ xX1y.
The ansatz is

(x20 ´ u2)1/2 = φ(ω1, ω2), ω1 = x2, ω2 = x3,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

(x20 ´ u2)1/2 = φ(x2, x3),

where φ is an arbitrary smooth function.

4) xG+ αX2, α ą 0y ‘ xX1y.
The ansatz is
x3 = φ(ω1, ω2), ω1 = (x20 ´ u2)1/2, ω2 = x2 ´ α ln(x0 + u),

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

x3 = φ
(
x20 ´ u2, x2 ´ α ln(x0 + u)

)
,

where φ is an arbitrary smooth function.

5)
@

L3 +
1
2(P3 + C3)

D

‘ xX0 +X4y.
The ansatz is

arctan x1
x2

´ arctan x3
u

= φ(ω1, ω2),

ω1 = (x21 + x22)
1/2, ω2 = (u2 + x23)

1/2,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

arctan x1
x2

´ arctan x3
u

= φ

(
b

x21 + x22,
b

u2 + x23

)
,

where φ is an arbitrary smooth function.

6)
@

L3 +
λ
2 (P3 + C3), 0 ă λ ă 1

D

‘ xX0 +X4y.
The ansatz is

λ arctan x1
x2

´ arctan x3
u = φ(ω1, ω2),

ω1 = (x21 + x22)
1/2, ω2 = (u2 + x23)

1/2,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

λ arctan x1
x2

´ arctan x3
u

= φ

(
b

x21 + x22,
b

u2 + x23

)
,

where φ is an arbitrary smooth function.
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7) xL3 + α(X0 +X4), α ą 0y ‘ xX4y.
The ansatz is

x0 + u ´ α arctan x1
x2

= φ(ω1, ω2),

ω1 = x3, ω2 = (x21 + x22)
1/2,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

u = φ

(
x3,

b

x21 + x22

)
+ α arctan x1

x2
´ x0,

where φ is an arbitrary smooth function.

8) xL3 + αX3, α ą 0y ‘ xX0 +X4y.
The ansatz is

x3 + α arctan x1
x2

= φ(ω1, ω2), ω1 = u, ω2 = (x21 + x22)
1/2,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

x3 + α arctan x1
x2

= φ

(
u,

b

x21 + x22

)
,

where φ is an arbitrary smooth function.

9) xL3 + 2X4y ‘ xX3y.
The ansatz is

x0 ´ u+ 2 arctan x2
x1

= φ(ω1, ω2),

ω1 = x0 + u, ω2 = (x21 + x22)
1/2,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

x0 ´ u+ 2 arctan x2
x1

= φ

(
x0 + u,

b

x21 + x22

)
,

where φ is an arbitrary smooth function.

10) xL3 ´ P3 + 2αX0, α ‰ 0y ‘ xX4y.
The ansatz is

x0 + u ´ 2α arctan x1
x2

= φ(ω1, ω2),

ω1 = (x21 + x22)
1/2, ω2 = (x0 + u)2 + 4αx3,



Some classes of invariant solutions of Monge-Ampère equation 213

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

u = φ

(
b

x21 + x22, (x0 + u)2 + 4αx3

)
+ 2α arctan x1

x2
´ x0,

where φ is an arbitrary smooth function.

11) xP3y ‘ xX1y.
The ansatz is

(x20 ´ x23 ´ u2)1/2 = φ(ω1, ω2), ω1 = x2, ω2 = x0 + u,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

(x20 ´ x23 ´ u2)1/2 = φ(x2, x0 + u),

where φ is an arbitrary smooth function.

12) xP3 ´ X2y ‘ xX1y.
The ansatz is
x2 ´

x3
x0 + u

= φ(ω1, ω2), ω1 = x0 + u, ω2 = (x20 ´ x23 ´ u2)1/2,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

x2 ´
x3

x0 + u
= φ(x0 + u,

b

x20 ´ x23 ´ u2),

where φ is an arbitrary smooth function.

13) xP3 ´ 2X0y ‘ xX4y.
The ansatz is

(x0 + u)2 + 4x3 = φ(ω1, ω2), ω1 = x1, ω2 = x2,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

(x0 + u)2 + 4x3 = φ(x1, x2),

where φ is an arbitrary smooth function.

14) xP3 ´ 2X0y ‘ xX1y.
The ansatz is

1
6(x0 + u)3 + x3(x0 + u) + x0 ´ u = φ(ω1, ω2),

ω1 = x2, ω2 = (x0 + u)2 + 4x3,
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and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

1
6(x0 + u)3 + x3(x0 + u) + x0 ´ u = φ

(
x2, (x0 + u)2 + 4x3

)
,

where φ is an arbitrary smooth function.

15) xL3y ‘ xX4y.
The ansatz is

(x21 + x22)
1/2 = φ(ω1, ω2), ω1 = x0 + u, ω2 = x3,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

(x21 + x22)
1/2 = φ(x0 + u, x3),

where φ is an arbitrary smooth function.

16) xL3 + αX3, α ą 0y ‘ xX4y.
The ansatz is

x3 + α arctan x1
x2

= φ(ω1, ω2), ω1 = x0 + u, ω2 = (x21 + x22)
1/2,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

x3 + α arctan x1
x2

= φ
(
x0 + u, (x21 + x22)

1/2
)
,

where φ is an arbitrary smooth function.

17) xP3 ´ X1y ‘ xX4y.
The ansatz is

x1 ´
x3

x0 + u
= φ(ω1, ω2), ω1 = x2, ω2 = x0 + u,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

x1 ´
x3

x0 + u
= φ(x2, x0 + u),

where φ is an arbitrary smooth function.

3.2. Lie algebras of type A2. Taking into account some invariants of two-
dimensional nonconjugate subalgebras, we constructed the ansatzes, which
reduced the (1 + 3)-dimensional homogeneous Monge-Ampère equation to
identities.
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1)
@

´G ´ 1
λL3, X4, λ ą 0

D

.
The ansatz is

ln(x0 + u) + λ arctan x1
x2

= φ(ω1, ω2), ω1 = x3, ω2 = (x21 + x22)
1/2,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

ln(x0 + u) + λ arctan x1
x2

= φ
(
x3, (x

2
1 + x22)

1/2
)
,

where φ is an arbitrary smooth function.

2) x´G ´ αX1, X4, α ą 0y.
The ansatz is

x1 ´ α ln(x0 + u) = φ(ω1, ω2), ω1 = x2, ω2 = x3,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

x1 ´ α ln(x0 + u) = φ(x2, x3),

where φ is an arbitrary smooth function.

3)
@

´ 1
λ(L3 + λG+ αX3), X4, α ą 0, λ ą 0

D

.
The ansatz is

ln(x0 + u) + λ arctan x1
x2

= φ(ω1, ω2),

ω1 = (x21 + x22)
1/2, ω2 = x3 + α arctan x1

x2
,

and the solution of the (1 + 3)-dimensional homogeneous Monge-Ampère
equation has the form

ln(x0 + u) + λ arctan x1
x2

= φ
(
(x21 + x22)

1/2, x3 + α arctan x1
x2

)
,

where φ is an arbitrary smooth function.

4. CONCLUSIONS
We study the relationship between the structural properties of the low-

dimensional (dimL ď 3) nonconjugate subalgebras of the same rank of
the Lie algebra of the Poincaré group P (1, 4) and the properties of the
reduced equations for the (1+3)-dimensional homogeneous Monge-Ampère
equation.
At the present time, the relationship has been investigated between the

structural properties of the two-dimensional nonconjugate subalgebras of
the same rank of the Lie algebra of the group P (1, 4) and the properties of
reduced equations for the (1+3)-dimensional homogeneous Monge-Ampère
equation. We have obtained the following types of the reduced equations:
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– identities,
– partial differential equations.

In this paper, we have presented some of our results, which were ob-
tained on the way of symmetry reduction of the (1+ 3)-dimensional homo-
geneous Monge-Ampère equation to identities. More detailed: we provided
some classes of the invariant solutions (with arbitrary smooth functions)
for the equation under investigation. Those classes were divided into two
subclasses: subclasses invariant under nonconjugate subalgebras of the Lie
algebra of the group P (1, 4) of the type 2A1 and subclasses invariant un-
der nonconjugate subalgebras of the Lie algebra of the group P (1, 4) of the
type A2. To do that we have used the classification of all nonconjugate
subalgebras of the Lie algebra of the group P (1, 4) of dimensions ď 3 which
was performed in [8].
From the results obtained it follows that the reductions to identities can

be obtained by using some subalgebras of the following types: 2A1 and A2.
It should be noted that the ansatzes (non-singular manifolds in the space

M(1, 3) ˆ R(u), invariant with respect to the corresponding subalgebras)
are classes of the invariant solutions (with arbitrary smooth functions) of
the (1 + 3)-dimensional homogeneous Monge-Ampère equation.
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