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Abstract: Variable Fidelity Optimization (VFO) is used to obtain a minimum drag transonic airfoil, at constant lift, 
subject to thickness and pitching moment constraints using several low fidelity solvers. VFO has emerged as an 
attractive method of performing, both, high-speed and high-fidelity optimization. VFO uses computationally 
inexpensive low-fidelity models, complemented by a surrogate to account for the difference between the high- and 
low-fidelity models, to obtain the optimum of the function efficiently and accurately. The authors’ original Variable 
Fidelity (VF) framework is modified for increased efficiency and accuracy by incorporating parallel evaluation and 
more constraints to the optimization problem. The method is found to be efficient and capable of finding the 
optimum that closely agrees with the results of high-fidelity optimization alone. 
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INTRODUCTION 

 
Given the high cost of CFD and optimization, a 

prominent area of research today is to find ways to 
reduce the computational time while retaining the high-
fidelity of the analysis. In the area of aerodynamic 
optimization, the variable fidelity (also called multi-
fidelity) method has quickly grown in popularity 
(Alexandrov et al., 2001; Keane, 2003; Gano et al., 
2005; Forrester et al., 2006; Forrester et al., 2007; 
Nelson et al., 2007; Lehner et al., 2010). 

Variable-fidelity and other model management 
methods have been developed to solve optimization 
problems that involve simulations with large 
computational expense (Gano et al., 2005; Huang et al., 
2006). In many engineering design problems, differing 
levels of fidelity can model the system of interest. 
Higher-fidelity models typically incorporate more 
detailed physics and are computationally expensive to 
evaluate than lower fidelity models. The lower-fidelity 
models are typically much cheaper to evaluate, but 
designs produced by using these models neglect 
important physical effects included in the more 
expensive higher-fidelity models. In aircraft design, 
Navier-Stokes and Euler equations are examples of two 
computational models with different fidelity. 

Variable-fidelity optimization has emerged as an 
attractive method of performing, both, high-speed and 
high-fidelity optimization (Alexandrov et al., 2001; 
Keane, 2003; Leary et al., 2003; Gano et al., 2005; 
Forreste  et  al.,  2006;  Huang  et al.,  2006; Forrester 
et al., 2007; Nelson et al., 2007; Lehner et al., 2010). 
These algorithms attempt to leverage information from 

computationally inexpensive low-fidelity models to 
reduce the time required to converge to the optimum of 
the high-fidelity function. This is usually accomplished 
by building a computationally inexpensive surrogate for 
the high-fidelity model. The surrogate is, often, 
iteratively optimized and updated as new high-fidelity 
data become available. In variable-fidelity algorithms, 
the surrogate for the high-fidelity model usually 
consists of the low-fidelity model plus a correction term 
that models the difference between the high- and low-
fidelity models, calibrated at selected sample points in 
the design space (Lehner et al., 2010).  

The variable-fidelity method has its roots in the 
empirical model-building theory – the idea of endowing 
a surrogate with some discipline related properties to 
increase its accuracy-and the past three decades have 
seen rapid increase in its development and use 
(Simpson et al., 2008). Insightful reviews of the 
variable-fidelity method can be found in Huang et al. 
(2006) and Simpson et al. (2008). The method has 
improved immensely; from its initial form requiring 
Taylor polynomials (Alexandrov et al., 2001) to its 
current incarnation using a variety of modern surrogate 
models like Kriging and neural networks (Leary et al., 
2003; Gano et al., 2005); and from using a variety of 
multiplicative,  additive  and hybrid corrections (Gano 
et al.,  2005),  to  the method of Co-Kriging (Forrester 
et al., 2007). In the optimization context, the method 
has  been  used  in  both derivative-based (Alexandrov 
et al., 2001) and derivative free (Booker et al., 1999) 
optimization. 

The authors have previously demonstrated a 

Variable-Fidelity Optimization (VFO) framework for 
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the solution of a 2-dimensional aerodynamic design 

optimization problem (Zahir and Gao, 2011). The 

importance of prudently selecting the LF model is also 

highlighted: Inappropriate LF models mislead the 

optimization algorithm towards infeasible points in the 

design space (Zahir and Gao, 2011). The authors’ 

framework worked well: The lift-to-drag ratio, K, was 

within 6% of the HF optimum and provided significant 

savings in computation time. Detailed results can be 

found in Zahir and Gao (2011). In the quest for greater 

efficiency and accuracy, the framework is modified to 

perform parallel computations. This study presents a 

minimum drag VFO of a transonic airfoil, at constant 

lift, subject to thickness and pitching moment 

constraints using several low fidelity solvers. 

This study is arranged as follows: First the major 

technology pieces used in the design are described; 

next, the VFO framework is presented followed by the 

results of the optimization. The VF optimization results 

are also compared to the results of direct optimization, 

where the HF solver, alone, was coupled to the 

optimizer to find the optimum result. 

 

MATERIALS AND METHODS 

 

Flow solver: In this study, the RAE-2822 airfoil is 

chosen for optimization. An indigenously developed 2D 

compressible Navier-Stokes solver-using the LU-SGS 

time stepping scheme, the Roe upwind scheme and 

multigrid acceleration-capable of being used in, both, 

Euler and Reynolds-Averaged-Navier-Stokes (RANS) 

mode (Su et al., 2008) is used as the flow solver. Euler 

and low resolution (small grid) RANS solvers are used 

as the LF solvers, while RANS with the K-ω turbulence 

model is used as the HF solver.  

The Euler and RANS solvers use a C-type mesh 

extending 20 chord lengths downstream of the trailing 

edge. The first grid line is 2x10
-6

 units from the airfoil 

surface for the RANS solver and 0.01 units for the 

Euler solver. The HF solver uses a grid size of 216 cells 

around the airfoil and 44 cells normal to the airfoil 

(216x44 grid), selected after obtaining good agreement 

in the surface pressure distribution and aerodynamic 

coefficients at transonic conditions (Mach number of 

0.729, Reynolds number of 6.5x10
6
 and an angle of 

attack of 2.31°) as reported in Cook et al. (1979) and 

Slater (2002). 

 

Optimization algorithm: A Genetic Algorithm (GA) is 

used to perform the optimization in this study. GA 

searches from multiple points in the design space, 

instead of moving from a single point like gradient-

based methods do making it less prone to being trapped 

by local optima. This makes it particularly suitable for 

aerodynamic optimization where the function landscape 

is often multimodal and nonlinear because the flow field 

is governed by a system of nonlinear partial differential 

equations (Oyama et al., 2000). Furthermore, GA 

works on function evaluations alone and does not 

require derivatives or gradients of the objective 

function. These features make it a robust global 

optimization algorithm.  

The GA implementation in MATLAB and its 
optimization toolbox is used to perform the 
optimization. 

 

Sample plan: As with all surrogate-based methods, to 
approximate a function f we start with a set of sample 
data-computed at a set of points in the domain of 
interest determined by a sampling plan. Selection of the 
sample points is a very important step towards creating 
a good surrogate model. If the sample plan model is too 
sparse or does not contain the interesting features of the 
design space, the resulting model will fail to resolve 
desirable global features. In order to improve the 
surrogate it is necessary to incrementally add points in 
an intelligent way such that the generated surface 
converges toward the true surface.  

When dealing with large, complex design spaces, it 
is often unclear how many points may be necessary to 
resolve key features with a response surface. To get the 
maximum amount of information out of a minimum 
number of points with no a priori knowledge of the 
design space requires uniform sampling. 

Several sampling methods are capable of 
producing relatively uniform samples, e.g. Latin 
Hypercube sampling (Forrester et al., 2008), however 
not many methods allow incremental uniform sampling. 
Latin Hypercube sampling requires a priori knowledge 
of how many points are desired in order to divide the 
domain into the appropriate number of hypercubes. 
This method creates nearly uniform point distributions, 
but requires a completely new set of data if additional 
points are desired. Another sampling method known as 
the Sobol Sequence (Sobol, 1967) has good space 
filling properties and allows incremental uniform 
sampling (Nelson et al., 2007; Forrester et al., 2008). 
This method is, thus, adopted in this study to create the 
sample plan. Since the number of sample points 
required to obtain an accurate surrogate is generally 
unknown a priori, an initial sample of 10nvar (where 
nvar is the number of design variables) is created 
following the suggestion of Jones et al. (1998). 

 

SURROGATE MODEL 

 

The surrogate model used in the study is Kriging-
an approximation technique that has received much 
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attention in recent years (Sacks et al., 1989; Jones et al., 
1998; Keane, 2003; Leary et al., 2003; Gano et al., 
2005; Forrester et al., 2006; Huang et al., 2006; 
Forrester et al., 2007; Nelson et al., 2007) named after 
the pioneering work of the South African mining 
engineer D.G. Krige and introduced in engineering 
design work after the seminal paper by Sacks et al. 
(1989).  

For brevity, the Kriging equations are not 
mentioned here. Forrester et al. (2008) contains more 
detail about Kriging. 

The Kriging model in this study uses a constant 
regression term and a Gaussian correlation model. The 
p term is 2 for all dimensions and θ is optimized in the 
range 10

2
 ≤θi≤200, i = 1, 2,…,nvar. The surrogate model 

is created using the surrogates toolbox (Viana, 2010) 
for MATLAB. 
 
Design variables: The design process begins with an 
initial airfoil. The airfoil geometry is then modified by 
adding smooth perturbations in the form of the Hicks-
Henne bump functions (Hicks and Henne, 1978). 
Defining normalized airfoil coordinates ψ = x/c, ζ = z/c 
and  c as the chord length, the Hicks-Henne shape 
function modifies airfoil geometry by adding a linear 
combination of shape functions, Fi and weighting 
coefficients, xi as follows: 

 

             (1) 

 

Here t1 locates the maximum point of the bump and 
t2 controls the width of the bump. The design variables 
are the coefficients xi multiplying the various Hicks-
Henne bump functions. 

In this study, 7 bump functions are used for the 
upper and lower surface of the airfoil, resulting in a 
total of 14 design variables. The points t1 are linearly 
spaced between 0 and 0.94. The range is terminated a 
little before the trailing edge to prevent the upper and 
lower edges from crossing each other and creating 
unrealistic geometries. A value of 10 is used for t2 

following Castonguay and Nadarajah (2007) 
recommendation. 

To prevent large changes to the geometry, upper 
and lower bounds are set on xi. These are: 

 

               (2) 

 
Fitness function and constraints: This is a single 

objective optimization problem. The airfoil is optimized 
for a transonic Mach number of 0.729 and a fully 

turbulent Reynolds number of 6.5x10
6
. The objective is 

to minimize the drag, cd at a constant lift, cl=0.6±0.01, 
subject to thickness and pitching moment constraints. 
RAE2822 is used as the initial airfoil to start the 
optimization. The optimization problem is stated as 
follows: 

Minimize: 
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Constant lift is maintained by varying the angle of 
attack, α, of the airfoil. At low to moderate values of α, 
i.e., before flow separation and stall, cl varies linearly 
with α. During each evaluation of the fitness function, 
the airfoil is first simulated at an initially guessed α1 
and at α2. A third simulation at α3, found from a linear 
interpolation through (α1, cl1) and (α2, cl2), is then used 
to attain the desired lift. This procedure effectively 
removes the cl constraint from the optimization by 
making it a condition which each simulation must 
satisfy. The optimization is simplified both by the 
removal of the constraint and by reducing the 
dimensionality of the problem, since α is not used as an 
optimization variable. Other constraints are imposed by 
adding penalty terms to the fitness function: 

 
ƒ (x) = �� |cl=const + max[0, (t/c)*-(t/c)max] 

+max [0,������
��]                                              (4) 

 

where (t/c)
*
 is the minimum allowable thickness of 

12.11% (the (t/c)max of the initial airfoil) and �����  
is -

0.122 

 
The VFO framework: A variable fidelity prediction 
predicts the function response in 2 steps:  

 

• The low fidelity function is evaluated to obtain an 
estimate 

• The estimate is corrected by performing a high 
fidelity simulation to obtain a better estimate to  the 
function and apply a correction to the low fidelity 
prediction. The correction between the high and 
low fidelity functions is modeled by a surrogate 
model developed by sampling the function at a few 
points. To evaluate the goodness of fit over the 
entire function landscape, the RMSE and R

2
 of the 

surrogate is calculated for a validation dataset 
generated using a uniform Latin Hypercube sample 
consisting of ntest = nvar*10 points. 
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Fig. 1: The VFO framework 

 

Figure 1 shows the flowchart of the VFO 

framework used in this study. If the initial number of 

points used to construct the surrogate do not result in an 

accurate surrogate, the surrogate is updated by adding 

more points until some accuracy criteria is satisfied. 

The surrogate is then directly coupled to the GA to 

determine the optimum. 

It has been reported that when a surrogate is used 

for fitness evaluation, it is very likely that the 

evolutionary algorithm will converge to a false 

optimum (Jin, 2005). A false optimum is an optimum of 

the approximate model, which is not one of the original 

fitness function. To avoid this, the VF optimum point is 

evaluated by the HF solver every 10 generations. If the 

VF lift coefficient, cl, agrees with the HF cl prediction 

within a 0.01 tolerance and  the drag coefficient within 

0.0001, the optimization is continued. Otherwise, the 

surrogate model is updated by performing HF 

evaluations on the GA population and refitting the 

surrogate before continuing the optimization.
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Fig. 2: RAE-2822 airfoil surface pressure distribution for the 

high and low fidelity solvers. Experimental data for 

the selected case is also shown for reference (Zahir 

and Gao, 2011) 

 

Optimization is terminated once the cumulative change 

in the fitness function value over 50 generations is less 

than or equal to 1.0
6
, or when 100 GA generations are 

completed (whichever comes sooner). 

 

Parallelization: MATLAB’s distributed computing 

toolbox provides a scheduler to distribute multiple tasks 

on several cores of the same computer, or on different 

computers. Although the CFD code used is a serial 

code, the unique individuals of each population are 

evaluated in parallel on several computers (and cores) 

achieving significant time savings. A heterogeneous 

cluster of 7 dual-core IBM-PC computers clocked at 2.5 

GHz and 3.0 GHz (resulting in 14 nodes) and a head 

node are used in this study. 

 

RESULTS AND DISCUSSION 

 

Use of Euler and RANS solvers with several grid 

sizes was investigated previously by Zahir and Gao 

(2011) for use as the low-fidelity solvers. The surface 

pressure distribution on the RAE-2822 at Mach number 

of 0.729, Reynolds number of 6.5x10
6
 and  an  angle  of 

attack of 2.31° are shown in Fig. 2 (Zahir and Gao, 

2011). Results of the HF solver (NS 216x44) are also 

shown. All Navier Stokes solvers use the K-ω 

turbulence model and an initial grid line spacing of  

2x10
6 

units from the airfoil surface. The Euler solvers 

use an initial grid line spacing of 0.01
 
units from the 

airfoil surface. Difference between the aerodynamic 

coefficients  of   the  low-fidelity  solvers  and   the  HF  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Difference between the aerodynamic coefficients of 

the LF solvers and the HF solver. Solver runtime is 

also shown (Zahir and Gao, 2011) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: RMSE and R2 for VF Kriging surrogate using several 

LF solvers 

 
solver is shown in Fig. 3. The computation time for one 
run is also shown (Zahir and Gao, 2011). 

Three LF solvers are selected for the VF surrogate 
in this study to cover the entire spectrum from slow to 
fast and less accurate to more accurate: Euler 60x20, 
Euler   160x24,   RANS  160x24.   Figure 4   shows  the 
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Table 1: Aerodynamic coefficients of the VF optimized airfoils using several LF Solvers. High fidelity evaluations at the VF optimum points are 

also shown along with total optimization time. Results of direct optimization using the HF solver alone are also shown for reference 

Aerodynamic coefficients of optimized airfoils 

Configuration 

VF optimum Result 

---------------------- 

HF evaluation at VF optimum point 

----------------------------------------------  

Surrogate. 

creation Time Opt. time 

Total time 

(hours) 

Hours saved 

(compared to 

direct opt) 

(Sims+fitting) (incl surr 

update) 

cl cd cl (hours) (hours) K (t/c)max (hours) (hours) 

VF, Euler 

60x20, 140 

samples 

0.598 0.00628 0.599 0.00630 -0.095 95.08   0.57 0.91 1.77 

VF, Euler 

160x24, 140 

samples 

0.598 0.00517 0.598 0.00650 -0.089 92.01 12.16% 0.41 0.81 1.22 1.46 

VF, NS 160x24, 

140 samples 

0.599 0.00610 0.598 0.00609 -0.096 98.21 12.12% 0.50 1.02 1.52 1.16 

HF, NS 216x44 

(direct 

optimization) 

  0.598 0.00603 -0.096 99.18 12.12%   2.68  

 

Table 2: Comparison of results obtained from serial and parallel runs, benefits of parallel computation 

HF, NS 216x44 (direct optimization) 

Aerodynamic coefficients 
----------------------------------------------------------------------- 

(t/c)max 

Optimization 

time (hours) cl cd cm K 

Serial Run (Zahir and Gao, 2011) 0.600 0.00643 -0.123 93.45   
Parallel Run 

(Zahir and Gao, 2012) 

0.610 0.00656 -0.122 93.03 12.13% 2.31 

 

 
 
Fig. 5: Surface pressure distributions on the optimum airfoils. 

Results were calculated using the HF solver on the 

geometry produced by the VF optimization algorithm. 

The pressure distribution obtained by direct 

optimization using the HF solver is also shown 

 

RMSE and R
2
 values for the Kriging surrogate fitted to 

the difference between the HF and LF response, ∆f and  

compared to the validation dataset.  

The surrogates yield high R
2
 values and are used to 

perform the VF optimization. The number of sample 

points used to create the VF surrogate are such that 

R
2
>0.9. In this case, it happens to be the minimum 

number of training points, 140. The optimization results 

are given in Table1 along with optimization time. HF 

evaluations of the aerodynamic coefficients at the VF 

optimums are also reported.  

It is clear from Table 1 that the RANS 160x24 

solver yields the best lift-to-drag ratio, k, within 1% of  

 
 
Fig. 6: Geometry of the optimum airfoils. Airfoil produced by 

direct optimization using the HF solver, and the 

baseline RAE-2822 is also shown 

 

the direct optimization result. Other solvers perform 

well     too;     yielding    k     within 7%  of   the    direct 

optimization result, while still providing a significant 

saving in computation time. All solvers also satisfy the 

thickness constraint (t/c) max ≥ 12.11%. 

The benefits of parallel computation are shown in 

Table 2 for a similar optimization problem, but without 

the pitching moment constraint, previously reported in 

Zahir and Gao (2011) and Zahir and Gao (2012). The 

parallel computations are 24 times faster than the serial 

computations a very significant improvement. 

The surface pressure distributions on the optimum 

airfoils are shown in Fig. 5 and the airfoil geometries 

are shown in Fig. 6. It is seen that the optimum pressure 
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distributions and airfoil geometries produced using 

different LF solvers are quite similar. This is also 

reflected in the aerodynamic coefficients shown 

previously in Table 1. 

 

CONCLUDING REMARKS 

 

The VFO method used in this study is, both, 

efficient and capable of finding the optimum that 

closely agrees with the results of high-fidelity 

optimization alone. Modification of the authors’ 

original VF framework to incorporate parallel 

evaluation yields significant time savings. Euler and 

Navier-Stokes solvers evaluated on low resolutions 

grids are good candidates for LF solvers and produce 

results close to the HF optimum with significant time 

savings. 
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