Optimized Pin Assignment for Lower Routing Congestion After Floorplanning Phase

Tianpei Zhang and Sachin S. Sapatnekar
Department of Electrical and Computer Engineering
University of Minnesota
VLSI technology enters the age of Deep Submicron (DSM).

Number of transistors approaches hundreds of million.

More interconnects in circuit than ever results in a tight budget for “silicon real estate”.

Successful routing of interconnects needs careful planning at the early phase of Physical Design.
Traditional Physical Design Flow

Floorplanning/Placement

Pin Assignment

Global routing

Detailed routing

Post-layout simulation

Our Strategy:

1) Estimate congestion information using statistical method after floorplanning phase.

2) Based on congestion estimation, find optimized pin assignment to reduce routing congestion.
Global Bin and Congestion Metric

If Congestion is larger than boundary capacity, overflow happens. $OV = C - Cap$

Pin of global net belongs to a block. Pin assignment finds in which global bin of the block the pin should be located, so that routing congestion is minimized.
Congestion Classification

Internal Congestion: Congestion at bin boundary due to crossing of Local Interconnect.

- **Estimation Strategy**
 - No specific information about interconnect within blocks at floorplan phase.
 - Using Rent’s Rule: \[T = kN^p \]

External Congestion: Congestion at bin boundary due to crossing of Global Interconnect.

- **Estimation Strategy**
 - Statistical estimation based on Z-shape routing of global nets. Initial pin locations are also estimated statistically.
Rent’s Rule: \(T = kN^p \)

- \(N \): number of gates in a logic subnetwork.
- \(T \): number of connections between this subnetwork and the rest of circuits.
- \(k \): Rent’s coefficient.
- \(p \): Rent’s exponent.

Conservation of I/O ports

Estimation of the number of connections between two regions.

E.g.

\[
T_{XtoZ} = k\left[(N_X + N_Y)^p + (N_Z + N_Y)^p \right] - N_Y^p - (N_X + N_Y + N_Z)^p
\]
Internal Congestion Estimation

Contribution to horizontal congestion at edge e includes: (Assume L-shape routing model)

- Interconnection between components E and F.
- Interconnection between components A, B and F.
- Interconnection between components C, D and E.

$$C_{h,e} = \frac{1}{1+\alpha} \left[T_{EtoF} + \frac{1}{2} (T_{ABtoF} + T_{CDtoE}) \right]$$

- Horizontal congestion at e
- α is average gate fan-out
- There are two possible ways from AB to F and from CD to E

Edge e (of a global bin) decomposes building block into components A, B, C, D, E and F

Rent’s exponent p, Rent’s coefficient k
Global Routing and Pin Assignment Model

Best way to estimate external routing congestion is to apply a simple “real” routing, Z-shape routing.

Number of possible routes \(R \) between two pins:

\[R = 1 \text{ when } x_1 = x_2 \text{ or } y_1 = y_2 \]

\[R = |x_1 - x_2| + |y_1 - y_2| \text{ otherwise.} \]
Global Routing and Pin Assignment Model

Simple Z-shape routing

Multiple-pin Net → A set of two-pin nets

Edge cost: Manhattan distance

Since routing is over-the-cell, pin can be anywhere in the block.

Problem: To find best pin locations of a net, Computational complexity can be as high as $O(n^d)$. n is number of bins in a block if assume they have same size, d is the degree of the net.
Decoupling of two-pin nets sharing the same pin. Block boundary are possible locations of “Pseudo-Pin”

Connecting by MST in the second step
Global Routing and Pin Assignment Model

Two-step strategy:

1. Two-pin nets sharing the same pin are first decoupled. This shared pin is decomposed into pseudo-pins. Possible pseudo-pin locations are on the block boundary. Find best pseudo-pin locations for minimized routing congestion.

2. Apply another MST to optimally connect the best pseudo-pin locations to ensure electrical equivalence. Edge cost in MST is congestion cost function (described later).
External Congestion Estimation

Chicken-Egg problem:

Based on congestion information, determine pin location

Based on pin location, do Z-shape routing, determine congestion information

Congestion information

Pin Locations

Probability to take the route:

To break dependence, apply an initial probabilistic distribution of pin locations.

\[p_i = \frac{w_i}{\sum_{all \ route \ j} w_j} \]

\[w_i = \frac{\text{minCap}}{L_i} \]

minCap is minimum routing capacity along the route, \(L_i \) is the length of the route. Assign \(p_i \) to all the bin boundary along the possible routes.
Optimized Pin Location

Based on congestion graph (internal congestion and external congestion), least congested path is by minimizing the following path cost:

\[
\text{Cost} = \beta \sum_{\text{all bins}} OV^2 + \gamma \sum_{\text{all bins}} 1/\text{diff}^2 - \lambda \text{Overlap}^2
\]

\(OV\) is overflow at bin boundary --- punishment
\(\text{diff}\) is unused boundary capacity ---- preventive
\(\text{Overlap}\) is the overlap length with other route in same net ---- encouragement

Find the lowest congestion cost path, so determine the optimized pin locations.
Overall pin assignment algorithm

1. Based on Rent’s Rule, estimate the **internal congestion**.

2. Decompose every **multi-pin net into a group of two-pin nets** using PRIM MST algorithm.

4. For each two-pin net, calculate congestion cost of all possible routes, find **least cost route** and determine the corresponding pseudo-pin location.

5. For all the pseudo-pins in the same block that correspond to the same pin, build **an MST connecting them**, and final pin location may correspond to the location of any **pseudo-pin**.
Experiment Results

<table>
<thead>
<tr>
<th>Circuit</th>
<th># of nets</th>
<th># of blocks</th>
<th>grids</th>
<th>Horizontal overflow</th>
<th>Vertical overflow</th>
<th>run time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OPA</td>
<td>RPA</td>
<td>OPA</td>
</tr>
<tr>
<td>apte</td>
<td>97</td>
<td>9</td>
<td>20 x 20</td>
<td>95</td>
<td>134</td>
<td>44</td>
</tr>
<tr>
<td>ami33</td>
<td>123</td>
<td>33</td>
<td>30 x 30</td>
<td>280</td>
<td>432</td>
<td>191</td>
</tr>
<tr>
<td>ami49</td>
<td>408</td>
<td>49</td>
<td>30 x 30</td>
<td>306</td>
<td>413</td>
<td>27</td>
</tr>
<tr>
<td>xerox</td>
<td>203</td>
<td>10</td>
<td>20 x 20</td>
<td>0</td>
<td>160</td>
<td>1</td>
</tr>
<tr>
<td>hp</td>
<td>83</td>
<td>11</td>
<td>30 x 20</td>
<td>22</td>
<td>61</td>
<td>4</td>
</tr>
</tbody>
</table>

OPA: Optimized Pin Assignment
RPA: Random Pin Assignment
Conclusion

- After floorplanning phase, applying Rent’s rule, circuit building block internal congestion is estimated.
- Based on an initial probabilistic pin location distribution, external congestion is estimated.
- With congestion map, an optimized pin assignment algorithm is proposed.
- Experiment results show effective reduction in routing congestion with optimized pin assignment.
Thank you!