Building Geo-aware Tag Features for Image Classification

Shuai Liao, Xirong Li, Xiaoxu Wang, Xiaoyong Du

Key Lab of Data Engineering and Knowledge Engineering
Multimedia Computing Lab, Renmin University of China

July 16, 2014 @ ICME’14
Images come with geo tags
Knowing where an image was taken may help predict what objects and scenes are present in the image.
Towards geo-aware image classification

• Geo k-nn classifiers [Moxley ICMR’08]
• GIS decoding via GeoNames [Joshi CIVR’08]
• Visual, geo, and temporal k-nn [Qian Neurocomp’13]
• Batch-mode tagging with geo cues [Cao TMM’09]
• Fusion of geo and visual classifiers [Li ICMR’12]
• ...

How to encode geo information at a feature level has not been well explored
Tag features for image classification

To represent an image as a histogram of tags
Building tag features by exploiting many socially tagged images
How to make the tag feature geo-aware?

Building tag features by visual knn
Tag propagation from geo neighbors?

Replace visual neighbors by geo neighbors
Geo neighborhood is sparse

For over 50% images, their 150 geo neighbors cannot be fully retrieved within a radius of 10 kilometers
Our proposal:
Tag propagation from visual/geo neighbors

geo-aware ⟷ geo-aware & content-aware
Visualizing changes in tag features

• Tags relevant to visual classes are enhanced
Questions to answer

• Are geo-aware tag features better?
 – when used alone
 – when used in combination with visual features
Experimental setup

• Source set
 • One million geo-tagged images from Flickr

• Geo-tagged part of NUS-WIDE[Chua CIVR’09]
 – Training set: 41,173 images
 – Test set: 27,401 images
 – 75 test concepts
Experimental setup

- **Tag features**
 - Vocabulary: 2000 top frequent tags in the source set
 - Number of visual/geo neighbors: 150

- **Visual feature**:
 - 1,204-d Bag of quantized SIFT [van de Sande TPAMI’10]

- **Classification models**
 - Fast intersection kernel SVMs [Maji CVPR’08]

- **Performance metric**
 - Average Precision
Results: Comparing different features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Method</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{vnn}</td>
<td>Tag propagation from visual neighbors</td>
<td>0.159</td>
</tr>
<tr>
<td>T_{gnn}</td>
<td>Tag propagation from geo neighbors</td>
<td>0.138</td>
</tr>
<tr>
<td>$T_{vnn \cup gnn}$</td>
<td>Tag propagation from visual/geo neighbors</td>
<td>0.271</td>
</tr>
</tbody>
</table>
Questions to justify

• Are geo-aware tag features better
 – when used alone
 – when used in combination with visual features?
Combining textual and visual classifiers

Visual neighbors

Geo neighbors

Tag feature \(T_{vnn&gnn}\)

Textual Classifier

Late Fusion

Final Classifier

Visual feature \(\text{Visual}\)
System-level comparison

<table>
<thead>
<tr>
<th>System</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeoVisualKNN [Qian Neurocomp’13]</td>
<td>0.113</td>
</tr>
<tr>
<td>Visual</td>
<td>0.226</td>
</tr>
<tr>
<td>Visual + geoknn [Li ICMR’12]</td>
<td>0.251</td>
</tr>
<tr>
<td>Visual + T_{vnn} [Wang CVPR’08]</td>
<td>0.236</td>
</tr>
<tr>
<td>Visual + $T_{vnn} \cup gnn$ (this work)</td>
<td>0.325</td>
</tr>
</tbody>
</table>
Conclusions

• Geo-aware tag features are useful
• A simple method to build geo-aware tag features

xirong@ruc.edu.cn
www.mmc.ruc.edu.cn