A High-Precision Ultra Wideband Impulse Radio Physical Layer Model for Network Simulation
Jérôme Rousselot, Jean-Dominique Decotignie
2nd Omnet++ Workshop, Rome, 6.3.2009
A High-Precision UWB-IR PHY Layer Model for Network Simulation

Overview

- Research Problem and Context
- Ultra Wide Band
 - MB-OFDM UWB, FM-UWB, UWB-IR
 - IEEE 802.15.4A
- Modeling Multiple Access Interference in UWB
 - State of the Art
 - Our approach
- Implementation in Omnet++
- Simulation Results
- Conclusion
A High-Precision UWB-IR PHY Layer Model for Network Simulation

Context

- Research Problem
 - Evaluate UWB-IR potential for Sensor Networks
- Context
 - Without commercial hardware
 - Without support in network simulators
 - Without access to Matlab simulation models
Ultra Wide Band

UWB \Leftrightarrow Bandwidth > 500 MHz (between 1 and 10 GHz)

- Strict power limitations: -41.3 dBm/MHz
- Various possible modulations
- First Products: Wireless USB
A High-Precision UWB-IR PHY Layer Model for Network Simulation

Ultra Wide Band

UWB \iff Bandwidth > 500 MHz \quad \text{(or Bandwidth} > 0.2 fc)

- Strict power limitations: -41.3 dBm/MHz
- Various possible modulations
- First Products: Wireless USB

<table>
<thead>
<tr>
<th></th>
<th>MB-OFDM UWB</th>
<th>UWB-IR</th>
<th>FM-UWB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transceiver Complexity</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>High</td>
<td>Low Tx, High Rx</td>
<td>Low</td>
</tr>
<tr>
<td>Data rates</td>
<td>High</td>
<td>Low, Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Robustness</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
</tbody>
</table>
IEEE 802.15.4A

A High-Precision UWB-IR PHY Layer Model for Network Simulation

![Diagram](image)
A High-Precision UWB-IR PHY Layer Model for Network Simulation

IEEE 802.15.4A

Diagram:
- Preamble Sequence
- SFD
- Data
- Possible burst positions for coding a 0 (256.4 ns)
- Burst duration (32.05 ns)
- Possible burst positions for coding a 1 (256.4 ns)
- TGuard = 256.4 ns
- TGuard = 256.4 ns
- Tsym = 1025.64 ns

csemm centre suisse d’électronique et de microtechnique
IEEE 802.15.4A

A High-Precision UWB-IR PHY Layer Model for Network Simulation
A High-Precision UWB-IR PHY Layer Model for Network Simulation

IEEE 802.15.4A

Possible burst positions for coding a 0 (256.4 ns)

Possible burst positions for coding a 1 (256.4 ns)

Burst duration (32.05 ns)

TGuard = 256.4 ns

Tsym = 1025.64 ns

Tx

Rx

Channel
Narrow Band MAI: Accumulative Noise Model

Frame events

Signal Level

SNR History

BER History
A High-Precision UWB-IR PHY Layer Model for Network Simulation

UWB-IR Multiple Access Interference

![Graphical representation of UWB-IR Multiple Access Interference]

- Source
- Jammer
- Receiver

2x^2 > 0, No impact
A High-Precision UWB-IR PHY Layer Model for Network Simulation

UWB-IR Multiple Access Interference

source

jammer

receiver

2x^2 > 0 No impact

2z^2 > 0 Positive impact
A High-Precision UWB-IR PHY Layer Model for Network Simulation

UWB-IR Multiple Access Interference

Source

Jammer

Receiver

No impact

Positive impact

Negative impact
Existing Approaches to UWB-IR MAI

<table>
<thead>
<tr>
<th>Receiver Type</th>
<th>Channel</th>
<th>Modulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian Approximation</td>
<td>Correlation</td>
<td>AWGN, multipath</td>
</tr>
<tr>
<td>Characteristic Function</td>
<td>Correlation</td>
<td>AWGN, multipath</td>
</tr>
<tr>
<td>Pulse Collision Model</td>
<td>Correlation, rake</td>
<td>AWGN</td>
</tr>
<tr>
<td>Large Deviations</td>
<td>Correlation, rake</td>
<td>arbitrary</td>
</tr>
<tr>
<td>Cumulative Noise</td>
<td>Correlation</td>
<td>AWGN</td>
</tr>
</tbody>
</table>

- Complex Models
- Difficult to evaluate and to adapt
Our Approach to Modeling UWB-IR MAI

- **Objective**
 - Realistic UWB-IR PHY model for network simulation (especially MAI)

- **Approach**
 - Symbol-level simulation

- **Assumptions**
 - Channel coherence time > Packet duration
 - Triangular pulses
 - Synchronization requires jam-free signal
 - Random bit values
 - Energy detection
 - No clock drift
 - No interference from other systems
Tools Selection

<table>
<thead>
<tr>
<th>Simulator</th>
<th>Advantages</th>
<th>Inconvenients</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-2</td>
<td>Well-known, large user base</td>
<td>No prior experience</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Difficulty to implement our solution</td>
</tr>
<tr>
<td>JiST</td>
<td>Java</td>
<td>No user base, no models</td>
</tr>
<tr>
<td>Glomosim</td>
<td>Legacy</td>
<td>abandonware</td>
</tr>
<tr>
<td>Omnet++</td>
<td>Clean design, user community, Model libraries</td>
<td>Not as famous as NS-2 Framework selection</td>
</tr>
</tbody>
</table>
Tools Selection

<table>
<thead>
<tr>
<th>Simulator</th>
<th>Advantages</th>
<th>Inconvenients</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-2</td>
<td>Well-known, large user base</td>
<td>No prior experience</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Difficulty to implement our solution</td>
</tr>
<tr>
<td>JiST</td>
<td>Java</td>
<td>No user base, no models</td>
</tr>
<tr>
<td>Glomosim</td>
<td>Legacy</td>
<td>abandonware</td>
</tr>
<tr>
<td>Omnet++</td>
<td>Clean design, user community, Model libraries</td>
<td>Not as famous as NS-2 Framework selection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Framework</th>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF-2</td>
<td>Well-known, stable</td>
<td>Design issues</td>
</tr>
<tr>
<td>MiXiM</td>
<td>Suitable for detailed PHY modeling</td>
<td>In Development</td>
</tr>
</tbody>
</table>
Implementation of our Approach in Omnet++

- Various Channel Models
 - Ghassemzadeh
 - Modified Saleh-Valenzuela (IEEE 802.15.4A channel models)
- Energy-Detection Receiver
- New radio state: SYNC
- Simple TimeMapping Signal object
Simulation Results

- Channel Models
- Receiver Sensitivity
- Multiple Access Interference
- Performance
A High-Precision UWB-IR PHY Layer Model for Network Simulation

Channels, BER (Distance)
Receiver Sensitivity
Multiple Access Interference
Conclusions

- First UWB-IR Network Simulator
- Easy to adapt to other
 - Modulations
 - Receivers
 - Channels
- Offers speed <-> precision trade-off
- Made possible thanks to MiXiM's design (Signal and Mapping objects)
- Accelerated data analysis with Omnet++ 4 visualisation features
- Accelerated development thanks to the Eclipse-based editor
- Bazaar version control to track our code and resynchronize with MiXiM svn
Thank you for your attention.