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The early and accurate differential diagnosis of parkinsonian disorders is still a significant challenge for clinicians. In recent years,

a number of studies have used magnetic resonance imaging data combined with machine learning and statistical classifiers to suc-

cessfully differentiate between different forms of Parkinsonism. However, several questions and methodological issues remain, to

minimize bias and artefact-driven classification. In this study, we compared different approaches for feature selection, as well as dif-

ferent magnetic resonance imaging modalities, with well-matched patient groups and tightly controlling for data quality issues

related to patient motion. Our sample was drawn from a cohort of 69 healthy controls, and patients with idiopathic Parkinson’s

disease (n¼35), progressive supranuclear palsy Richardson’s syndrome (n¼52) and corticobasal syndrome (n¼36). Participants

underwent standardized T1-weighted and diffusion-weighted magnetic resonance imaging. Strict data quality control and group

matching reduced the control and patient numbers to 43, 32, 33 and 26, respectively. We compared two different methods for fea-

ture selection and dimensionality reduction: whole-brain principal components analysis, and an anatomical region-of-interest based

approach. In both cases, support vector machines were used to construct a statistical model for pairwise classification of healthy

controls and patients. The accuracy of each model was estimated using a leave-two-out cross-validation approach, as well as an in-

dependent validation using a different set of subjects. Our cross-validation results suggest that using principal components analysis

for feature extraction provides higher classification accuracies when compared to a region-of-interest based approach. However,

the differences between the two feature extraction methods were significantly reduced when an independent sample was used for

validation, suggesting that the principal components analysis approach may be more vulnerable to overfitting with cross-validation.

Both T1-weighted and diffusion magnetic resonance imaging data could be used to successfully differentiate between subject

groups, with neither modality outperforming the other across all pairwise comparisons in the cross-validation analysis. However,

features obtained from diffusion magnetic resonance imaging data resulted in significantly higher classification accuracies when an

independent validation cohort was used. Overall, our results support the use of statistical classification approaches for differential

diagnosis of parkinsonian disorders. However, classification accuracy can be affected by group size, age, sex and movement arte-

facts. With appropriate controls and out-of-sample cross validation, diagnostic biomarker evaluation including magnetic resonance

imaging based classifiers may be an important adjunct to clinical evaluation.
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Abbreviations: 3D ¼ three dimensional; ASAP-SYn-Tau ¼ alignment and standardization of neuroimaging methods in atypical

Parkinsonism, specifically synucleinopathies and tauopathies; C ¼ C programming language; CBD ¼ corticobasal degeneration;

CBS ¼ corticobasal syndrome; CT ¼ cortical thickness; DARTEL ¼ diffeomorphic anatomical registration through exponentiated

lie algebra; DTI ¼ diffusion tensor imaging; DTI-TK ¼ diffusion tensor imaging tool kit; DWI ¼ diffusion weighted imaging; FA ¼
fractional anisotropy; FDR ¼ Fisher discriminant ratio; SL ¼ FMRIB Software Library; FoV ¼ field of view; GM ¼ grey matter;

GRAPPA ¼ generalized autocalibrating partially parallel acquisition; IQR ¼ inter-quartile range; JPND ¼ EU Joint Programme

Neurodegenerative Disease; LIBSVM ¼ Library for Support Vector Machines; MD ¼ mean diffusivity; MDS ¼Movement Disorder

Society; MMSE ¼ mini mental state examination; MNI ¼Montreal Neurological Institute; MPRAGE ¼ magnetization prepared

rapid gradient echo; PAT ¼ parallel acquisition techniques; PCA ¼ principal component analysis; PD ¼ Parkinson’s disease;

PROSPECT-UK ¼ UK-based study of PSP, CBD, MSA and atypical parkinsonism syndromes; PSP ¼ progressive supranuclear palsy;

PSP-RS ¼ progressive supranuclear palsy Richardson’s syndrome; REM ¼ rapid eye movements; ROI ¼ region of interest; SPM12

¼ Statistical Parametric Mapping, version 12; SVM ¼ support vector machines; T1w ¼ T1 weighted; TBSS ¼ tract based spatial sta-

tistics; TE ¼ echo time; TIV ¼ total intracranial volume; TR ¼ repetition time; TRSE ¼ twice refocused spin echo; UK ¼ United

Kingdom; UPDRS ¼ Unified Parkinson’s Disease Rating Scale; VBM ¼ voxel-based morphometry; WM ¼ white matter

Introduction
The early and accurate differentiation of parkinsonian

disorders poses a challenge for clinicians and trialists,

which will become critical with the advent of disease

modifying therapies (van Eimeren et al., 2019). Early

symptoms and signs often overlap between idiopathic

Parkinson’s disease, progressive supranuclear palsy (PSP)

and corticobasal syndrome (CBS, and its pathological

counterpart corticobasal degeneration, CBD). Parkinson’s

disease is the most common form of parkinsonism, with

approximately 140 cases per 100 000 (Porter et al.,

2006) whereas PSP and CBS are each approximately 3

per 100 000 (Coyle-Gilchrist et al., 2016). Misdiagnosis

of PSP and CBS is common, often as Parkinson’s disease,

taking on average nearly 3 years from initial symptoms

to diagnosis, while many cases remain undiagnosed.

There is a pressing need for reliable biomarkers to dif-

ferentiate these disorders, not only to aid diagnosis in

early cases, but to monitor progression in trials and to

support ante mortem studies of pathogenesis (van

Eimeren et al., 2019). Biomarkers should be objective

and observer-independent, reproducible, informative

about the underlying biology and ideally non-invasive.

Candidate biomarkers for parkinsonian disorders have

included cognitive tests (Pillon et al., 1995; Aarsland,

2003; Rittman et al., 2013) and assays of cerebrospinal

fluid, serum or urine such as neurofilament light chain
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(Jabbari et al., 2017; Constantinescu et al., 2019; Jabbari

et al., 2020), supplementing those clinical features that

have high clinicopathological correlations (Alexander

et al., 2014; Respondek et al., 2017; Gazzina et al.,

2019).

Magnetic resonance imaging (MRI) provides a set of

potential biomarkers (Whitwell et al., 2017), with the

advantages of being non-invasive, widely available and

versatile. Multiple MRI methods have the potential to in-

form about the underlying neural systems and the

changes resulting from specific pathologies. Pathognomic

radiological signs have been reported, such as the ‘mickey

mouse’ and ‘hummingbird’ signs of mid-brain atrophy in

PSP, but although they have good specificity, sensitivity is

limited, especially in early stage disease when there would

be most to gain from disease modifying therapies.

Automated methods have been developed using volu-

metric or intensity change in grey matter (GM), for ex-

ample voxel-based morphometry (VBM). Most VBM

studies of grey matter in degenerative parkinsonian syn-

dromes have compared patients to healthy controls

(Brenneis et al., 2004; Cordato et al., 2005; Summerfield

et al., 2005; Beyer et al., 2006; Ghosh et al., 2012;

Yarnall et al., 2014). A few have compared patient groups

against each other (Price et al., 2004; Boxer et al., 2006),

or compared subgroups within each disorder, according

to cognitive impairment (Paviour et al., 2006; Mak et al.,
2015) or neuropsychiatric symptoms (Ghosh et al., 2012;

Yao et al., 2014). White matter (WM) changes have also

been described, using VBM or diffusion tensor imaging

(DTI) measures such as the fractional anisotropy (FA)

and mean diffusivity (MD). Differences are observed for

Parkinson’s disease versus controls (Yoshikawa et al.,
2004; Zhang et al., 2011; Rae et al., 2012; Goveas

et al., 2015), Parkinson’s disease versus PSP (Seppi et al.,

2003) and Parkinson’s disease versus CBS (Boelmans

et al., 2010). A meta-analysis of 43 DTI studies in par-

kinsonian syndromes (Cochrane and Ebmeier, 2013) sug-

gested the potential of diffusion-weighted imaging to

improve the differential diagnosis of parkinsonism.

However, accuracy was often not greater than clinical

criteria, sample sizes were often small, and the utility for

single subject decision-making was limited.

We propose that better classification can be achieved

by using statistical classifiers such as support vector

machines (SVM). Mulitvariate data features from a train-

ing set of data (subjects) can be used to build a model to

classify a new dataset (one or more new subjects). In

addition to individual subject classification, these methods

can identify which features underlie the classification (i.e.

indicative of relevant pathological features) and indices of

confidence or typicality that could be used to assess pro-

gression. Statistical classifiers have been applied to several

neurological and psychiatric disorders, including schizo-

phrenia (Caan et al., 2006; Ingalhalikar et al., 2010),

Alzheimer’s disease, frontotemporal dementia (Davatzikos

et al., 2008) and autism spectrum disorder (Ingalhalikar

et al., 2010, 2011; Bloy et al., 2011). Haller et al. (2012)

used DTI data from 17 Parkinson’s disease patients and

23 patients with ‘atypical parkinsonism’ (including typical

PSP and multiple system atrophy). Using tract based spa-

tial statistics (TBSS), a non-linear SVM algorithm, and a

10-fold cross-validation, classification between

Parkinson’s disease and other patients was accurate

(97.5 6 7.5%, depending on the number of features used

for model training). In combination with manual regions-

of-interest selection, classification accuracies >95% were

also achieved by Prodoehl et al. (2013) in binary differ-

entiation of Parkinson’s disease and PSP. T1-weighted

MRI can also support binary classification >85% (Focke

et al., 2011; Salvatore et al., 2014).

Unfortunately, whilst previous studies have demon-

strated successful differential diagnosis of parkinsonism,

significant limitations and methodological questions re-

main. First, many studies have used poorly matched

groups in terms of age or clinical variables, and different

numbers of subjects in each group. The latter is of par-

ticular concern because commonly used statistical classi-

fiers which minimize the classification error (including

SVMs), are liable to inflate accuracy from unbalanced

datasets (see for example, He and Garcia, 2009; Tang

et al., 2009).

A second problem relates to the selection of features

for the classifier. For example, previous studies have used

either mean values from specified regions or individual

voxel data, including manual selection with operator de-

pendence. In addition, studies have rarely compared dif-

ferent MRI modalities to assess whether T1-weighted or

diffusion-weighted imaging (DWI) are most useful. While

most studies using T1-weighted data have used GM vol-

ume as feature type, cortical thickness is a valuable alter-

native (for example Gao et al., 2018; Wilson et al.,

2019).

A third problem concerns the validation of results,

which is challenging with small group sizes. Most studies

have included small numbers of subjects, and therefore

employed cross-validation techniques. However, the use

of the same subjects for training and validation is contro-

versial and may inflate classification accuracies. A more

conservative approach is to split the data in two inde-

pendently acquired groups: one for training and the other

for validation (Salvatore et al., 2014), or to use inde-

pendent datasets for validation.

Finally, most studies have failed to consider how differ-

ent levels of motion during the MRI acquisition affect

classification accuracies. This issue is particularly import-

ant when working with patients with movement disor-

ders. Head motion results in artefacts and smoothing of

MRI data. Different levels of motion across groups could

significantly contribute to classifier’s apparent success in

separating patient groups.

In the present study, we aimed to address these four

methodological issues in the context of differential diag-

nosis of Parkinson’s disease, CBS and the Richardson’s
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syndrome variant of PSP (PSP-RS). Specifically, we com-

pare three equal-sized and closely matched groups of

patients; we used automatic feature selection of grey and

white matter signals; and we undertook an initial leave-

two-out cross-validation followed by validation in an in-

dependent data set. The comparison of well-matched

groups, with automatic feature selection is a challenge for

imaging markers, but one that is necessary to develop un-

biased and useful clinical research tools.

Methods

Subjects

Our analysis sample was drawn from a cohort of 69

healthy controls (mean age 67.3 years, range 51–84), 35

people with idiopathic Parkinson’s disease (mean age

66.9 years, range 46–76, UK Parkinson’s disease brain

bank criteria), 52 people with probable PSP-RS [mean

age 71.9 years, range 51–92, MDS clinical diagnostic cri-

teria for PSP-Richardson’s syndrome (Höglinger et al.,

2017)] and 36 people with probable CBS [mean age

66.9 years, range 39–88 (Armstrong et al., 2013)], with

UPDRS-III motor subscale for all patients.

For the cross-validation analysis (see below), 19 cases

per group were selected so as to match for age, sex, and

MRI motion, with similar UPDRS-III scores in the patient

groups. Local Ethical Committee approval and written

informed consent were obtained. All participants had

mental capacity to consent under UK law.

MRI data acquisition

Diffusion and T1-weighted MRI data were acquired for

all subjects using a 3 T Siemens Tim TRIO scanner at the

Wolfson Brain Imaging Centre. Diffusion MRI data were

acquired with a twice refocused spin echo (TRSE) se-

quence (Reese et al., 2003). Diffusion sensitising gradients

were applied along 63 non-collinear directions with a b-

value of 1000 s/mm2, together with one acquisition with-

out diffusion weighting (b¼ 0). The remaining imaging

parameters were: TR¼ 7800 ms, TE¼ 90ms,

matrix¼ 96� 96, field of view (FoV)¼192� 192 mm,

slice thickness¼ 2 mm without gap, interleaved slice ac-

quisition, and the PAT mode was GRAPPA with an ac-

celeration factor of 2. A high resolution 3D T1-weighted

MPRAGE image was also acquired (TR¼ 2300 ms,

TE¼ 2.98 ms, FoV¼ 256� 240 mm, matrix¼ 256� 256,

slice thickness¼ 1 mm).

Quality assurance and exclusion
criteria

MRI data in general, and diffusion MRI in particular,

can suffer from significant distortions in the presence of

head motion. Given the motor deficits associated with

parkinsonism, metrics of motion are especially important

to ensure the quality of the data across control and pa-

tient groups. Estimating the amount of motion in 3D

MPRAGE images is not trivial. We used SPM12 (www.

fil.ion.ucl.ac.uk/spm/) to estimate the level of smoothness

associated with the MPRAGE images of each subject.

Because of its induction of spatially correlated noise, mo-

tion is expected to correlate with the inherent smoothness

in the data. Firstly, we performed full image segmentation

using the Segment tool in SPM12 (Ashburner and

Friston, 2005). Secondly, the spm_estimate_smoothness

function was used to estimate the inherent smoothness

associated with soft tissue outside the brain, cerebral spi-

nal fluid (CSF) and bone. This function returns a spatial

smoothness estimator based on the variances of the nor-

malized spatial derivatives as described in (Kiebel et al.,

1999). The estimated smoothness values were then com-

pared across controls and patients, and significant out-

liers (>2 standard deviations from the mean) were

visually inspected and removed from further analysis

(data quality was evidently poor for all subjects flagged

by this metric).

For the diffusion MRI data, we estimated motion arte-

facts in two ways. Firstly, we used the eddy_correct func-

tion in FSL v5.0.9 (www.fmrib.ox.ac.uk/fsl) to perform

affine registration between each diffusion weighted volume

and the b¼ 0 image. The output log files from eddy_cor-

rect were used to estimate the absolute displacement

between each diffusion MRI volume and the b¼ 0 images,

as well as the relative displacement between a given vol-

ume and its predecessor. Significant outliers (>2 standard

deviations from the mean) on either metric were identified

and removed from further analysis. Subjects were also

excluded if they moved more than 3 mm (1.5 � voxel size)

between any two diffusion MRI volumes. Secondly, we

used an automated method for detection of striping pat-

terns in the data (Neto-Henriques et al., 2016). Striping

artefacts are caused by spin history and are a common

consequence of head motion when interleaved MRI acquisi-

tions are used. Subjects with more than five volumes

affected by striping artefacts were excluded.

Cross-validation and validation
groups

The remaining subjects were divided into two subgroups:

a cross-validation group and an independent validation

group. The subjects included in the cross-validation group

were selected to satisfy the following criteria:

• Equal numbers of subjects across the four control/pa-

tient groups
• No significant differences in motion metrics across the

four control/patient groups
• No significant age or sex differences across the four

control/patient groups
• UPDRS-III scores matched for all three patient groups
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All remaining subjects who had not been excluded by

the motion quality control metrics made up the validation

group.

Pre-processing of MRI data

The T1-weighted MPRAGE images were segmented and

normalized into MNI space using SPM12. Firstly, the

MPRAGE images were segmented into grey and white

matter maps using Segment (Ashburner and Friston,

2005). For this step, six tissues types were considered

(grey matter, white matter, CSF, bone, soft tissue outside

the brain, and air and other signals outside the head).

Total intracranial volume (TIV) was estimated by sum-

ming probability maps for GM, WM and CSF in native

space. Segmentation was then followed by DARTEL

(Diffeomorphic Anatomical Registration Through

Exponentiated Lie Algebra) (Ashburner, 2007), an algo-

rithm which increases the accuracy of inter-subjects align-

ment by modelling the shape of each brain using three

parameters per voxel, and generating an increasingly

sharp average template over several iterations. Finally,

the sixth iteration of the DARTEL template was used to

generate spatially normalized and Jacobian scaled grey

matter images in MNI space (Mechelli et al., 2005;

Ashburner, 2009).

In parallel, T1-weighted data were pre-processed using

freesurfer version 6.0.0 (surfer.nmr.mgh.harvard.edu).

Cortical reconstruction, volumetric segmentation and cor-

tical thickness extraction used recon-all, and the output

was inspected for quality assurance. The individual cor-

tical thickness (CT) maps were then transformed into

MNI space using the non-linear mapping method pro-

posed by Wu et al. (2018).

The diffusion MRI data were skull-stripped and motion

corrected using FSL v5.0.9, and the diffusion tensor

model fitted using a non-linear fitting algorithm imple-

mented in C and matlab. Fractional anisotropy (FA) and

mean diffusivity (MD) were computed for each subject.

FA and MD maps were transformed onto a common

template space using DTI-TK, a tensor-based registration

approach (Zhang et al., 2006, 2007a) and a study-specif-

ic population-based atlas (Zhang et al., 2007b).

Feature extraction

For the GM volume and cortical thickness maps, feature

extraction was performed in two ways: (i) using the

cortical and subcortical regions-of-interest from the

Harvard-Oxford Atlas (neuro.imm.dtu.dk/wiki/Harvard-

Oxford_Atlas) and (ii) using principal component analysis

(PCA).

For the region-of-interest analysis, 63 grey matter cor-

tical and subcortical ROIs were applied to the spatially

normalized GM maps for each subject, and the average

GM volume value per ROI calculated, hence generating

63 independent features per subject (Fig. 1A). For the

PCA analysis, a GM mask was first created by threshold-

ing the mean GM map obtained from DARTEL in MNI

space (threshold P¼ 0.1). This mask was applied to the

images from each subject, and the voxels contained with-

in the mask were included in a multi-subject PCA ana-

lysis, resulting in N � 1 independent features, where N

represents the number of subjects included in this analysis

(Fig. 1B). Analogous procedures were applied to cortical

thickness maps, excluding subcortical ROIs, resulting in

48 cortical-thickness features per subject.

ROI and PCA methods for feature extraction were also

applied to the FA and MD maps. For the ROI approach,

100 white matter regions from the EVE atlas (http://

lbam.med.jhmi.edu/) were used to extract the average FA

and MD values for each region and subject (Fig. 1C).

For PCA, a white matter mask was first generated by

thresholding the FA map corresponding to the study-spe-

cific template (threshold FA� 0.2). Voxels selected from

the FA and MD maps of all subjects were included to

generate N � 1 independent features (Fig. 1D).

Statistical analysis

The subjects included in the cross-validation and inde-

pendent validation groups were tested for differences in

age, UPDRS-III score, MMSE score, TIV and motion

metrics using ANOVA, Welch’s ANOVA or Kruskal–

Wallis ANOVA depending on whether the relevant

assumptions were met for each metric. The assumption

of normality was assessed using the following criteria:

skewness and kurtosis of residuals between �2 and 2

(George and Mallery, 2010), Shapiro�Wilk test for nor-

mality and normal QQ-plots. Homogeneity of variance

was accepted if the ratio of the largest residual variance

estimate to the smallest group residual variance estimate

does not exceed 3 (Dean and Voss, 1999). Analysis of

sex differences across groups was performed using Chi-

squared testing.

Feature ranking and statistical

classification

Four parallel streams of subsequent analysis were per-

formed, one for each data type and feature extraction

method combination: (i) GM maps þ ROIs, (ii) GM

maps þ PCA, (C) diffusion maps þ ROIs, and (D) diffu-

sion maps þ PCA. Following feature extraction, each fea-

ture was individually normalized using its mean and

standard deviation (z-scoring). The normalized features

generated by each feature extraction approach were then

ranked separately, using the Fisher Discriminant Ratio

(FDR):
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Figure 1 Data analysis pipelines. Analysis pipelines for each combination of data type and feature extraction method. (A) T1-weighted MRI

and ROIs. (B) T1-weighted MRI and PCA. (C) Diffusion MRI and ROIs. (D) Diffusion MRI and PCA.
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FDR ¼ ðl1 � l2Þ2

r2
1 þ r2

2

;

where li and r2
i denote the mean and the variance of the

ith class, respectively.

The top feature for each stream was used in combination

with support vector machines (SVMs) to construct a statis-

tical model for pairwise classification of healthy controls,

Parkinson’s disease, CBS and PSP-RS. The remaining fea-

tures were added to the model, one at a time, in the order

of their FDR ranking, and the classification accuracy of

each model as a function of the number of features was

calculated. The SVM analysis was performed using the

LIBSVM package in matlab (Chang and Lin, 2011).

To assess the accuracy of the four analysis streams, we

first used leave-n-out cross-validation. The N available

subjects are randomly split into a training set of size (N

� n) and a test set of size n. The N-n training set is used

to build a model, whose performance is tested on the n

test set. In this study, n¼ 2 for the pairwise comparisons,

with the testing set including one subject from each

group. Multiple rounds of cross-validation are performed

for different permutations of the subjects left out of the

training set. We report the average classification accuracy

across all iterations of the cross-validation. However, this

method may inflate classification accuracies. Therefore

the leave-two-out cross-validation was supplemented by

an independent validation using a different set of cases

altogether. For the cross-validation approach, feature

ranking using FDR was recalculated for each fold using

the subjects in the training subgroup only, and the same

ranking applied to the two subjects left out. For the inde-

pendent validation, the FDR ranking was determined

using the cross-validation group, and the ranking order

applied to the independent group.

To facilitate comparison between MRI modalities and

feature extraction methods, all feature selection used FDR

ranking. We report classification accuracies as a function

of the number of ranked features included in the model.

Optimal feature selection for each pairwise comparison

(group), MRI modality (T1w, DWI) and method (ROI,

PCA) might use different numbers of features for each

combination. Therefore, we present the accuracies (range,

mean and maximum) obtained across the range of fea-

tures in the classification model. The progressive inclusion

of ranked features leads to non-independent observations

(the first k features are also included in kþ 1 features),

so we do not use serial null hypothesis testing of differen-

ces between combinations of methods. Instead, we report

the range of classification accuracies obtained with each

combination of methodologies.

Spatial localization of the most
relevant features

To illustrate the most relevant features that support the

SVM classifications between groups (19 controls, 19

Parkinson’s disease, 19 CBS and 19 PSP-RS), we present

a map of the SVM weighting for each feature. The par-

ameter weights for each pairwise group-comparison were

rescaled so that the most useful feature for each compari-

son has a normalized weight of 1. We present GM

regions from the Harvard-Oxford Atlas to show the most

relevant brain features for group discrimination. A similar

process was repeated for white matter ROIs in the EVE

Atlas, where each ROI was assigned a weight for its FA

value and a weight for its MD value. The rescaling was

performed for FA and MD features together, so that the

top diffusion feature has weight of 1.

Data availability

Participant consent prevents open data access but aca-

demic (non-commercial) requests for data sharing would

be welcome. Please contact the senior author. The princi-

pal software used (SPM, FSL, LIBSVM and matlab) are

publicly available.

Results

Quality assurance and subject
exclusion

Examples of MRI images for the subjects excluded by the

motion quality control assessment are shown in

Supplementary material, Section A. Exclusion criteria

reduced the sample size to 62 controls (7 subjects

excluded by DWI motion metrics), 32 Parkinson’s disease

(1 subject excluded by DWI motion metrics, 2 subjects

excluded by both DWI and MPRAGE metrics), 33 PSP-

RS (16 subjects excluded by DWI motion metrics, 3 sub-

jects excluded by both DWI and MPRAGE metrics) and

26 CBS (6 subjects excluded by DWI motion metrics, 4

subjects excluded by both DWI and MPRAGE metrics).

Cross-validation and validation
groups

After quality assurance, patient groups were confirmed to

be matched for motion metrics, total intracranial volume

(TIV), age and sex (Table 1). The 62 controls were

younger than the patients, and included a larger propor-

tion of females. We therefore randomly removed females

and younger subjects to reach a sample of 43 age- and

sex-matched healthy controls.

For the cross-validation group, 19 patients were

selected with each diagnosis, matching demographics and

UPDRS-III, with 19 controls matched for motion metrics,

age and sex. The remaining 58 subjects (24 controls, 13

Parkinson’s disease, 14 PSP-RS and 7 CBS) formed the

independent validation test cohort.

Table 1 shows the demographic and neuropsychological

evaluation scores for all groups. For the cross-validation

Accurate MRI classifier for Parkinsonism BRAIN COMMUNICATIONS 2020: Page 7 of 18 | 7
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group, there was no significant difference by diagnosis in

sex, age or UPDRS-III score. There was a significant dif-

ference in MMSE score across the different groups: post

hoc tests revealed that both PSP-RS and CBS patients

had a lower MMSE compared to healthy controls and

Parkinson’s disease patients. Motion metrics were

matched across groups. For the independent validation

group age and head motion were matched across groups,

but there were mild differences between PSP-RS and con-

trols or CBS in terms of age or smoothness respectively

(see Table 1). A summary of the motion metrics for data-

sets excluded after quality control are presented in

Supplementary material, Section C.

Comparison between GM volume
and cortical thickness

Figure 2 shows the classification results using GM vol-

ume or cortical thickness. The methods performed simi-

larly when cross-validation is used with PCA features

(Fig. 2A). However, using ROI features, cortical thick-

ness underperforms relative to GM volume, for all pair-

wise comparisons (Fig. 2C). The reverse is observed

for the independent validation results where classifica-

tion accuracies are lower for GM volume features, for

all pairwise comparisons (Fig. 2B and D). The perform-

ances of different ROI atlases for thickness feature ex-

traction are presented in Supplementary material,

Section D. Since the results of GM volume and thick-

ness are similar, we focus the remaining analyses on

GM volume features as used in most previous classifica-

tion studies.

Cross-validation results

Cross-validation classification results are presented in

Table 2, for both GM volume and diffusion data. The

mean and maximum accuracies and IQR were calculated

over the number of features used (ROIs or PCA compo-

nents). The accuracy results for group comparisons are

Figure 2 GM volume versus cortical thickness. Comparison between GM volume (blue) and cortical thickness (orange) as feature types.

The range of classification accuracies presented for each pairwise comparison and combination of methodological variables corresponds to the

results obtained as different numbers of features are included in the statistical model. (A) Cross-validation results when PCA is used for feature

extraction. (B) Independent validation results when PCA is used for feature extraction. (C) Cross-validation results when ROIs are used for

feature extraction. (D) Independent validation results when ROIs are used for feature extraction.
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all above chance (50%), but some are lower than previ-

ous reports from unmatched studies (e.g. Haller et al.,

2012; Salvatore et al., 2014). With the well-matched

groups described in our study, mean classification accura-

cies were in the range 62.16–90.3% for T1-weighted

data and 61.26–94.95% for diffusion data.

Plots showing classification accuracy, sensitivity and

specificity as a function of the number of features

included in the model (number of ROIs or PCA compo-

nents) can be found in Supplementary material, Section

E. Comparisons between controls and PSP-RS and be-

tween Parkinson’s disease and PSP-RS are shown as rep-

resentative examples.

Independent validation results

Table 3 summarizes the results using independent valid-

ation samples to test model accuracy, for both GM vol-

ume and diffusion data. The mean and maximum

accuracies and IQR were calculated over the number of

features used (ROIs or PCA components). Training and

testing in less well-matched independent sets of subjects

resulted in mean classification accuracies in the range

44.37–71.87% for T1-weighted data and 57.63–90.49%

for diffusion data.

Plots showing classification accuracy, sensitivity and

specificity as a function of the number of features

included in the model (number of ROIs or PCA principal

components) can be found in Supplementary material,

Section F. Comparisons between controls and PSP-RS

and between Parkinson’s disease and PSP-RS are shown

as representative examples.

Comparison between feature

extraction methods (ROIs

versus PCA)

Figure 3 shows the classification accuracies for each

method of feature extraction, across all pairwise group

comparisons, for cross-validation and independent valid-

ation. Note the comparison between data reduction meth-

ods (PCA green, ROI yellow) and feature types (GM

volume top row, FAþMD bottom row), for within sam-

ple cross-validation (left) and out-of-sample independent

validation (right).

Table 2 Classification accuracies achieved for pairwise comparisons using a leave-two-out cross-validation approach

Mean accuracy (%) IQR (%) Max accuracy (%)

T1-weighted data (GM volume maps)

GM maps þ ROIs

C vs PD 71.96 2.18 85.46

C vs CBS 83.36 0.59 91.69

C vs PSP-RS 73.74 5.68 81.02

PD vs CBS 77.93 3.88 85.87

PD vs PSP-RS 67.44 2.35 70.91

PSP vs CBS 62.16 0.55 65.65

GM maps þ PCA

C vs PD 82.54 15.17 97.78

C vs CBS 90.33 8.00 99.31

C vs PSP-RS 84.60 10.77 95.84

PD vs CBS 87.31 9.28 97.09

PD vs PSP-RS 87.38 13.50 96.95

PSP vs CBS 88.23 16.17 100.0

Diffusion MRI data (FA and MD maps)

FA and MD maps þ ROIs

C vs PD 61.26 12.88 75.21

C vs CBS 70.13 5.54 77.28

C vs PSP-RS 82.44 6.44 87.53

PD vs CBS 72.89 10.66 81.99

PD vs PSP-RS 74.93 6.58 85.04

PSP vs CBS 79.84 7.89 90.72

FA and MD maps þ PCA

C vs PD 85.43 19.43 99.72

C vs CBS 90.06 9.90 97.37

C vs PSP-RS 92.51 10.15 99.86

PD vs CBS 84.40 7.34 91.55

PD vs PSP-RS 89.49 3.98 96.40

PSP vs CBS 94.95 12.67 100.0

For each pairwise comparison, two patients, one from each group, were left out of the training phase for each cross-validation fold and used to estimate model accuracy. The classi-

fication accuracies presented correspond to the mean and maximum accuracies obtained when different numbers of features (ROIs or PCA components) are included in the statis-

tical model. Inter-quartile range (IQR) is also shown.
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Comparison between
cross-validation and independent
validation

Only qualitative descriptions are used to compare be-

tween the two methods for model validation (see

Methods section). Figure 4 shows box plots for the range

of classification accuracies obtained with each approach,

across all pairwise comparisons, for both types of feature

extraction (ROIs and PCA components).

Spatial localization of the most
relevant features

Figure 5A indicates the relative importance of each GM

ROI for classification (the model used for independent val-

idation). Figure 5B shows the analogous maps of diffusion

features. These are the most relevant regional features for

the classification accuracies summarized in Table 3.

Discussion
This study addresses four key issues in the use of MRI

for diagnostic or classification biomarkers for

parkinsonian disorders. We show that even with well-

matched groups, of equal size, and tight control of mo-

tion artefacts, one can achieve accurate cross-validated

differential diagnosis of Parkinson’s disease, PSP-RS and

CBS. The strongest results were achieved when principal

components analysis was used for feature extraction,

resulting in consistent mean accuracies above 80% and

maximum accuracies over 90% for all group compari-

sons, using either diffusion or grey matter volume data.

The use of PCA feature extraction gave higher accuracies

than ROIs, with a difference of approximately 25%.

While mapping the distribution of pathology was not an

aim of the present study, the regions that were most con-

tributory to the support vector machine classifiers were

biologically plausible, including the basal ganglia. Using

diffusion weighted images for classification, the highly

ranked features included diffuse FA and MD signals, and

neither metric outperformed the other (FA versus MD).

Overall, we confirmed that good diagnostic accuracy

can be achieved using either grey or white matter features

from standard structural and diffusion MRI sequences,

respectively. The classifications by diffusion and GM vol-

ume data were generally similar for the cross-validation

group (‘within-sample’). However, there were some

Table 3 Classification accuracies achieved using the independent validation group

Mean accuracy (%) IQR (%) Max accuracy (%)

T1-weighted data (GM volume maps)

GM maps þ ROIs

C vs PD 47.75 8.11 64.86

C vs CBS 63.95 6.45 74.19

C vs PSP-RS 62.78 4.61 76.32

PD vs CBS 47.14 8.75 60.00

PD vs PSP-RS 57.67 3.70 62.96

PSP vs CBS 44.37 4.76 61.90

GM maps þ PCA

C vs PD 55.66 5.41 67.57

C vs CBS 63.12 3.23 67.74

C vs PSP-RS 68.99 3.29 76.32

PD vs CBS 50.95 10.00 60.00

PD vs PSP-RS 71.87 4.63 81.48

PSP vs CBS 48.52 4.76 57.14

Diffusion MRI data (FA and MD maps)

FA and MD maps þ ROIs

C vs PD 59.74 5.41 75.68

C vs CBS 78.74 5.37 87.09

C vs PSP-RS 90.49 2.63 94.74

PD vs CBS 77.90 15.00 85.00

PD vs PSP-RS 86.78 3.70 92.59

PSP vs CBS 76.33 4.76 80.95

FA and MD maps þ PCA

C vs PD 57.63 10.81 72.97

C vs CBS 73.41 6.45 80.64

C vs PSP-RS 80.87 5.92 89.44

PD vs CBS 80.81 5.00 85.00

PD vs PSP-RS 81.48 3.70 88.89

PSP vs CBS 80.82 4.95 90.63

Seventy subjects (19 from each group) were used to train the model, and validation was performed on 58 unseen patients and controls. The classification accuracies presented cor-

respond to the mean and maximum accuracies obtained when different numbers of features are included in the statistical model (ROIs or PCA components). Inter-quartile range

(IQR) is also shown.
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notable differences. For example, diffusion data resulted

in better differentiation than volume data between PSP-

RS and CBS patients (80% versus 62%), but poorer dif-

ferentiation between controls and Parkinson’s disease

(61% versus 72%). Neither data type outperformed the

other in all cases, although diffusion data produced

higher accuracies when comparing PSP-RS patients to

controls or CBS patients. With the independent validation

groups, accuracy generally decreased (by an average

13%), despite less stringent matching. This decrease may

indicate overestimation by within-sample cross-validation.

However, the difference was less marked when diffusion

metrics were used (5% average reduction in accuracy)

than GM volumes (average 23% reduction in accuracy,

some to chance levels). Using a principal components

analysis over grey matter volume of white matter diffu-

sion signals provides higher classification accuracies com-

pared to a set of anatomical regions-of-interest when

cross-validation is used to estimate accuracy, but lower

classification accuracies in the independent validation

analysis.

The selection of imaging features is critical to the per-

formance and interpretation of classifiers. MRI provides

a rich repertoire of structural, functional, neurochemical

and diffusion features. We focus on the T1-weighted and

diffusion tensor images which are most widely available,

with short sequences that are readily tolerated by

patients, and which require minimal operator expertise.

These would be an advantage for scalable multisite stud-

ies, or in support of diagnostics and stratification in a

trial context. Nonetheless, even these standard sequences

provide many potential features and feature extraction

options.

We compared two approaches for feature extraction,

based on (i) a priori regions of interest from a common

anatomical atlas and (ii) a data-driven principal compo-

nents analysis. When PCA was used for feature extrac-

tion, accuracy, sensitivity and specificity generally

Figure 3 PCA versus ROIs. Comparison between feature extraction methods: PCA (green) and ROIs (yellow). The range of classification

accuracies presented for each pairwise comparison and combination of methodological variables corresponds to the results obtained as different

numbers of features are included in the statistical model. (A) Cross-validation results when GM volume maps are used as feature type. (B)

Independent validation results when GM volume maps are used as feature type. (C) Cross-validation results when FA and MD maps are used as

feature type. (D) Independent validation results when FA and MD maps are used as feature type.
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increase as more features are added to the model until

a plateau at �15 components for GM volume data and

15-30 for diffusion data (see the plots in Supplementary

material, Section E). The plateau is generally sustained

until the last 2–5 features are added, consistent with

previous studies (Salvatore et al., 2014). This is

expected for PCA with FDR feature-ranking, which

concentrate predictive information in the earlier fea-

tures. When ROIs are used as features, only the FDR

criterion is used for feature ranking and the ranking of

features may differ for each fold of the cross-validation.

The non-predictive information remains more evenly

distributed across ROI features than PCA features. The

advantage of PCA could be due to small localized

changes in brain morphology and/or function that are

averaged across a ROI. On the other hand, the differen-

ces between the two feature extraction methods are sig-

nificantly reduced when an independent sample is used

for validation. This suggests that the PCA approach

may be more vulnerable to the overfitting with cross-

validation approaches.

We also compared two types of tissue signal—GM vol-

ume and thickness measures based on a T1-weighted se-

quence, and metrics of white matter tissue organisation

using diffusion tensor imaging. We replicated previous

studies in that both types of data support classification

above chance. Neither type clearly outperforms the other

across all pairwise comparisons among our three clinical

cross-validation groups. However, features obtained from

diffusion MRI data resulted in higher classification accu-

racies using the independent validation cohort (for both

ROIs and PCA feature extraction). For some key con-

trasts of interest (Parkinson’s disease versus CBS, and

Parkinson’s disease versus PSP-RS) the classification ac-

curacy in the independent sample using diffusion data

was as good as the cross-validation results. Despite the

Figure 4 Cross-validation versus independent validation. Comparison between cross-validation (magenta) and independent validation

(blue) results. The range of classification accuracies presented for each pairwise comparison and combination of methodological variables

corresponds to the results obtained as different numbers of features are included in the statistical model. (A) Results obtained when PCA is

used for feature extraction, with GM volumes maps as feature type. (B) Results obtained when ROIs are used for feature extraction, with GM

volumes maps as feature type. (C) Results obtained when PCA is used for feature extraction, with FA and MD maps as feature type. (B) Results

obtained when ROIs are used for feature extraction, with FA and MD maps as feature type.
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improvement of thickness over volume in the independent

validation, diffusion metrics still outperformed GM thick-

ness for three out of the six groupwise comparisons

(Supplementary material, Section G). In the main results,

we combined FA and MD features for the classifier, al-

though single diffusion metrics [i.e. FA-only or MD-only

were not consistently inferior (Supplementary material,

Section H)]. Interestingly, the combination of diffusion

and GM volume features did not increase classification

accuracy with FDR feature ranking (Supplementary ma-

terial, Section I).

Close matching by demographics, clinical severity and

motion artefacts is essential to properly evaluate and

compare candidate biomarkers. Without such matching,

the apparent success of some previous imaging-based bio-

markers in distinguishing clinical groups may have been

inflated by individual differences that are unrelated to the

structural and neuropathological consequences of disease.

Figure 5 Spatial localization of top classification features. Colour-coded images showing the relative importance of each ROI for

pairwise classification using SVM. The top ranked feature for each pairwise group comparison has a normalized weight of 1 and is shown in

yellow, while the least important features are shown in red. (A) Cortical and sub-cortical ROIs used for classification with GM volume features.

(B) White matter ROIs used for classification with FA and MD features. The top row shows the spatial distribution of the most relevant FA

features, while the bottom row shows the localization of the most relevant MD features.
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For example, in unselected cases, motion artefacts were

greater in patients than controls: 26% of patients

exceeded our motion criteria compared to only 10% of

controls. Exclusion rates varied by group: 9% of

Parkinson’s disease, 28% of CBS and 37% of PSP-RS.

Machine learning tools such as support vector machines

are very sensitive to systematic patterns in the data but

are agnostic as to the origins of such patterns e.g. motion

versus neuropathology versus atrophy. The very high

classification accuracies between patient groups reported

in some previous studies (up to 100%), may be inflated

by differential motion. The effects of head motion in

MRI data analysis are well documented. For example,

head motion during acquisition of 3D T1-weighted MRI

images reduces grey matter volume estimates (Reuter

et al., 2015), while head motion in a diffusion MRI ac-

quisition can create spurious group differences (Yendiki

et al., 2014). Similarly, the comparison of groups at dif-

ferent stages of disease, or different levels of severity,

may confound classification. Unfortunately, there is no

universal severity or staging rating scale across parkinson-

ian disorders, with disease-specific features in the UPDRS

and PSP-rating-scale. The forthcoming PSP functional rat-

ing scale and new CBS functional rating scale may be ap-

plicable across groups, but we applied the available

UPDRS-III with its focus on common motor features

across our three clinical groups.

Despite matching by age, sex, motion artefacts, and

having similar UPDRS-III scores, the issue of differential

disease severity remains challenging, from two perspec-

tives. First, there is currently no single rating scale or in-

vestigation that fully summarizes disease severity across

Parkinson’s disease, PSP and CBS, either as a clinical

scale, neurotransmitter or functional brain image. Even

where a clinical scale such as UPDRS is applicable across

the disorders, it may not give a like-for-like index of dis-

ease stage (e.g. from onset to death) or functional decline

(e.g. activities of daily living), or pathology (e.g. dopa-

mine depletion, or cell loss). Second, the three diseases

may each have prolonged prodromal phases and long

periods in which patients are misdiagnosed. PSP and

CBD typically take 2–3 years from symptoms to diagnosis

(Coyle-Gilchrist et al., 2016; Mamarabadi et al., 2018),

while Parkinson’s disease causes under-recognized clinical

manifestations like constipation and REM-sleep behav-

ioural disorder many years before tremor and akinesia. It

is too soon to know whether MRI based classification is

capable of differentiating these disorders in early pro-

dromal stages, or pre-symptomatically, in the way that

has been shown for frontotemporal dementia (Rohrer

et al., 2015). For PSP, the recent operationalization of

early stage ‘oligosymptomatic’ and ‘possible’ cases will

enable MRI biomarkers of PSP to be tested earlier

(Höglinger et al., 2017).

Phenotypic variation other than severity is also chal-

lenging. The classical Richardson’s syndrome presentation

of PSP has very high clinico-pathological correlations to

PSP-pathology. However, this classical phenotype may

represent a minority of presentations of PSP-pathology:

cognitive, linguistic and behavioural presentations are

common (Respondek et al., 2014; Höglinger et al.,
2017). Similarly, CBS has many phenotypic variants, with

motoric, behavioural and language presentations

(Armstrong et al., 2013). This study does not include

cases from the full phenotypic range of corticobasal syn-

dromes, or syndromes caused by corticobasal degener-

ation (Alexander et al., 2014). The current study was not

designed to resolve the issue of heterogeneity, but rather

to highlight methodological considerations, and best prac-

tice, which we hope can be carried forward to identify

robust biomarkers of a wide range of phenotypic expres-

sions of the pathologies of Parkinson’s disease, PSP and

corticobasal degeneration (Jabbari et al., 2020).

Although we have addressed four key methodological

issues, several limitations remain. This was a single centre

study, resulting in a modest sample size when compared

to recent multi-centre studies (Huppertz et al., 2016;

Nigro et al., 2017; Jabbari et al., 2020). This limits the

generalisation of our results to different clinical sites with

potentially different scanning practices, scanner manufac-

turers and sequence parameters. Our diffusion data were

not corrected for EPI distortions, as data were acquired

before reverse-phase encode direction acquisitions was

common practice. Therefore, the FA and MD maps used

for classification were affected by distortion artefacts, al-

beit in all groups. The control and patient groups

included in this study were matched for age, sex, motion

parameters and UPDRS-III scores (for the patients).

However, there was a difference in MMSE between the

groups; and previous studies have highlighted the cogni-

tive impairments resulting from Parkinson’s disease

(Williams-Gray et al., 2013), PSP (Rittman et al., 2013)

and CBS (Burrell et al., 2014). Given the correlations be-

tween cognitive function and structural and diffusion

MRI in Parkinson’s disease, PSP-Richardson’s syndrome,

and CBS (Paviour et al., 2006; Ghosh et al., 2012; Rae

et al., 2012; Mak et al., 2015) the non-matching by cog-

nitive dysfunction could contribute to classification.

Against this argument, is that different cognitive deficits

are hallmarks of Parkinson’s disease, PSP and CBS, and

to match a cognitive profile would compromise the repre-

sentativeness of the patients chosen. Another potential

limitation of this study is that patient labels were

assigned using clinical diagnostic criteria not histopath-

ology, and the limitation of clinicopathological correla-

tions may cap the statistical classifier’s ability to learn

and separate the different patterns of disease. Our

centre’s diagnostic accuracy of CBS and PSP-RS is in line

with other centres (Alexander et al., 2014; Gazzina et al.,

2019), with generally high clinicopathological correlation

of PSP-Richardson’s syndrome (>90%) relative to CBS/

CBD (>60%). Finally, all our data were subjected to
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strict data quality control criteria, with the aim that the

disease patterns detected by SVM were independent of

the severity of motion present in those data. While this

ensures that poor data quality will not be mistaken for

real effects of the pathology, it may also exclude patients

with symptoms that do not allow them to be still enough

to undergo the MRI examination. For example, 19 sub-

jects with PSP-RS (37% of the original sample) were

excluded by our quality control criteria, which may bias

the sample in the PSP-RS group. This indicates a trade-

off, whereby high-quality data cohorts may not be repre-

sentative of the full range of disease.

In summary, we suggest that machine learning meth-

ods for MRI data can be used to aid the automatic dif-

ferential diagnosis of PSP-RS, CBS and Parkinson’s

disease, meeting critical criteria set by the Movement

Disorder Society Neuroimaging Study Group and the

JPND Working group ASAP-SYn-Tau (van Eimeren

et al., 2019). However, to make such a contribution,

and augment clinical assessments, these techniques must

guard against methodological biases from different lev-

els of motion across patient groups, and poorly

matched samples. With closely matched groups, of

equal size and similar severity, the use of diffusion

weighted images is particularly encouraging, in its high

accuracy rate and generalization to independent data.

Application of these methods to large samples and mul-

tisite studies will be facilitated by international collab-

orative studies of early stage or atypical presentations

of each disease [e.g. PROSPECT-UK (Woodside et al.,

2017) and the Four-repeat tauopathy neuroimaging ini-

tiative], aiming for reliable, unbiased, disseminated tools

for early differential diagnosis and stratification in clin-

ical trials of new therapies.
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Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang

AE; for the Movement Disorder Society-endorsed PSP Study Group,

et al. Clinical diagnosis of progressive supranuclear palsy: the move-

ment disorder society criteria. Mov Disord 2017; 32: 853–64.
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