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Filling the Teaching Gap between Electromagnetics and 

Circuits 
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Abstract: Electrical engineers normally are taught electromagnetism in an electromagnetics course (e.g. in [1-2]), and circuit analysis 
in an independent course (e.g. in [4-6]). Circuits are dominated by Kirchhoff’s laws, while electromagnetics is dominated by Maxwell’s 
equations. However, the correspondence between two sets of equations is not immediately perceived and this creates some uncertainty 
in the young electrical or electronic engineer, which may grow with the doubt that Kirchhoff’s laws may be somewhat laws of the 
nature independent of the laws of electromagnetism. This paper has the purpose of supplying teaching material that may be used to fill 
the gap, and therefore be taught either at the end of an electromagnetics or at the beginning of a circuit course. It exploits large parts of 
the paper published in a conference [8], but also contains significant enhancements. The paper first shows simple distributed parameter 
systems, whose behaviour follows Maxwell’s equations, and then shows that they, under given assumptions, can be modelled as 
circuits, whose behaviour is governed by Kirchhoff’s laws.  
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Nomenclature 

B magnetic flux density (or magnetic induction) 

D electric flux density 

E electric field 

J current density field (or areic current field) 

Jd 
displacement current density field (or areic 
displacement current field) 

H magnetic field  

 dielectric constant 

 electric resistivity 

µ magnetic permeability 

 flux linkage 

c charge density (or volumic charge) 
 

AC or a.c. alternating current 

DC or d.c. direct current 

EMF electromotiveforce 

KVL Kirchhoff’s Voltage Law 

KCL Kirchhoff’s Current Law 

1. Introduction 

During past centuries the electromagnetism theory 

has seen the basic laws first (such as Gauss’s, 

Ampère’s, Faraday’s, Ohm’s) to be discovered in an 
                                                           

Corresponding author: Massimo Ceraolo, MS in electrical 
engineering, full professor in electric power systems, research 
fields: circuit basics, electric and hybrid vehicles. 

integral, macroscopic way, then to be expressed in a 

differential form that results in equations that, while 

having as a consequence the integral versions from 

which they derive, are useful extensions of them. The 

most important effort in this rationalization of the basic 

laws was from Maxwell, and therefore the resulting 

equations are called Maxwell’s equations (in 

differential form).  

Rather independently, the basic circuit laws, known 

as Kirchhoff’s Current Law and Kirchhoff’s Voltage 

Law, have been postulated and widely used. 

Kirchhoff’s laws are taught to be applicable to 

circuits, which can be fuzzily defined as 

electromagnetic systems composed by lumped 

components connected to each other by thin conductor 

lines (= wires).  

The two equation sets (Kirchhoff’s and Maxwell’s) 

however, are independently introduced, so it is not 

always clear what is the rationale behind the 

postulation of Kirchhoff’s laws in circuits, or, 

equivalently, what are the hypotheses that allow a 

physical, three-dimensional, system to be modeled and 

studied as a circuit (governed by Kirchhoff’s laws) 

D 
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[1-7]. 

Ref. [8] was therefore conceived with the purpose of 

filling the knowledge gap between electro-magnetics 

and circuit theory, so that the relation of the two 

approaches is clarified. This paper reproduces parts of 

the results of Ref. [8], having in mind the need to 

enhance, taking advantage of what was there discussed, 

the way teachers teach the fundamentals on which 

circuits, as a concept, are based. 

1.1 Graphical Conventions 

To facilitate understanding the logical distinction we 

want to make between electromagnetic systems having 

a “circuital shape” (i.e. being constituted by lumped 

components connected to each other by thin lines), we 

make a graphical distinction: in case of physical 

systems we reproduce the cross-sectional size of the 

lines, while in case of circuits we do not (Fig. 1). 

1.2 Maxwell’s and Other Relevant Electromagnetism 

Equations 

Although very well known, here the four Maxwell’s 

equations are reproduced in their integral form, so that 

they constitute an easy reference when reading of the 

remainder of the paper. The symbols are those reported 

in Section 1, and used throughout the paper. 
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In addition to Maxwell’s equations the pointwise 

Ohm’s and continuity equations are reminded, because 

 

 
Fig. 1  Graphical convention adopted for conductors: (a) 
devices connected by real-connecting lines; (b) devices 
connected by idealized lines.  

of their importance for the paper1. 
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In case of systems where it is known that all 

quantities are constant (i.e. DC systems), all time 

derivatives become zero, and the first and third 

Maxwell’s equation become: 
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and continuity equation becomes as well: 

S
S

closed0d  SJ    (5) 

2. Distributed Systems and Circuits 

Electromagnetism studies electrostatic (i.e. related 

to effects of the presence of charge in given portions of 

space) and electrodynamic, or magnetic (i.e. related to 

moving charges) phenomena. 

It extends to phenomena related to interaction of the 

previous two, since in time-varying systems they are 

closely related to each other. 

The use of Maxwell’s equations or other 

electromagnetism tools either in integral or differential 

form has proven too demanding to analyze systems 

composed by different electromagnetic subsystems. 

Consider the simple system shown in Fig. 2. 

It is formed by an electric sine-wave voltage 

generator feeding two lamps with the interposition of a 

couple of wires, which are represented “thick”, because 

in a physical system they have not only a length but 

also a width. 
 

 
Fig. 2  A simple electromagnetic system containing wires 
connecting lumped components.  

                                                           
1 The continuity equation is not independent of Maxwell’s 
equations: it can be easily derived taking the divergence of both 
members of the third of (1), and introducing c in the result 
taking it from the second one. 
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The analysis of this system would be greatly 

simplified if, instead of having to analyze 

simultaneously the whole system using Maxwell’s 

equations (differential equations to be applied at any 

point of space taking into account all boundary 

conditions), we are able to write independent equations 

of the involved individual, lumped, components and 

link them by some additional congruence equations. 

This approach can be referred to, for the time being, 

as the circuit or circuital approach. 

A qualitative analysis of Fig. 2 shows that the 

generator connects to the lamps through long wires, 

while short, vertical connections are present at the two 

sides of the system. Therefore a hypothetical 

approximation of the system of Fig. 2 could be as 

shown in Fig. 3a: the connections are shown using thin 

wires, to evidence their connecting role, while the parts 

of the original system to be modeled individually are 

enclosed in boxes or circles. In Fig. 3b, a further 

evolution of the system is shown, in which the 

components are substituted with symbols indicating 

specific mathematical modeling of the considered 

components: ideal resistors for line and loads, ideal 

generator for the generator. 

The circuital approximations of Fig. 3 are composed 

only by circuit elements (generator, lamps or resistors, 

transmission line box) and ideal wires. All physicists 

and electrical engineers already know very well that 

this “lumpization” of electromagnetic systems 

constituted by components joined by conductor wires 

is possible, but rarely the rationale behind this 

conversion is investigated. 

In the following sections it is shown that the 

conversion of spatially-distributed physical systems 

into circuits is possible, under certain hypotheses, 

which also determine the choice on how to make the 

transformation, and imply some limitations. 

In search of the implementation of the conversion 

into circuit of any system governed by the 

electromagnetism equations, better is to start with the 

simplest case, i.e. when all quantities do not vary with 

time. By traditional nomenclature these systems are 

referred to as “direct current” systems.2 

3. Applicability of Kirchhoff’s Current Law 
in d.c. Circuits 

Consider a region of space, able to exchange charge 

between its interior and exterior. In case we want to 

analyze a system by means of the technique of 

conversion into a circuit, it is rather obvious that this 

charge exchange occurs only by means of discrete 

“channels” constituted by the wiring entering the 

surface, while charge exchange in regions not occupied 

by wires is neglected.  

Therefore it is reasonable to put forward the 

following:  

ASSUMPTION 1: any charge flow is neglected 

anywhere outside circuit elements, except than 

within conductor wires. 

Consider the region of space V surrounded by 

surface S (Fig. 4a). 

In the drawings of Fig. 4, all the conductor wires 

converging into the volume V are considered (and 

shown). 
 

 
Fig. 3  Circuital approximation of system of Fig. 2.  
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Fig. 4  A confined region of space (a) that can bring to a 
generalized node (b) and a node (c).  

                                                           
2 Better name would have been “constant operation systems” 
or “steady-state systems”. 
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Let us now consider the continuity Eq. (3). 
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where c is the spatial charge density, or charge per unit 

of volume. 

Since by hypothesis we are “in d.c.”, meaning that in 

the considered systems all quantities are constant, 

charge density is also constant and therefore in this 

case the continuity equation becomes Eq. (5).  

Because of Assumption 1 conductive currents are 

possible only within wires. So the integral of Eq. (5) is 

simplified since Jt is non-zero only though Sk, that are 

the intersections of S with conductor wires. 
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Thus: 

 
That is KCL for the region V. 

Fig. 4b shows another representation of the same 

system of Fig. 4a. In this paper, however, there is a 

logical distinction between the two: the thin wires of 

Fig. 4b are idealized wires, based on special 

assumptions. At this point of the paper, the only 

assumption beyond the symbol of idealized wires is 

Assumption 1. 

Obviously enough, the demonstration proposed, 

referred to the scheme of Fig. 4a, contained what is 

normally called in circuit terminology a “generalized 

node”, is applicable also in the scheme of Fig. 4c 

containing a conventional node: it is just necessary to 

consider a tiny surface S around the connection of 

some wires. 

CONCLUSION 1: in a physical system operating in 

DC for which Assumption 1 is applicable the KCL 

applies. 

4. Applicability Kirchhoff’s Voltage Law in 
d.c. Circuits 

Consider the system displayed in Fig. 5. 
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Fig. 5  Basic system with charge flow and chemical and 
electrostatic fields. 
 

It is composed by an electrochemical battery (at the 

left side of the figure) connected through physical 

wires to a load resistor Rl at the right side.  

Let us first imagine that there is some positive 

charge located at the upper terminal of the battery and 

an equal amount of negative charge in the lower one. 

These charges would create an electric field Es in the 

space around them: inside conductors it is longitudinal, 

while outside it has a different orientation (one possible 

force line is shown dashed in figure), but has no 

relevance for analysis of DC systems since by effect of 

Assumption 1, charge movement is allowed only 

within conductor wires.  

Any individual charge present in the conductors (i.e. 

an electron) would then circulate in the conductor loop 

of the system, and finally offset the initial charge 

accumulated at the two battery terminals, and so in a 

very short time the conductor loop would be neutral 

and no more charge could flow. 

During this flow, the energy received by the charge 

by effect of Es is dissipated during the transit, by effect 

of the energy loss occurring during charge movement 

in conductor materials, i.e. where Ohm’s law applies. 

It is a well-known fact that the battery is able to 

cause continuous charge flow in the circuit. Although 

the actual behavior of an electrochemical battery is 

very complex, it can be modeled for the purposes of 

this study as a system able to “pump” charges pushing 

them from its negative electrode towards its positive 

one by means of an inner electric “chemical” field Ec 

that this way lets charges flow. Any charge looping in 
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the system of Fig. 5, obtains energy when it goes 

through the battery, by combined effect of Ec and Es, 

which is later and delivered (dissipated) when the 

charge flows through the external circuit.  

The energy supplied by Ec  to the charge equals the 

energy dissipated during the flow. Since in the entire 

loop Ec has a net contribution to the work transferred to 

the charge, it is a non-conservative field.  

Therefore analysis of this circuit can be made 

starting from the supposed simultaneous presence of 

electrostatic, conservative (Es) and chemically induced, 

non-conservative (Ec) fields in the battery:  

Et = Es + Ec     (6) 

The charge movement in the loop is determined by 

the presence of the whole field Et, not only Es; 

therefore the Ohm’s law is to be written: 

JEt   

and, taking the loop integral of both sides: 

  lJdlEt d
  

   (7) 

The left part of Eq. (7) is: 

 
b

at lEdlE dc
   (8) 

because of the conservativity of Es and the absence of 

Ec outside the battery. 

The integral of right part of Eq. (7) may be computed 

neglecting the resistance of conductor wires in 

comparison to battery and load resistances. 
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while the latter equality is justified by the relations, for 

both resistive components: 
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where it has been exploited that, as a consequence of 

the continuity equation, current I does not depend on 

the integral variable l. 

Substituting Eqs. (8) and (9) into Eq. (7) gives: 

IRRV lBce )(d   lE    (10) 

where the quantity Ve, defined by means of Ec, is called 

“electromotive force” (EMF) of the circuit (subscript e 

stands for electromotive)3. 

Eq. (10) is a usual expression of Ohm’s law for 

one-loop system, and may be considered to be the 

result of application of KVL to the circuit of Fig. 6, that 

assumes the role of equivalent circuit of system of  

Fig. 5. 

The utilization of KVL in this circuit is now 

validated by means of the Maxwell’s and Ohm’s 

equations.  

Although rather obvious, it is important to stress that 

the result obtained is not just linked to the presence of 

an electrochemical battery. Several possibilities exist 

to create devices that in its inside “pump” changes from 

its negatively charged terminal to its positively charged 

one, i.e. they make charges move through the external 

circuit through the electric field created in the 

conductor by the charges located at the terminals of the 

pumping devices.4 

Let us now consider a more complicated electric 

system shown in Fig. 7.  

It contains several loops, resistors and several 

batteries. Moreover, it is not electrically isolated from 

the outside world: because of the connections at the 

corners of its loops.  
 

 
Fig. 6  Equivalent circuit of the system shown in Fig. 5.  
 

                                                           
3 The term electromotive force is maintained for its worldwide 
use; it is however apparent that it is partially confusing, since 
the quantity to which it refers is not a force in the physical 
sense. 
4 Significant sources of constant electromotive force are fuel 
cells, photovoltaic cells; electric machines operating as source 
are souces of time varying electromotive forces. 
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In the whole system considered, including the parts 

not shown in figure, there exists in principle a field Es 

caused by the charge accumulated at all the battery 

terminals (considering also those outside the shown 

part of the system), and the corresponding current 

density field J = Es, where, obviously, any point of 

space has Es, J,  of its own. 

However, because of Assumption 1, there is no 

interest in considering the fields present outside the 

conductor wires. 

The direction of electric and current density fields 

inside the conductor is parallel to their axes, but its 

orientation is not known a priori (this lack of 

knowledge has prevented the possibility of reporting 

the vector arrows in Fig. 7).  

In Fig. 7 three possible loops may be considered: L1, 

L2 and L3. Let us concentrate, without loss of 

generality, on loop L1. 

When a generic charge q goes along loop L1 in the 

system shown in Fig. 7, the work of the electrostatic 

field Es on it is null, because of the conservative nature 

of the electrostatic field. 

Consequently, the analysis carried out with system 

of Fig. 5 can be repeated for any loop of Fig 7. The 

Ohm’s law gives: 

   (11) 

The left part of Eq. (11) is: 

 (12) 

because Es is conservative. 

Again, the integral of right part of Eq. (11) may be 

computed neglecting the resistance of conductor wires 

in comparison to battery and load resistances. 

 (13) 

where I1 and I2 can both be computed as  
S

dSJ  using 

any cross section of the system branches containing R1 
and R2 respectively. 

The above analysis perfectly replicates that made for 

the simpler case of Fig. 5; therefore if the following 

definitions are adopted:  
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Fig. 7  A multiple-loop, multiple source, multiple resistor 
system.  
 

 

the loop L1 of the system of Fig. 7 can be studied as 

reported in the upper part of Fig. 8, and the entire 

system of Fig. 7 can be studied using the equivalent 

circuit shown in the bottom part of Fig. 8. 
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Fig. 8  Equivalent of loop L1 of the system shown in Fig. 7 
(top) and of the full system of Fig. 7 (bottom). 
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Fig. 9  One-loop, multiple-resistor circuit.  
 

At this point a more general result is obvious:  

in any loop of any DC circuit the sum of all 

electromotive forces (integrals of inner, non 

conservative fields) equals the sum of all resistances 

multiplied by the correspondent currents. 

(14)

Although in DC systems electromotive forces have a 

very different physical interpretation than voltages 

across resistors, as shown above, Statement (14) can be 

expressed in a more generalform. 

if any loop is gone through in a clockwise direction 

(or, equivalently in counter clockwise direction) the 

sum of all voltages rises (or, equivalently, the sum of 

all voltage drops) is zero. 

(15)

Statement (15) is the well known KVL. Although it 

has been derived considering the fields inside the 

conductors, it assumes a form that is immediately 

usable in circuits, to state useful relations between 

circuit quantities. 

The KVL can be seen to be the circuital version of 

conservativity of electrostatic field.  

Indeed it states that any loop implies null voltage 

sum, which is the equivalent of the notion that any 

circuit integral of elementary work of electrostatic field 

is null. Furthermore it is also equivalent to state that in 

any circuit is possible to define a definite voltage value 

for any node, a fact that again recalls the correspondent 

characteristic of electrostatic (or any conservative 

field). 

The equivalence of KVL and possibility to define 

given potentials to circuit nodes can be easily shown 

considering Fig. 9. Here different lumped components 

(having arbitrary inner behavior) are connected to each 

other in a loop inserted in a larger circuit (in the most 

general case any node may have a wire connected with 

it and with other electric circuit components). 

The voltages across their terminals are named after 

the terminals themselves, and they are considered 

according to the polarity references (positive voltage 

rises) shown in Fig. 9.  

If a voltage can be defined for each node, then, 

considering that the (n+1)th node is indeed the 1-st 

node, it is:  

 
Let us summarize the procedure followed in this 

paragraph: 

 It has been seen that the current continuously 

flowing in a simple DC circuit is consequence of the 

presence of a non-conservative field in one or more 

“forcing” component; as a consequence of this field, 

the terminals of the component wherein this field is 

present are able to remain differently charged;  

 The charge difference at the terminals of a forcing 

component causes the presence of electrostatic field in 

the conductors outside it, whose potential difference at 

these terminals is equal to its electromotive force; 

 This electrostatic field is obviously conservative 

and so voltages across circuit terminals are 

independent of the path considered, and thus a potential 

can be defined for each node; 

 The presence of node potentials is necessary and 

sufficient condition for the KVLs. 

The gist of this process is: forcing components to 

determine an electrostatic (conservative) field in the 

conductors outside them, so potentials of individual 

circuit points can be defined and therefore the KVL 

applies. 

This works in any case, if we consider that the 

circuits are totally separated from the outside world, 
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except from interactions that may occur inside circuit 

elements (such as in the battery of Fig. 7)  

Therefore the following is put forward:  

ASSUMPTION 2: any interaction of the considered 

physical circuit with the outside world is made only 

inside circuit elements. No interaction with wires 

and space between wires is supposed to occur. 

Then, the following conclusions can be made. 

CONCLUSION 2: in a physical system operating in 

DC for which Assumption 2 is applicable, the KVL 

applies. 

CONCLUSION 3: in a physical system operating in 

DC for which Assumptions 1 and 2 are applicable, 

the KCL and KVL apply, and therefore it can be 

studied as a circuit. 

5. Extension of Kirchhoff’s Laws to 
Time-Variable Circuits 

In the previous paragraphs it was seen that in circuits 

operating with constant quantities, that by tradition are 

called DC circuits, the KVL is a direct consequence of 

the electrostatic field present in the circuit, and KCL is 

a consequence of continuity equation. 

In this section, these concepts will be expanded to 

cover also time varying circuits. 

5.1 Extension of Kirchhoff’s Current Law 

When we draw circuits we imagine that no current 

can flow between circuit wires. In other words, circuits 

have not real wires, but ideal ones, which are such that 

current (either conductive or displacement current) can 

flow only inside wires, while cannot in the free space 

around them. Naturally displacement currents can flow 

inside circuit elements, e.g. capacitors. 

This justifies making the following assumption. 

ASSUMPTION 3: the displacement current 

 is neglected anywhere, outside circuit 

elements. 

This is independent from Assumption 1 that referred 

to conduction currents, i.e. currents of the only type 

present in DC circuits. 

By Assumptions 1 and 3 conductive currents are 

possible only within wires and displacement currents 

only through capacitor armatures. So the integral of Eq. 

(5) is simplified since only though surfaces SkJt is 

non-zero, where Sk are the intersection of S with 

conductor wires or capacitors. 

 

That is the KCL. 

The concept is exemplified in Fig. 10, where the 

sums are to be performed with k going from 1 to 6 

(left-side circuit) or 1 to 7 (right-side circuit). 

CONCLUSION 4: in a physical system for which 

Assumptions 1 and 3 are applicable, the KCL 

applies. 
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Fig. 10  Sample surfaces A and A’ showing continuity 
equation and KCL in a sample circuit. 

5.2 Issues with Long Lines: Metacircuits 

Let us now try to use the theory introduced up to 

know in a system composed by three subsystems: two 

of them have a couple of terminals that are the only 

way to interchange conductive current with the outside 

world, and do not allow exchange of displacement 

currents (these will be called lumped components). 

These are connected to a distributed system, wherein 

conductive and displacement current circulate.  

To fix ideas, let the two lumped components be a 

generator of sinusoidal EMF (just as the one used in the 

first example) and a ohmic resistor, while the 

distributed system is a transmission line constituted by 

two conductors and the surrounding space (top of   

Fig. 11). 
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In a system of this kind it may be unacceptable to 

disregard the effects of the magnetic field through the 

loop created by the three subsystems; very often, it is 

also not possible to disregard the effect of displacement 

currents between wires. 

The issue is complex and requires more space than 

just a paper paragraph. A rather thorough analysis is 

shown in Appendix A of Ref. [7]. Here, just to clarify 

the issue, a simplified discussion is proposed, in which 

we neglect the effects of displacement currents. We 

just mention here that this gives acceptable results for 

50/60 Hz power lines typically for lines having lengths 

up to a few tens of km. 

In this example, where the transmission line has a 

much greater length than the distance between the two 

conductors, the magnetic field in the loop can be 

assumed as being equal in shape to the magnetic field 

created by two indefinite length wires. It can also be 

assumed that the effects of the magnetic field in space 

between the transmission line and the lumped 

components can be neglected. Finally, we assume that 

the magnetic induction between the two conductors is 

due only to the current flowing in the conductors 

themselves. 

Under these hypotheses, and neglecting 

displacement currents, the behavior of the transmission 

line can be described using equations that do not 

involve knowledge of what happens outside it, and 

therefore can be substituted by a lumped component 

(block “L” in bottom-left part of Fig. 11).  

The part of the circuit inside L is governed by the 

first of (1), and its integral consequence, the Faraday’s 

law; therefore the system of Fig. 11 is described by: 

 )()()( tvtiRRv BL          (16) 

where, 

t

i
L

t
tvB d

d

d

d
)( 

  

and L, self-inductance of the circuit, is the 

proportionality coefficient between current and the flux 

linkage it creates. 

Rather obvious, Eq. (16) can be interpreted as the 

KVL of the circuit reported in the bottom-right part of 

Fig. 11, from which, then, i(t) can be determined when 

v(t) is known, and vice-versa.  

It is important to stress that we just demonstrated 

how to evaluate v, or, if we want, )()( tvtiRvv Bu  , 

while we did not mention other voltages. Indeed the 

bottom-right of Fig. 11 cannot be used to evaluate of 

other voltages, such as for example vAD(t) or vAC(t). 

This because Faraday’s EMF of loops containing 

simultaneously a point from the couple C-D and one 

from the couple A-B does depend on the loop geometry, 

which in turn is a consequence of the magnetic field is 

non-conservative. 

This can be visualized clearly considering for 

example a measuring system of voltage vAD in the 

physical system (Fig. 12). It is apparent that any change 

of the position of a voltmeter that would be intended to 

measure vAD  would change the area of the loop 

composed by the conductor AD and the measuring wire, 

and therefore the electromotive force generated 

according to Faraday’s law (first Eq. of (1)).  

More explicitly, if we consider the two contours c1 

(D-A-v1-D) and c2 (D-A -v2-D) we get applying (first 

Eq. of (1)): 
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Fig. 11  Physical systems containing long lines can be 
represented by a lumped component model or a metacircuit. 
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Fig. 12  Different measuring loops create different 
measures on the voltmeter V. 
 

We can draw the following conclusions from the 

example. 

 Since circuits have the characteristic that all 

voltages between nodes can be computed, it is not 

possible to determine a circuit completely equivalent to 

a system having long lines; 

 Something similar to a circuit can be determined 

that has a behavior equivalent to the given system, 

when used only for separate determination of electrical 

quantities in the two ends of the given system. We  

call this modified version of the circuit concept 

metacircuit. 

Since metacircuits are not the same thing to circuits, 

a specific graphic representation is advisable. That 

justifies the presence of the curved-dashed lines used in 

the bottom-right part of Fig. 11, illustrating a 

metacircuit. 

6. Relationship with Electroquasistatics and 
Magnetoquasistatics 

The link between electromagnetics and circuits has 

some connections with other approximations of 

electromagnetism (Maxwell’s) equations usually 

considered [9]:  

 Electroquasistatic approximation: it considers the 

B variation sufficiently slow that the second term in the 

first of (1) to be zero. This implies E being 

conservative since its work on any loop is zero. 

 Magnetoquasistatic approximation: it involves 

considering the D variation sufficiently slow that its 

time derivative is set to zero in the third of (1). 

The relationships of these approximations to what is 

done when circuits are used are not straightforward. 

However we can observe that:  

 the electroquasistatic approximation means 

neglecting Faraday’s induction law. We do this in true 

circuits, outside lumped components (i.e. between 

wires), but we do not in what we called metacircuits; 

 the magnetoquasistatic approximation means 

neglecting the effects of displacement currents, which 

is what we do in this paper in circuits in the empty 

space between wires. This is not sufficient in some 

cases, for instance for long power lines. This special 

case was not dealt with in this paper, but analyzed in 

Appendix A of Ref. [7]. 

7. Summary  

We can resume what has been obtained in this paper 

as follows. 

 Assumptions 1 and 2 allow physical system 

operating in DC to be treated as circuit, for which KCL 

and KVL are assumed to be valid. 

 Assumptions 1 to 4 allow a physical system to be 

treated as circuit, for which KCL and KVL are assumed 

to be valid. 

Therefore we can now say that: under precisely 

stated assumptions, a system, which is composed by 

circuit elements and conducting wires, can usually be 

analysed by means of the mathematical-graphical tool 

called circuit. For them KCL and KVL are postulated 

to be valid (Circuit elements are subsystems that have 

electrical interaction to the rest of the system only 

through their terminals). 

However, systems containing long lines cannot be 

treated as true circuits. For them we introduced a new 

concept, called, metacircuit. 

All electric engineers know that when systems 

contain long lines, only equations relating quantities at 

each of its two ends to each other can be computed, and 

not “cross-quantities” such as cross-voltages. However, 

this distinction is always fuzzy. Indeed this paper, as 

well as Refs. [7] and [8] have shown that it is very 

important, and deserves a specific name and specific 
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graphic representation. 

The approach described can be extended to other 

systems such as those containing transformers, electric 

machines, multipoles, etc.; however such a 

comprehensive analysis is out of the scope of this 

paper. 

The general approach presented in the paper has 

been adopted in book [8]. 

8. Conclusions 

This paper had the purpose of clarifying what 

circuits are, making a neat distinction between physical 

systems with long wires, which are three-dimensional 

systems governed by Maxwell’s equations (we called 

them circuital systems), and circuits, which are abstract 

graphical-mathematical entities, and are very easily 

treated using Kirchhoff’s laws.  

Kirchhoff’s laws are not just a consequence of 

electromagnetics laws: to use them in substitution to 

electromagnetic’ laws, we need to add to them a few 

assumptions, a task that is normally not performed in 

textbooks. 

To give a contribution to clarify how circuits relate 

to physical systems, this paper first states clearly that 

what we call circuits are a mathematical-graphical 

abstraction of physical systems having a circuital shape. 

Then it shows which assumptions we need to add to the 

basic electromagnetics laws to allow circuits to 

describe physical electromagnetics systems, thus to use 

Kirchhoff’s laws to analyze them.  

The paper considers both stationary (DC) and 

time-varying (AC) circuits. It shows an important 

limitation of AC circuits, which is overcome 

introducing the concept of metacircuits. 

The approach proposed is clarifying for engineers 

and useful for teaching, and has been adopted in book 

[8]. 
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