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ABSTRACT. Recent advances in passive acoustic monitoring warrant the review of survey protocols because passive acoustic
monitoring can increase sampling effort with minimal additional cost. In particular, protocols for nocturnal species should be re-
evaluated because automated processing with signal recognition is expected to perform well for these species and surveys conducted
by human observers are often limited by safety concerns. We revisited the best survey practices for the Eastern Whip-poor-will
(Antrostomus vociferus), a nocturnal species of conservation concern. Whip-poor-will surveys are typically limited to nighttime, but
also to times of high lunar illumination because their calling rate is associated with moonlight levels. We used automated recognition
to extract Whip-poor-will detections from a dataset of autonomous recording unit (ARU) recordings from sites with known Eastern
Whip-poor-will occupancy in Ontario, Canada. Temperature and time relative to sunset had particularly strong quadratic effects on
detectability, with detectability maximized at 13 °C and 4 hours after sunset. Moon altitude and day of year had positive effects on
detectability, while wind speed had negative effects on detectability. We found constraining surveys by optimal values of those
detectability covariates was worthwhile only up until 10 recordings, at which point the cumulative probability of detecting an Eastern
Whip-poor-will at each site was equal between constrained and unconstrained nocturnal recordings. The number of recordings required
to reach an asymptote for detectability was between 81 and 97, depending on recording length. We provide objective-specific
recommendations for Eastern Whip-poor-will surveys and suggest unconstrained passive acoustic monitoring as the preferred survey
method for many objectives. Given the rise of passive acoustic monitoring, survey practices for many species should be revisited because
the increases in sampling effort provided by ARUs can improve cumulative detection probability and potentially outweigh the advantages
of limiting surveys to times and dates of optimal detectability.

Dans le calme de la nuit : réévaluer les inventaires d'Engoulevent bois-pourri au moyen de suivis
acoustiques passifs
RÉSUMÉ. Les progrès récents dans le domaine des suivis acoustiques passifs justifient la révision des protocoles d'inventaire car le
suivi acoustique passif  permet d'augmenter l'effort d'échantillonnage à un coût supplémentaire minime. Les protocoles pour les espèces
nocturnes devraient être réévalués en particulier, parce que le traitement automatisé de la reconnaissance de signaux devrait être
performant pour ces espèces et les relevés menés par des observateurs humains sont souvent limités par la sécurité de ces derniers. Nous
avons réexaminé les meilleures pratiques d'inventaire pour l'Engoulevent bois-pourri (Antrostomus vociferus), une espèce nocturne dont
la conservation est préoccupante. Les inventaires d'Engoulevents bois-pourri sont généralement limités à la nuit et aussi aux périodes
de forte illumination lunaire, car la fréquence de leurs appels est associée aux niveaux de lumière lunaire. Nous avons utilisé la
reconnaissance automatique pour extraire les détections d'Engoulevent bois-pourri d'enregistrements provenant d'enregistreurs
automatisés (EA) installés à des sites dont l'occupation par cette espèce est connue en Ontario, au Canada. La température et le temps
par rapport au coucher du soleil ont eu des effets quadratiques particulièrement forts sur la détectabilité, la détectabilité maximale se
situant à 13 °C et à 4 heures après le coucher du soleil. L'altitude de la lune et le jour de l'année ont eu des effets positifs sur la détectabilité,
tandis que la vitesse du vent a eu des effets négatifs sur celle-ci. Nous avons constaté que le fait de restreindre les relevés aux valeurs
optimales de ces covariables de détectabilité ne valait la peine que jusqu'à 10 enregistrements, après quoi la probabilité cumulée de
détecter un engoulevent à chaque site était égale entre les enregistrements nocturnes restreints ou non restreints. Le nombre
d'enregistrements requis pour atteindre une asymptote de détectabilité se situait entre 81 et 97, selon la longueur de l'enregistrement.
Nous offrons des recommandations spécifiques aux objectifs pour les inventaires d'Engoulevent bois-pourri et proposons que le suivi
acoustique passif  sans restriction soit la méthode d'inventaire privilégiée pour de nombreux objectifs. Étant donné l'essor des suivis
acoustiques passifs, les pratiques d'inventaire pour de nombreuses espèces devraient être réévaluées, car l'augmentation de l'effort
d'échantillonnage fournie par les EA peut améliorer la probabilité de détection cumulative et l'emporter potentiellement sur les avantages
de limiter les inventaires aux heures et aux dates de détectabilité optimale.
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INTRODUCTION
Successful management of avian species includes regular
evaluation of survey best practices in an adaptive management
framework (Yoccoz et al. 2001, Nichols and Williams 2006,
Lindenmayer and Likens 2009). Part of this process of revisiting
survey protocols should include quantifying and understanding
probability of detection (hereafter “detectability”; Kéry and
Schmidt 2008). Understanding the conditions where detectability
is maximized can result in improved precision of statistical
estimates such as population trend (Diefenbach et al. 2007, Sauer
et al. 2017), occupancy, or density (MacKenzie et al. 2002,
Rosenberg et al. 2017). Imperfect detectability on surveys can also
have further consequences for species, such as exclusion from
biodiversity reporting (North American Bird Conservation
Initiative Canada 2019), environmental impact assessment, range
delineation, or other assessments.  

Nightjars (Family Caprimulgidae) are nocturnal birds that
require specialized protocols to maximize detectability.
Obviously, constraining observations to darkness is important for
detecting nightjars and has been shown to be critical for detecting
population declines relative to dawn surveys (Knight et al. 2021).
Surveying during optimal lunar conditions is another well-
established survey suggestion for nightjars. Vocal activity of
Common Poorwills (Phalaenoptilus nuttallii; Brauner 1953,
Woods and Brigham 2008), Chuck-will’s-widows (Antrostomus
carolinensis; Harper 1938, Cooper 1981), Eastern Whip-poor-
wills (Antrostomus vociferus; Cooper 1981, Mills 1986, Wilson
and Watts 2006), Red-necked Nightjars (Caprimulgus ruficollis;
Reino et al. 2015), Common Pauraque (Nyctidromus albicollis),
and Little Nightjar (Setopagis parvula; Pérez-Granados et al.
2022) have all been positively associated with moonlight levels,
including lunar phase or percent lunar illumination and lunar
altitude. Recommendations have been made for surveys to be
conducted around the full moon (Reino et al. 2015), and
specifically when there is at least 50% lunar illumination (Wilson
and Watts 2006). Citizen science monitoring protocols for
nightjars, including the recently formalized Canadian Nightjar
Survey, now recommend or require surveying within one week of
the full moon (Knight et al. 2019). Lunar phase or illumination
has also been included as a detectability covariate in occupancy
studies (Farrell et al. 2017, Vala et al. 2020).  

Avian survey methods are changing because of recent advances
in passive acoustic monitoring, and so it follows that best survey
practices should be revisited. Autonomous recordings units
(ARUs) facilitate surveying sites many more times than human
observers can at little to no extra effort or cost (Shonfield and
Bayne 2017, Gibb et al. 2018). ARUs are useful for surveying
nightjars because frequent nocturnal surveys in remote areas can
be both logistically challenging and dangerous. Automated
computer recognition of acoustic signals allows efficient
processing of large amounts of acoustic recordings. Unlike the
diurnal period, the nocturnal soundscape is much quieter,
reducing the likelihood of sound masking, i.e., overlap of sounds
in time and frequency band. Reduced sound masking during the
nocturnal period makes it much more straightforward for a
computer to separate nightjar calls from the rest of the
soundscape (Zwart et al. 2014, Knight et al. 2017, Pérez-Granados
and Schuchmann 2020). Once detected, their frequent, simple
vocalizations are relatively easy for computer algorithms to

classify. Automated recognition facilitates the collection of large,
highly detailed survey datasets with a time stamp for every
vocalization. Other parameters such as relative sound level can
also be derived concurrently and can be used to estimate the
distance of detection for every vocalization (Yip et al. 2020).
Although automated recognition does require visual or aural
validation to remove false positive detections from the results, it
can be approximately five times more efficient than aural
processing alone (Knight et al. 2017), and there are post-
processing approaches available that can further increase this
efficiency (Balantic and Donovan 2020, Knight et al. 2020).  

Given these improvements in survey efficiency, constraining
nightjar surveys by lunar conditions or other covariates (hereafter
“constrained survey”) may not always be the most effective survey
recommendation. If  increasing survey effort is of relatively
minimal additional cost—as is the case with passive acoustic
monitoring—conducting surveys that are not restricted to specific
times or conditions (hereafter “unconstrained survey”) may have
a higher cumulative probability of detection because they allow
for the collection of more information. In fact, an early assessment
of ARU and recognizer technology for the Eastern Whip-poor-
will concluded that passive acoustic monitoring and automated
recognition could enable monitoring on “more dates than possible
using established field protocols” (Clark and Fristrup 2009:8).
Maximizing survey effort and, thus, potentially cumulative
probability of detection is particularly important for objectives
that require confirmation of species presence or absence such as
environmental assessment or range delineation.  

Our goal was to revisit best survey practices for the Eastern Whip-
poor-will for both ARU and human surveys. The Eastern Whip-
poor-will is a nightjar species that has a Near Threatened global
conservation status (Cink et al. 2020), is listed as Threatened
under Canada’s Species at Risk Act, and is on the U.S. Fish and
Wildlife Service’s (USFWS) list of Birds of Conservation
Concern. Developing standardized survey protocols has been
identified as a high-priority knowledge gap for the Eastern-Whip-
poor-will (Environment and Climate Change Canada 2018). We
were interested in informing ARU protocols because passive
acoustic monitoring has been identified as a potential survey
method for this species given its extensive range and nocturnal
habits (Environment and Climate Change Canada 2018). We were
also interested in informing human surveys, including the recently
formalized citizen science Canadian Nightjar Survey. We used
automated recognition to extract Whip-poor-will detections from
a high temporal resolution dataset of ARU recordings from sites
in southern Ontario with known Eastern Whip-poor-will
occupancy. First, we used an occupancy analysis framework to
determine which temporal and weather covariates best predicted
Whip-poor-will detectability. We then examined the effects of
sampling effort (in this case, recording length and number of
recordings) on detectability and occupancy estimates and
cumulative probability of detection. Next, we examined whether
constraining surveys by detectability covariates, including percent
lunar illumination, or using all available recordings resulted in
higher cumulative probability of detection. We compared
constrained and unconstrained surveys with mixed effects logistic
regression across a range of recording lengths and number of
recordings. We then used a nonlinear least squares growth model
to determine the sample size at which cumulative probability of
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detection asymptoted to inform environmental assessment. Based
on our results, we provide recommendations for Eastern Whip-
poor-will survey protocols in an objective-based framework by
differentiating between objectives that require confirmation of
presence-absence and objectives that can accommodate imperfect
detection.

METHODS

Study area and sites
We studied detectability of Eastern Whip-poor-wills near the
center of their breeding range in eastern Ontario, Canada (Fig.
1). Our study sites included two areas: (i) the transition zone
between the Canadian Shield and Mixedwood Plains ecozones
(Crins et al. 2009), and (ii) the southern portion of Prince Edward
County. We selected these areas as part of a (i) grassland bird
breeding phenology study in 2017, and (ii) a systematic survey of
breeding birds on the Prince Edward Point National Wildlife Area
(PEP hereafter) in 2019. Although the surveys were focused on
diurnal passerine birds, we also included crepuscular and
nocturnal sampling in those areas given the high potential
suitability of the habitat for Eastern Whip-poor-will. The
vegetation community in both study areas consisted mostly of
open shrubland and thicket, dominated by red cedar (Juniperus
virginiana), Red-osier dogwood (Cornus stolonifera), and prickly
ash (Zanthoxylum americanum), surrounded by mature hardwood
forest.

Fig. 1. Study area and sites in Ontario, Canada with known
Eastern Whip-poor-will (Antrostomus vociferus) occupancy
where autonomous recording units were deployed to collect
acoustic recordings. Dark grey shading on the inset map shows
the breeding range of the Eastern Whip-poor-will.

At those two study areas, we selected 32 study sites with known
Eastern Whip-poor-will occupancy. At the grassland area, initial
suitability of 18 sites was evaluated using Google Earth imagery,
where sites containing open grassland with < 50% forest canopy
closure within a 100 m radius of each selected site were considered
further. Six of the initial 18 grassland sites were removed after
ground-truthing because of unsuitable habitat (n = 4) and
excessive vehicular noise (n = 2), resulting in 12 locations for ARU
deployment. At PEP, we divided the area into a grid of hexagons
with 250 m between centroids and randomly selected hexagons
with at least 750 m between centroids to maintain spatial
independence of survey locations, resulting in 20 locations for
ARU deployment.

Audio recording collection
All recordings were made using ARUs (Model SM2+, Wildlife
Acoustics, Maynard, MA, USA). We used a sampling rate of 16
kHz, or double the maximum frequency of a typical Whip-poor-
will song (Cink et al. 2020), and a bit depth of 16 bits. We used
the same model of ARU between years to ensure a comparable
signal-to-noise ratio (e.g., Darras et al. 2020), and conducted
routine microphone testing and replacement between years to
ensure microphone sensitivity and potential detection radius was
not compromised (Turgeon et al. 2017). We affixed ARUs to
vertical tree trunks or fence posts at a height of approximately
1.5 m and removed branches, leaves or other debris near
microphones that might impede clear recordings. In 2017, we
collected recordings every third day at 30, 90, and 150 minutes
after sunset from 16 April to 30 July, resulting in 108 10-minute
recordings per site. In 2019, we collected recordings every second
day at every hour on the hour from sunset to sunrise from 17 May
to 16 July, resulting in 279 five-minute recordings per site.
Premature battery failure of some ARUs resulted in fewer
recordings at some sites, particularly in 2017 (Appendix 1).

Recognizer construction
We used Song Scope software (Wildlife Acoustics, Maynard, MA,
USA) to construct a recognizer for the Eastern Whip-poor-will.
Song Scope is a signal detection recognizer that extracts Mel
Frequency Cepstral Coefficients from each detected signal and
computes the overall score using Hidden Markov Models.
Although Song Scope was recently discontinued by its
manufacturer, we chose it because it remains freely available and
was shown to perform well for another nightjar species, the
Common Nighthawk (Chordeiles minor; Knight et al. 2017). We
selected 80 clips of full Eastern Whip-poor-will songs (Fig. 2)
from a dataset of high-quality recordings collected across
southern Ontario from 2015 to 2020 using autonomous recording
units (Model SM2+, Wildlife Acoustics, Maynard, MA, USA)
and a shotgun microphone system (Nagra SD digital audio
recorder, Sennheiser ME66 shotgun microphone). We also
explored building recognizers with just the second note of the
song phrase (Fig. 2) and a longer clip of multiple song phrases,
but found the single full phrase performed best in preliminary
evaluation. We used only loud clips recorded at close-range to
maximize the probability of detection at 0 m and facilitate large-
scale use of the recognizer (Knight and Bayne 2019, Knight et al.
2020). We removed any clips that were not fully detected by the
signal detection process in Song Scope (setting available in
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Appendix 2), leaving 60 clips for recognizer training. The
recognizer file we constructed for Song Scope software is available
in Appendix 3.

Fig. 2. Spectrogram of the song of the Eastern Whip-poor-will
(Antrostomus vociferus). Spectrogram shows three separate song
phrases, each with two notes (“Whip”, “poor-will”).

Recognizer evaluation
We followed Knight et al. (2017) to evaluate the precision and
recall of our recognizer and select a score threshold for processing.
We randomly selected a test dataset of five-minute nighttime
recordings where we knew Eastern Whip-poor-wills were present,
visually scanned them for calls, and categorized them as present
or absent. We continued this process until we had 20 presence and
20 absence recordings. We visually and/or aurally processed the
presence recordings and counted the number of Eastern Whip-
poor-will calls in each recording. We then used our trained Song
Scope recognizer to scan those 40 selected recordings with a score
threshold of 20 and a quality threshold of 20. We visually
validated the recognizer results to separate true and false positives
and found the recognizer detected Eastern Whip-poor-wills in 18
of the 20 (90%) presence recordings. Of the 3525 Eastern Whip-
poor-will calls we detected in the test dataset by sight/sound, 1626
(46%) were detected by the recognizer. We then compared the
number of detections in the recognizer results to the number of
detections in the benchmark data across all possible score
thresholds to determine precision (proportion of true positives
vs false positives) and recall (proportion of true positives vs false
negatives; Knight et al. 2017; Fig. 3). We also determined the recall
of Eastern Whip-poor-will presence per recording across all
possible score thresholds. Our results indicated the call-level recall
of the recognizer was low, however, so we also examined the
relationship between recall and sound energy, which is a proxy
for detection distance (Hedley et al. 2020, Yip et al. 2020), to
ensure this low recall was simply due to a lower effective detection
radius than that of a human observer (Appendix 4).

Acoustic data processing
We scanned our entire set of recordings with our Song Scope
recognizer with a score threshold of 60 and a quality threshold
of 0. We selected a score threshold of 60 to balance false positives
and false negatives at the recording level. Our recognizer
evaluation suggested a score threshold of 60 resulted in detected
of 30.9% of individual Eastern Whip-poor-will calls but 85% of
five-minute recordings, as compared with a human listener (Fig.
3). We visually validated the recognizer results to separate true
and false positives.

Fig. 3. Evaluation of Eastern Whip-poor-will (Antrostomus
vociferus) call detection for a recognizer built in Song Scope
software across multiple score thresholds. Precision is the
proportion of recognizer hits that are true detections. Recall is
the proportion of target species vocalizations detected by the
recognizer. Presence-absence recall is the proportion of five-
minute recordings containing Eastern Whip-poor-wills in which
the recognizer detected the target species. Results are from a
test dataset of 40 nocturnal recordings, 20 of which contained
Eastern Whip-poor-will vocalizations. Dashed line represents
the score threshold selected for acoustic data processing.

Detectability covariates
We collected temporal, solar, lunar, and weather detectability
covariates for each recording at each study site. We used the
“suncalc” package (Thieurmel and Elmarhraoui 2019) to
calculate time since sunset and moon fraction for every recording.
We used the “weathercan” package (LaZerte and Albers 2018) to
retrieve weather variables from nearby weather stations. Of the
available weather stations in the study area, we selected the nearest
one that had the most complete hourly dataset available
(Appendix 5). For each recording, we retrieved hourly wind speed
and temperature data and daily total precipitation data. We also
quantified potential weather effects on perceptibility via sound
masking or degradation. We used the “hardRain” package
(Metcalf  et al. 2020) to quantify the signal-to-noise ratio (StN)
and power spectrum density (PSD) between 4.4 and 5.6 kHz for
each one-minute interval of recording. We chose that signal band
because it has been shown to be effective at classifying heavy
rainfall (Metcalf  et al. 2020). We then checked all potential
covariates for variance inflation and correlation and removed any
variables with VIF > 5 or correlation > 0.7.

Statistical analysis
First, we used an occupancy modeling framework in the
“unmarked” package (Fiske and Chandler 2011) in R version
4.0.3 (R Core Team 2020) to determine which covariates predicted
Eastern Whip-poor-will detectability. We randomly sampled 50
recordings from each of the 32 study sites to even out sampling
across the study sites (Appendix 1). We fit two sets of occupancy
models: one with all potential solar, lunar, and temporal
covariates, and one with weather covariates. We included time
relative to sunset and temperature as second order polynomials
based on predicted relationships for these two covariates. We also
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Table 1. Occupancy model selection results for detectability (P) of Eastern Whip-poor-wills (Antrostomus vociferus) from acoustic
recordings. Results are the mean and standard deviation (SD) of 100 bootstrapped models for each covariate set (1) temporal, lunar,
and solar (day = day of year, altitude = lunar altitude, sunset = time relative to sunset); (2) weather (PSD = power spectrum density,
StN = signal to noise ratio, temperature = temperature in degrees Celsius, wind = wind speed, rain = total daily precipitation). Bold
indicates the model with the highest mean model weight that was thus selected for subsequent analyses. Occupancy ~1 for all models.
 
Model terms K Mean weight (SD) Mean ΔAICc(SD) % times top model

Temporal, lunar, and solar covariates
 P ≈ day + altitude + sunset^2 6 0.27 (0.21) 2.54 (5.03) 34
 P ≈ altitude + sunset^2 5 0.16 (0.18) 11.00 (16.29) 25
 P ≈ fraction + altitude + sunset^2 6 0.15 (0.12) 2.68 (4.93) 15
 P ≈ day + fraction + altitude + sunset^2 0.09 (0.12) 5.62 (2.27) 4
Weather covariates
 P ≈ PSD + StN + temperature^2 + wind 7 0.09 (0.12) 4.04 (3.47) 19
 P ≈ StN + temperature^2 + wind 6 0.06 (0.10) 5.14 (3.69) 16
 P ≈ PSD + StN + temperature^2 + wind + rain 8 0.05 (0.09) 13.30 (14.30) 13
 P ≈ PSD + wind 4 0.05 (0.08) 4.70 (3.19) 20

included an interaction between moon altitude and fraction. For
each set, we fit one global model and all potential combinations
of the covariates in that model. We bootstrapped this visit
selection and model fitting process 100 times. From each set, we
selected the model with the highest model weight across the 100
bootstraps. We then combined all the covariates from the two best
fitting models into a final model. We again randomly sampled 50
5-minute visits and fit them to this final model. We bootstrapped
visit sampling and model fitting 100 times. We summarized the
100 bootstraps to obtain mean and standard error estimates for
the coefficients in our final model.  

We then examined the effects of sampling effort on Eastern Whip-
poor-will detectability and occupancy estimates. To examine the
effects of sampling effort, we constructed occupancy models for
a range of recording lengths (1 to 5 minutes) and number of
recordings (1 to 30, 40, 50, 60, 70, 80, 90, 100). For each
combination of these two sampling effort parameters, we
randomly sampled the appropriate number of recordings from
each study site and the appropriate recording length from each
of those recordings, starting at the beginning of the recording.
We fit an occupancy model to the validated recognizer data from
those recordings, including the detectability covariates from the
final model of our previous analysis. We bootstrapped this
sampling and model fitting process 100 times and calculated the
mean occupancy and detectability estimates and 95% confidence
intervals (CI) across those bootstraps.  

Next, we examined the effects of constraining surveys by
detectability covariates. In other words, how is sampling effort
affected by using only recordings from times and days when the
probability of detection is high, for example when surveys are
conducted by a human observer? We restricted recordings to those
collected between sunset and 7 hours after sunset, when the moon
altitude was greater than 0.6 radians, when the temperature was
between 7 and 20 degrees Celsius, and when the wind speed was
less than 19 km/h. These thresholds were selected following
recommendations from the Canadian Nightjar Survey and the
results from the previous analysis (Table 1, Fig. 4). We repeated
the previous analysis, with the exception that we only selected up
to 10 recordings per study site because that was the minimum
available after constraining our dataset by our detectability
covariates.  

We compared the cumulative probability of detection of
constrained and unconstrained surveys using logistic regression.
We used a binomial response variable of whether an Eastern
Whip-poor-will was detected at each site for each bootstrap and
included site as a random effect. We included length of recording,
number of recordings, and covariate approach (constrained/
unconstrained) as covariates and all two-way interactions. We
only used bootstraps with up to 10 recordings to allow direct
comparison of the two approaches.  

We also determined the proportion of the 32 sites at which a Whip-
poor-will was detected per bootstrap and used an asymptotic
nonlinear least squares growth model (Von Bertalanffy 1957) to
model the proportion of sites with detections across number of
recordings for each of the recording lengths (1 to 5 minutes). We
determined the number of recordings required to reach the
predicted asymptote of proportion of sites with detections as the
x-intercept of 99% of the asymptote. We repeated this analysis
for recording length across number of visits (every 10 visits from
10 to 100).

RESULTS
The recognizer reported 115,954 potential Eastern Whip-poor-
will detections, of which 52,704 were validated as true positives
and 63,250 were removed as false positives (precision = 0.45). Of
those false positives, 56,663 (89.6%) detections occurred during
the dawn chorus just before sunrise. The number of Eastern Whip-
poor-will detections per minute of recording ranged from 0 to
336 (mean = 4.76, SD = 25.51). The mean rate of Eastern Whip-
poor-will detections per site varied from 0.02/min to 30.54/min
(mean = 5.03/min, SD = 8.08/min).  

The model with highest mean model weight across bootstraps for
solar, lunar, and temporal covariates included everything except
moon fraction; it included day of year, time relative to sunset, and
moon altitude (Table 1). The model with the highest mean model
weight across bootstraps for weather covariates included
everything except total daily rain; it included temperature, wind
speed, StN, and PSD (Table 1). Moon altitude had a positive effect
on Eastern Whip-poor-will detectability, while day of year, wind
speed, StN, and PSD all had negative effects, with wind speed
having the strongest effect (Fig. 4). Temperature and time relative
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Fig. 4. Mean and 95% confidence interval of effects of temporal, lunar, solar, weather, and recording
covariates on the detectability of Eastern Whip-poor-wills (Antrostomus vociferus), as predicted by
occupancy models. Predictions for each covariate are made while holding all other covariates at values
that maximize detectability (i.e., maximum for moon altitude, mean for time since sunset and temperature,
and minimum for day of year, wind speed, power spectrum density, and signal-to-noise ratio).

to sunset had quadratic effects on detectability, with the highest
probability of detection at 13 °C and 4 hours after sunset,
respectively.  

The mean probability of detection varied between 0.059 for an
unconstrained survey of 100 1-minute recordings and 0.325 for a
constrained survey of 10 5-minute recordings (Fig. 5). The mean
probability of detection per recording across all combinations of
recording length and number of recordings was 0.103 when all
recordings were included and 0.268 when recordings constrained
by detectability covariates were included. Recording length
affected mean probability of detection, with shorter recordings
having a lower probability of detection, particularly for 1-minute
recordings when surveys were constrained by detectability
covariates (Fig. 5). Mean probability of detection was slightly
higher for unconstrained surveys with few recordings; however,
the main effect of number of recordings was to reduce the
uncertainty of the detectability estimate.  

The mean probability of occupancy estimates varied between
0.445 for an unconstrained survey of 9 2-minute recordings and
0.821 for a constrained survey of five 1-minute recordings (Fig.
5). The mean probability of occupancy per recording across all
combinations of recording length and number of recordings was
0.608 when all recordings were included and 0.583 when only
recordings were constrained by detectability covariates. In
general, the occupancy estimates were higher for longer
recordings and increasing numbers of recordings; however, the
one-minute constrained recordings had the highest occupancy
estimates, likely because the model corrected for the particularly
low detectability of this survey effort combination. For both
constrained and unconstrained surveys, mean probability of
occupancy peaked between 1 and 5 surveys, and then stabilized;
however, all differences were well within the mean 95% confidence
intervals of the bootstrapped model estimates.

Fig. 5. Effects of sampling effort (recording length and number
of recordings) for autonomous recording unit surveys of
Eastern Whip-poor-wills (Antrostomus vociferus). Probability of
detection and probability of occupancy estimates are mean
predictions and 95% confidence intervals from occupancy
models of 100 bootstrapped datasets. Two model sets were
examined: one in which all nocturnal recordings in the dataset
were included (“unconstrained”), and one for which recordings
were constrained by covariates that had been shown to affect
detectability (“constrained”). The dotted line on the
unconstrained model set indicates the maximum number of
recordings for the constrained model set and is included to
facilitate comparison between the two plots with differing x-
axis scales.
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The cumulative probability of detection ranged between 0.7% for
one unconstrained 1-minute recording to 30.7% for 10
constrained 5-minute recordings (Fig. 6). The cumulative
probability of detection for constrained surveys was more than
twice as high as that of unconstrained surveys when only one
recording was sampled (4.6% vs 1.9% for 5-minute recordings);
however, as sample size increased, this difference decreased until
they were nearly equal for 10 recordings (28.7% vs 27.9% for 5-
minute recordings).

Fig. 6. Effects of sampling effort (recording length and number
of recordings) for autonomous recording unit surveys of
Eastern Whip-poor-wills (Antrostomus vociferus). Cumulative
probability of detection was defined as whether an Eastern
Whip-poor-will was detected within a set of randomly selected
recordings. Mean and 95% confidence intervals of cumulative
probability of detection were calculated from 100 bootstraps
for each of the recording length and number of recording
combinations. Two model sets were examined: one in which all
nocturnal recordings in the dataset were included
(“unconstrained”), and one for which recordings were
constrained by covariates that had been shown to affect
detectability (“constrained”). Shaded intervals represent the
95% confidence interval and are shown only for the
unconstrained model set for visualization (both model sets had
nearly identical confidence intervals).

For number of recordings, the proportion of sites at which an
Eastern Whip-poor-will was detected reached an asymptote
between 0.679 and 0.754, depending on recording length (Figure
7). No asymptote was reached for one-minute recordings. The
minimum sample size required to reach 99% of that asymptote
was lowest for longer recordings; minimum sample size was 81,
84, 88, and 97 recordings for five-minute through two-minute
recordings. For recording length, the predicted values for up to
five minutes recording length did not reach the asymptote
predicted by the nonlinear least squares growth model, but the
maximum proportion of sites at which an Eastern Whip-poor-
will was detected was between 0.480 and 0.837 for five-minute
recordings. The proportion of sites at which an Eastern Whip-
poor-will was detected did not reach one because there were
several sites at which an Eastern Whip-poor-will was detected in
only a few recordings (1 recording: 3 sites, 2 recordings: 1 site, 3
recordings: 3 sites).

Fig. 7. Effects of sampling effort (recording length and number
of recordings) for autonomous recording unit surveys of
Eastern Whip-poor-wills (Antrostomus vociferus). Cumulative
probability of detection was defined as whether an Eastern
Whip-poor-will was detected in any of the randomly selected
recordings in each of 100 bootstraps for each of the recording
length and number of recording combinations. Lines are the
mean model predictions from an asymmetric nonlinear least
squares growth model. The sample size required to reach the
predicted asymptote was calculated as the x-intercept of 99% of
the asymptote.

DISCUSSION
We used time series ARU survey data from sites with known
Eastern Whip-poor-will occupancy to revisit survey protocols for
this species. Temperature and time relative to sunset had
particularly strong effects on detectability, with detectability
maximized at intermediate values of both. Moon altitude had
positive effects on detectability, while day of year, wind speed,
and two acoustic measurements of potential sound masking or
attenuation from weather (StN: signal-to-noise ratio; PSD: power
spectrum density) negatively affected detectability. We found
constraining surveys by optimal values of those detectability
covariates was worthwhile only up until 10 recordings, at which
point the cumulative probability of detecting an Eastern Whip-
poor-will at each site was equal between constrained and
unconstrained nocturnal recordings. The number of recordings
required to reach an asymptote for proportion of sites with
detections was between 53 and 65 recordings, depending on
recording length; however, we did not find an asymptote for
recording length.  

The design and evaluation of survey methods should be
performed in an objective-specific framework (O’Connor et al.
2000, Yoccoz et al. 2001, Nichols and Williams 2006), and so we
recommend survey protocols should be selected based on the
project objectives and logistical constraints (Table 2). Choosing
between constrained versus unconstrained and human observer
versus ARU surveys should therefore be done on a case-by-case
basis because there are trade-offs for each choice. In general,
human surveys have higher detectability because of a larger
effective detection radius (Yip et al. 2017a, Darras et al. 2018),
but we showed here that passive acoustic monitoring has higher
overall detectability because it is more efficient for collecting time
series data (among many other benefits; Rempel et al. 2013,
Shonfield and Bayne 2017, Darras et al. 2019). Passive acoustic
monitoring does, however, require specialized equipment and
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Table 2. Recommendations for autonomous recording unit (ARU) and human surveys of Eastern Whip-poor-wills (Antrostomus
vociferus) along a gradient of sampling objectives from imperfect detection to confirmation of presence or absence.
 
Sampling objective Potential applications ARU surveys (per season) Human surveys Notes

Imperfect detection Occupancy modeling,
population monitoring

Up to 80 unconstrained
nighttime recordings of at
least 5 minutes length each

Constrain surveys:
- Temperature: 7–20 °C
- Wind: < 20 km/h
- Time: nautical twilight
- Moon: > 50% illumination
- Caveat: may be unsafe in
remote areas

- More recordings or visits will
reduce uncertainty of
statistical estimates.
- Collection of detectability
covariate data is required to
account for imperfect
detection (Rempel et al. 2013).

Confirm presence or absence Environmental assessment At least 80 unconstrained
nighttime recordings of at
least 5 minutes length each

- Number of surveys
required may be unrealistic
for human surveyors
- Call playback surveys may
improve probability of
detection

- Caveat: perfect cumulative
probability of detection
unlikely
- Recordings > 5 minutes may
yield higher cumulative
probability of detection than
reported here

training, which can be unrealistic for survey programs that cover
large study areas.  

On one end of the objectives spectrum, surveys requiring
confirmation of species presence or absence should use protocols
that maximize cumulative probability of detection (e.g., Pérez-
Granados et al. 2018; Table 2). Undue harm to Eastern Whip-
poor-wills is of particular concern to environmental managers
because this species is listed as Threatened under Canada’s Species
at Risk Act, and nest disturbance is prohibited under Canada’s
Migratory Bird Conservation Act. Our results suggested at least
80 recordings of at least 5 minutes length each are required to
reach an asymptote in cumulative probability of detection (Table
2). We note, however, that our asymptote was not at a cumulative
probability of detection of 1.00, but rather at 0.75 because there
were several sites at which an Eastern Whip-poor-will was only
detected a handful of times. These detections could be of
prospecting individuals; however, the date when most the
detections occurred (June) is beyond the territory settlement
phase of the breeding period in this region. Instead, we suggest
these are individuals at the extreme periphery of their territory,
which is typically 2–10 ha (Fitch 1958), or that these males are
non-territorial “floaters” that were not breeding (Hunt 2016).
There is a possibility that samples longer than the 5-minute
recordings we used could increase the proportion of sites at which
an Eastern Whip-poor-will was detected; we did not find an
asymptote of cumulative probability of detection for recording
length. Guidance is mixed on whether fewer long recordings
(Rempel et al. 2013, Sugai et al. 2020) or more short recordings
(Cook and Hartley 2018) result in higher detection probability.
Our results suggest that recordings should be at minimum two
minutes long for occupancy modeling because our occupancy
estimate for 1-minute recordings was higher than our other
estimates, suggesting unstable parameterization.  

On the other end of the spectrum, surveys for which the intended
objective can accommodate imperfect detection can have much
more flexible protocols (Table 2). Although maximizing
cumulative probability of detection is desirable because model
estimates have higher precision when detectability is maximized
(MacKenzie et al. 2002, Diefenbach et al. 2007), there are ways
to account for imperfect detection: hierarchical models in

occupancy modeling (MacKenzie et al. 2002), detectability
covariates in population trend estimation, e.g., observer ability
(Link and Sauer 2016), and offsets or correction factors in density
estimation (Buckland et al. 1995, Sólymos and Lele 2016, Sólymos
et al. 2018), to name a few.  

If  using passive acoustic monitoring, we suggest Eastern Whip-
poor-will surveys should move beyond the previous reliance on
moon phase and use an unconstrained protocol for most
applications. We showed that cumulative probability of detection
is maximized by conducting many unconstrained visits. In other
words, using all survey data and accounting for imperfect
detection with the appropriate covariates results in higher overall
detectability than only surveying when conditions are optimal. If
using this unconstrained approach, we recommend quantifying
poor recording quality with measurements of signal-to-noise
ratio and power spectrum density (Metcalf  et al. 2020), as we
showed both had significant effects on Eastern Whip-poor-will
detectability.  

Using passive acoustic monitoring and an unconstrained
approach to survey Eastern Whip-poor-wills and other nocturnal
species should be feasible for most applications if  equipment is
available. ARUs are a valuable tool for surveying nocturnal
species like nightjars (Frommolt and Tauchert 2014, Shonfield et
al. 2018, Duchac et al. 2020) because nocturnal human surveys
for nightjars are often restricted to roadsides for safety
considerations (Takats et al. 2001, Knight et al. 2019), which can
result in a biased understanding of habitat relationships,
occupancy, and population size (Pankratz et al. 2017, Yip et al.
2017b). The time required to process ARU recordings can be an
obstacle for passive acoustic monitoring; however, we showed
here automated recognition was an effective method for our study.
Although our recognizer precision was not particularly high (0.45;
compared to > 70% in Knight et al. 2017, Pérez-Granados and
Schuchmann 2020, for other nightjar species), we did not find
validation an onerous process and automated processing was
much more efficient than manual review for processing our dataset
of over 650 hours of audio recordings. Furthermore, the majority
(89.6%) of our false positives occurred during dawn chorus, which
we sampled to ensure we captured the full range of Eastern Whip-
poor-will availability for detection; practitioners using ARUs to
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monitor Eastern Whip-poor-wills could greatly increase the
precision of the recognizer by omitting dawn chorus sampling.
Our recognizer recall rate was low for individual calls (0.31;
compared to 0.74, 0.85 in Pérez-Granados and Schuchmann 2020,
for other nightjar species); however, the recall rate at the five-
minute recording level was quite high (0.85), likely due to the high
call rate of the Eastern Whip-poor-will (Mulaik et al. 1953). The
recording-level recall rate was the evaluation metric of interest
for our study because we used detection/non-detection at the
recording level as our response variable, and so we are confident
in our results. Studies that wish to use call rate or time-to-first
detection as a response variable for applications like density
estimation should explore more cutting-edge algorithms like
convolutional neural networks that might yield higher recall
values (Stowell et al. 2019).  

On the other hand, surveys by human observers may be
advantageous if  there is a large survey area to cover and/or repeat
visits are not feasible (Klingbeil and Willig 2015). For example,
range-wide population monitoring programs like the North
American Breeding Bird Survey and the Canadian Nightjar
Survey rely on single visit surveys by citizen scientists to monitor
avian population trends (Downes et al. 2016, Hudson et al. 2017,
Knight et al. 2019). Nightjar detectability during human observer
surveys may also be improved by using call playbacks (e.g.,
Zuberogoitia et al. 2020). If  surveys are conducted by human
observers, the observation process should be constrained by
detectability covariates because more than 10 repeat visits are
unlikely for human observer protocols (Table 2). We showed
temperature and wind have the strongest effects on Eastern Whip-
poor-will detectability, with detections maximized at intermediate
values. Other authors have found effects of weather (wind, rain)
on Eastern Whip-poor-will detectability (Farrell et al. 2017, Vala
et al. 2020). Cool weather is likely particularly important for
nightjar activity levels because many species, including Eastern
Whip-poor-wills, are able to undergo partial torpor (Lane et al.
2004). Red-necked Nightjar (Caprimulgus ruficollis) detectability
has also been shown to be particularly sensitive to temperature
(Camacho 2013). We therefore recommend that the Canadian
Nightjar Survey be constrained to between 13 and 20 °C. We also
showed time relative to sunset had an effect on Eastern Whip-
poor-will detectability, with detectability maximized at 4 hours
after sunset; however, the confidence intervals on the effects of
time relative to sunset were quite wide. We therefore recommend
surveys be conducted anytime when the sun is less than 6 degrees
below the horizon, such as during nautical or astronomical
twilight, or night. Finally, we showed that moon altitude had a
positive effect on Eastern Whip-poor-will detectability, which is
contrary to other studies that have found an effect of moon
illumination (Cooper 1981, Mills 1986, Wilson and Watts 2006).
The origin of using moon illumination instead of moon altitude
to constrain nightjar surveys dates back to Mills (1986) who
actually found a stronger effect of altitude but opted to
recommend moon illumination because all moons with high
illumination also have high altitude. We also recommend surveys
continue to be constrained by moon illumination because it is a
much easier constraint to interpret and implement, which is
important for the success of monitoring programs based around
citizen science (Parsons et al. 2011, McKinley et al. 2017).  

Revisiting survey protocols for acoustic species is timely because
of the rapid proliferation of passive acoustic monitoring and our

results about the context-dependency of survey recommendations
suggest revisitation may also be warranted. Regular evaluation
of survey protocols relative to desired outcomes, particularly for
long-term monitoring programs, is also important because it
encourages managers to revisit the objectives and design of the
program as part of an adaptive management framework (Yoccoz
et al. 2001, Nichols and Williams 2006, Lindenmayer and Likens
2009). We showed that constraining the observation process by
detectability covariates may no longer be an optimal survey
method because of the large volume of information that can be
collected if  constraints are not applied, as suggested previously
by others. We suggest that revisiting survey protocols for other
nocturnal species may be warranted because automated
recognition is likely to work well for those species, and there are
several examples already published (Zwart et al. 2014, Knight et
al. 2017, Shonfield et al. 2018). The method we present here of
using ARU data from sites of known occupancy to understand
detectability trade-offs and refine survey protocols can be applied
to other taxa. We suggest this approach could enhance wildlife
management for other species because improved survey protocols
can provide more efficient use of resources and more precise
statistical estimates that inform management decisions.

Responses to this article can be read online at: 
https://www.ace-eco.org/issues/responses.php/2080
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Appendix 1. Sampling schedule for each study site. 
 
Table A1.1. Number of 5-minute recordings per hour of day and total number of recording 
minutes collected at each study site. 

Site Name Year Hr0 Hr1 Hr2 Hr3 Hr4 Hr5 Hr6 Hr20 Hr21 Hr22 Hr23 
Total 
Mins 

Cassidy Tract 2017 0 0 0 0 0 13 0 11 14 14 3 275 

Miller Preserve 2017 0 0 0 0 9 19 0 11 29 29 18 575 

Unknown 2017 0 0 0 0 10 20 0 6 30 29 23 590 

Cassidy Tract II 2017 0 0 0 0 11 23 0 11 30 30 19 620 

Helmer Rd 2017 0 0 0 0 11 26 0 11 33 33 22 680 

Almonte 2017 0 0 0 0 19 20 0 11 37 36 25 740 

Charwell Pt 2017 0 0 0 0 11 29 0 11 36 36 25 740 

Weedmark Rd 2017 0 0 0 0 19 20 0 11 37 37 26 750 

Pt Petre 2017 0 0 0 0 11 31 0 11 38 37 26 770 

Ostrander Pt 2017 0 0 0 0 11 31 0 11 38 38 27 780 

Crookston Rd 2017 0 0 0 0 11 32 0 11 38 38 27 785 

Springbrook II 2017 0 0 0 0 11 32 0 11 38 38 27 785 

PEP-HX108 2019 5 5 5 5 5 5 5 5 4 4 4 260 

PEP-HX138 2019 6 6 6 6 6 6 6 5 5 5 5 310 

PEP-HX001 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX003 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX005 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX022 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX026 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX030 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX033 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX046 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX048 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX055 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX063 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX076 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX083 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX090 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX091 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX113 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX117 2019 31 31 31 31 31 31 31 31 31 31 31 1705 

PEP-HX136 2019 31 31 31 31 31 31 31 31 31 31 31 1705 
 



Appendix 2. Recognizer construction details. 
 
Table A2.1. Parameter settings for recognizers built in Song Scope software. 

Parameter Setting 

Sample rate (Hz) 16000 
FFT size 256 
FFT overlap ¾ 

Frequency minimum 16 
Frequency range 40 
Amplitude gain (dB) 0 
Background filter (s) 1 
Max syllable (ms) 300 
Max syllable gap (ms) 300 
Max song (ms) 1016 
Dynamic range (dB) 20 
Algorithm 2.0 
Maximum complexity 32 
Maximum resolution 10 
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Appendix 4. Examination of relationship between recognizer recall and mean relative sound 
level (RSL). 
 
We examined the relationship between recall and sound energy, which is a proxy for detection 
distance (Yip et al. 2020, Hedley et al. 2020), to ensure low recall of our recognizer was simply 
due to a lower effective detection radius than a human observer. We measured the sound 
energy, or loudness of each Eastern Whip-poor-will detection in our test dataset with two 
methods. First, we assigned a loudness ranking (Table A3.1) to each calling bout during manual 
counting of Eastern Whip-poor-will calls in our test dataset. We defined a calling bout as a 
duration of consecutive “whip-poor-will” calls with less than one second in between successive 
calls. Second, we measured the relative sound level (RSL) in each detected call with Song Scope 
software while running the recognizer. 
 
Table A3.1. Rankings used to describe the loudness of Eastern Whip-poor-will calling bouts 
during manual counting of calls in audio recordings. 

Loudness 
ranking 

Description Total # of calling 
bouts 

Total duration of 
calling bouts 
(minutes) 

Total number of 
calls 

1 Barely perceptible 16 4.75 240 
2 Barely perceptible to 

quiet 
13 8.10 426 

3 Quiet 29 8.23 455 
4 Quiet to medium 10 13.17 777 
5 Medium 3 1.67 113 
6 Medium to loud 2 4.80 270 
7 Loud 23 16.58 191 
8 Very loud 4 3.25 191 
 Not assessed 1 0.63 38 

 
We then visually evaluated the relationship between recall and each sound energy 
measurement across the range of possible score thresholds. One bout of 38 calls was missed 
during loudness ranking (Table A3.1) and was eliminated from analysis of loudness ranking. We 
also tested the relationship between score threshold and each of the sound energy 
measurements for true positive detections using a linear mixed effects model with file name as 
a random effect. We compared each model to a null model using Akaike’s information criterion 
(AIC). 
 
There was a clear relationship between recall and both sound energy metrics, suggesting that 
recall is related to detection distance (Figure A3.1). Furthermore, the model including sound 

energy had an AIC weight of 1.0 for both metrics (loudness ranking: AIC = 283.1, RSL: AIC = 
57.8). 
 
We conclude that the recall of our recognizer is simply due to a lower detection radius than a 
human observer, which is concordant with previous studies (Knight and Bayne 2018). We 

http://www.ace-eco.org/vol17/iss1/art21/


suggest the recording-level recall of the recognizer is much higher, however, due to the high 
number of calls that Eastern Whip-poor-wills produce (Mulaik et al. 1953). 
 

 
Figure A3.1. Relationship between recognizer recall and two metrics of sound energy (loudness 
ranking, relative sound level) across a range of score thresholds for an Eastern Whip-poor-will 
recognizer built in Song Scope software. Points are the mean value for each score threshold and 
grey shading is the standard deviation.  
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